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Overview of my research in bio-groups

Goal: Design and validate quantitative models of
collective motion in groups of fish and mosquitoes
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Obijectives: (|) apply tools from estimation theory
and computer vision to reconstruct movement
data; (2) use these data to construct dynamic
models; and (3) conduct behavioral experiments to
test model predictions




Qutline of talk

|. Information transmission in startled fish schools
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(Sachit Butail, Amanda Chicoli, Sheryl Coombs @ BGSU)

2. Motion coordination in mosquito mating swarms

Q ? (Sachit Butail, Daigo Shishika, Nick Manoukis @ NIH)



Startle-response behavior in fish

Fast-body-bend Return-flip

]
|
| { (AN L
|

(< Crc'a/./JJJJ;)j}}}/J/}//

(a)
)

(¢)

|
l
|
v )‘

(e}' , ( ’,./.,___,_/////

of | | T{((CCCcccecamrnnn

SIS ESddddddddddds

Pl CCccccceceet e
ALY Y LLLECETETZERRANN

O)JJ}5555555£o&ol-ololo\o\o'\o\a\oxo\o

Eaton, 1977

—>

~[00 ms



Number of fish responding
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Classical model fails to predict
the number of fish responding
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A fish school can transmit information

startled &

' Radakov, 1973



Cooperative threat detection

» Aim: Quantify the benefits of schooling in a signal-detection
framework that distinguishes bias and sensitivity

Bias criteria (c) Sensitivity (d')
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Internal response

» Approach: Use an artificial threat to startle a school whose
density is manipulated by school size and whose polarization is
manipulated by an external flow



Tracking two fish
with occlusion



Fish orient upstream in flow
(rheotaxis)




... and the distribution of
neighbor position changes
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Startle response to visual fright stimulus

No flow Flow



Evidence for internal
transmission of information

Angular Velocity of the Head
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Experimental finding: Number of
fish responding changes in flow
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Probabilistic model predictions

A time-dependent model of startle response captures
the probability of direct detection, indirect detection,
and false alarms.
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Results from fitting model output to data

|

Are flow signals produced by the movements of
neighboring fish masked by the flow, inhibiting
the transmission of hydrodynamic information?
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Qutline of talk

2. Motion coordination in mosquito mating swarms

Q ? (Daigo Shishika, Sachit Butail, Nick Manoukis @ NIH)



Female Anopheles ;ga' bic
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Male swarm
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vertical(m)

Male trajectories
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Velocity autocorrelation model
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damping ratio
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“Okay, but aren’t they interacting?”
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Probability

Swarming model without local

Interaction
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Correlation-induced interaction graph
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Interactive swarm model

® Swarming model without interaction: damped
spring between each insect and swarm centroid

® Swarming model with interaction: include
velocity damper between interacting insects
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Swarming model with local

interaction fits data better
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separation distance (m)
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X[m] more work to be done...



Collective behavior in bio-groups

Summary: Tools from computer vision and
nonlinear estimation have yielded 3D kinematics of

-schooling fish (up to eight)
-swarming mosquitoes (more than fifty)

Ongoing work: Analysis of trajectory data is
yielding insights via

-dynamic modeling of collective behavior

-manipulative experiments to validate models



» Manipulative experiments to evaluate the sensory basis for
how schooling fish transmit and receive social information

» Approach: Sensory deprivation experiments, robotic fish

Giant danio

Lateral line

Visual




V+ school with one V- fish (red)




Pilot experiment: Manipulating
wind speed (kind of works)




Experimental setup
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3D fish-tracking system

Generative modeling Shape reconstruction
4 N 4 N
Estimate three—dimensional midline —| Perform measurement—target data
by two—stage optimization association by nearest—neighbor
(Section II1-A) matching (Section IV-A)
- J G J
4 N\ 4 N\
Estimate cross—sectional ellipses Reconstruct sha -
: : pe by simulated
by iterated EKF (Section III-B) annealing (Section [V—B)

Smooth shape trajectories
by Kalman filtering (Section IV-C)




Swarming and mating in An. gambiae

Obijective: To apply tools from engineering to study
mating behavior in the field:

® VWhat happens in swarms in populations of

mosquitoes that are responsible for most of the
human death caused by malaria?

® Female behavior in males swarms may not be random,
but do they select mates?

® Do male flight patterns and/or position in the swarm
relates to mating success!?

Impact: Answers may influence vector control methods
that rely on releases of sterile males



3D (mosquito) tracking system

mosquito tracking algorithm
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vertical speed (m/s)

vertical speed (m/s)
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But what about the female?
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