Living clusters and crystals from low-density suspensions of active colloids

Universidad Complutense de Madrid KITP, 13Th of February 2014

Outline

✓ Active colloids

✓ Self-assembly of active colloids

✓ What happens in a bacteria & polymer mixture?

✓ Can we make living clusters of active colloids in low concentrated suspensions?

active colloids: absorb energy from their surroundings or from an internal fuel and dissipate it while moving around

examples: living bacteria, self-propelled colloids, synthetic centrosomes

Ramaswamy (2004) & Marchetti (2013)

a suspension of active colloids is driven out of equilibrium by its active nature

Why?

Technologically relevant

active colloids can be used to self-assemble novel smart materials, that could perform tasks such as

produce energy

perform directional motion
Di LeonardoPNAS (2009)

"Fundamentally" relevant

Sokolov PNAS (2009)

the Physics of a suspension of intrinsically out of equilibrium systems still needs to be fully understood

Self-assembly in Soft Matter (passive colloids)

Oppositely charged colloids

Leunissen, Dijkstra,
van Blaaderen
Patchy colloids

DNA-coated colloids

Frenkel&Eiser Pine&Chaikin

Colloid&Polymer mixture

Aarts & Lekkerkerker

What happens in a suspension of active colloids?

The team:

University of Edinburgh

Wilson Poon

Mike Cates

Davide Marenduzzo

Columbia University

Angelo Cacciuto

Asakura, Oosawa, Vrij (1954, 1976) Lekkerker (1992, 2002) Dijkstra (1999)

Aarts (2006)

Bacteria & polymer mixture

Bacteria swim (self-propel) due to the presence of flagella

bacteria swim (self-propel) due to the presence of flagella

polymers lead to depletion attraction between non-motile bacteria

Schwarz-Linek, Soft Matter(2010)

Bacteria & polymer mixture

in a colloid-polymer mixture depletion forces are $^{\sim}$ k $_{\rm B}$ T/giration radius ($^{\sim}$ 10-100 nm) so in the range of 0.05-0.5 pN

competition between propulsion and attraction

experiments

Ecoli

NaPSS

simulations

self-propelled hard dumbbells

short-range attractions

competition between propulsion and attraction

experiments

Non-motile Ecoli (alive, no flagella)

Motile Ecoli (alive, swimming)

Phase separation experiments

Non-motile Ecoli (alive, no Motile Ecoli (alive, flagella)

swimming)

2 hours: phase separation

if NaPSS > 0.2 wt %

Phase separation experiments

Non-motile Ecoli (alive, no flagella)

Motile Ecoli (alive, swimming)

2 hours: phase separation

if NaPSS > 0.2 wt %

2 hours: phase separation

if NaPSS > 0.4 wt %

Phase separation

experiments

Non-motile Ecoli (alive, no flagella)

Motile Ecoli (alive, swimming)

2 hours: phase separation

this corresponds to a

if NaPSS > 0.2 wt %

stronger depletion attraction

Phase separation

Phase separation

transient clusters

finite-size clusters of variable size (simulations)

small clusters (flagella of external bacteria may screen interactions) (experiments)

Self-assembly of nano-rotors

experiments

simulations

persistent clusters rotate unidirectionally

angular velocity of a cluster decreases with its size

Conclusions

- ✓ Activity suppresses phase separation
- ✓ At lower polymer concentrations, formation of self-propelled and unidirectionally rotating clusters
- ✓ Activity & propulsion are the ingredients to self-assemble functional clusters

Research highlight in Nature Materials/Nature Physics (2012)

However...

✓ in the bacteria & polymer mixture, we changed the attraction strength (polymer concentration) between active colloids

✓ but we did not modify their speed...

✓ therefore clusters were just transient and would aggregate at long times

Outline

✓ Active colloids

- ✓ Self-assembly of active colloids
- ✓ What happens in a bacteria & polymer mixture?
- ✓ Can we make living clusters of active colloids in low concentrated suspensions

Living clusters

Daan Frenkel

The team:

Cambridge University

Stefano Angioletti Uberti

Columbia University

Bortolo Mognetti

Angelo Cacciuto

Andela Sairc

Phase separation/clusters in 2 dim self-propelled systems

2 dim rod-shaped (at low/high concentrations) steric/ideal

Peruani, Deutsch, Bar (2006)

Yan, Marceau, Gompper (2010)

Ginelli, Peruani, Bar, Chate(2006)

or 2dim spherical shaped interacting via a repulsive potential

(at high concentration)

Stenhammar, Tirabocchi, Allen,

Redner, Hagan, Baskaran (2013)

Marenduzzo, Cates (2011)

Tailleur, Cates (2013)

Henke, Fily, Marchetti (2011)

or 2dim spherical shaped interacting via an attractive potential (at high concentration)

Redner, Baskaran, Hagan (2013)

What happens for attractive self-propelled spheres at low concentrations?

Experimental evidences for living clusters in 2 dim

Theurkauff, Cottin-Bizonne, Palacci, Ybert, Bocquet (2012)

cluster phase at intermediate densities

Buttinoni, Bialke, Kummel, Lowen, Bechinger, Speck (2013)

dynamic clusters at low densities in a 2dim suspension of SP purely repulsive colloids

Palacci, Sacanna, Steinberg, Pine, Chaikin (2013)

living clusters and crystals

Experimental evidences for living clusters in 2 dim

Which low concentrated suspensions of active colloids?

√ Self-propelled colloids (SP)

to mimic reactive colloids

√ Self-displaced colloids (SD)

to mimic synthetic centrosomes (colloids & microtubules)

(Spoerke Langmuir (2008)

Self-propelled colloids

$$m\ddot{r}_i = -\sum_{j\neq i} \frac{\partial V(r_{ij})}{\partial r_i} - \zeta \dot{r}_i + F_i + F_{R,i}$$

$$V(r_{ij}) = 4\epsilon \left[\left(\frac{\sigma_p}{r_{ij}} \right)^{12} - \left(\frac{\sigma_p}{r_{ij}} \right)^6 \right]$$

truncated and shifted Lennard-Jones interaction

at low concentrations (ϕ =0.01-0.1)

LAMMPS

Self-propelled colloids

$$m\ddot{r}_{i} = -\sum_{j\neq i} \frac{\partial V(r_{ij})}{\partial r_{i}} - \zeta \dot{r}_{i} + F_{i} + F_{R,i}$$

equilibrium: Lennard-Jones attraction

non-equilibrium: self-propulsion

Active versus equilibrium force

Self-displaced colloids

In the presence of ATP two centrosomes are cross-linked by molecular motors and displaced towards each others

Monte Carlo

at low concentrations (ϕ =0.01-0.1)

Self-displaced colloids

equilibrium: Brownian motion of hard-spheres with

diffusion D

non-equilibrium: two colloids are displaced toward each other by molecular motors with a pulling rate v

Active versus equilibrium force

Is there a propensity for aggregation?

$$P_{agg}(SD) = \frac{v}{D/(R_A - \sigma)^2}$$

one large aggregate (liquid&gas)

Self-propelled colloids

one large aggregate (liquid&gas)

Self-displaced colloids

cluster-size distribution seems power-law

clusters are amorphous

clusters grow and shrink dynamically

initial configuration: gas initial configuration: crystal we observe them for different initial conditions

Therefore

the formation of living clusters at low concentrations is independent on the active suspension under study

whether self-displaced or self-propelled

as long as there is a competition between equilibrium and active force

Is there anything special in the structure formed at large P_{agg} ?

the system forms one large amorphous aggregate that crystallizes thanks to the activity

P_{agg}(SP)_{activity} helps annealing defects!

irreversible crystallization, not living crystals

Is there anything special in the structure formed at large P_{agg} ?

the system forms one large amorphous aggregate that crystallizes thanks to the activity

SP particles

Conclusions

- ✓ In a diluted suspension of active colloids where an active force competes with an equilibrium one, the system can aggregate into living clusters
- ✓ When attraction dominates, the clusters can irreversibly crystallize

Physical Review Letter, 111 245702 (2013)

Focus article: Physics, 6 134 (2013)

Take-home message

- ✓ Activity suppresses phase separation
- ✓ Activity & propulsion are the ingredients to self-assemble functional clusters
- ✓ In a diluted suspension of active colloids where an active force competes with an equilibrium one, the system can aggregate into living clusters

Physical Review Letter, 111 245702 (2013) Focus article: Physics, 6 134 (2013)

PNAS 106 4052 (2012)

Research highlight in Nature Materials/Nature Physics (2012)

- ✓ Can we better characterize the clusters?
- ✓ What is the effect of hydrodynamic interactions?
- ✓ What is the effect of particles' shape in the process of self-assembly?
- ✓ What if we make the attraction anisotropic?
- ✓ What happens if we consider active and passive colloids?

Muchas gracias!

Physical Review Letter, 111 245702 (2013)

Focus article: Physics, 6 134 (2013)

PNAS 106 4052 (2012)

Research highlight in Nature Materials/Nature Physics (2012)

Living clusters

Bacteria & Polymers