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Figure 6: Classification of performance enhancement strategies. Pump types are divided
into dynamic pumps (DP) and positive displacement pumps (PDP).

geometries that could benefit from dynamic seals are gear pumps and valve-and-chamber
pumps both of which su↵er from volumetric losses as system size decreases. Since mechanical
designs for these types of pumps are commonplace, the new and interesting challenges arise
primarily in the electronics and hydrodynamics. Hydrodynamically, the challenges lie in
selecting the optimal field strength: too low and volumetric losses prevail, too high and
mechanical losses dominate3. Hence lower fields are desirable at lower operating pressures.
The electronic challenges lie in designing the system such that the large applied electric fields
follow the clearances in the system. (E.g. a gear pump geometry requires that the field follow
the smallest gap around the periphery of the pump.) In addition to synchronizing the rotor
and the field, symmetrical and di↵erential fields are needed across opposite ends of the
blades in the motor to generate the fields with no electrical contact to the rotating blades.
We will model and analyze the system to select the number of electric field control points
and track accuracy along the gap region to find a compromise between circuit complexity
and associated electrical losses and the resulting volumetric and mechanical losses. This
compromise can be improved by using sensors to detect mechanical e↵ort and fluid pressure
and apply feedback control to optimize the applied field from the power circuit.

Artificial ciliary pumps. Ciliary pumps are one of the few examples of nat-
urally occurring low Reynolds number dynamic pumps, and frequently serve as
transport systems for high viscosity or viscoelastic materials. Previous work has
demonstrated pumping and sensing with artificial cilia using microtubule bun-

dles [7], chains of superparamagnetic particles [11], PDMS-ferrofluid composite material [3],
printed liquid crystals [10], and thin double layers of polyimide and chromium [2]. However
all of these are at scales too small to deliver the the requisite pressures for use in hydraulic
systems. In addition, there exist a number of papers (including two by the PI [8, 9]) on
optimal wave forms for flagellar transport which compute theoretically optimal mechanical
wave patterns for individual cilia.

3Ideally one would like to design a surface on the periphery that allows slip and a surface on the gears
that promotes sticking.
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controlled by actin binding proteins, such as the capping protein illustrated in Figure 2, so few
if any spontaneously nucleated filam

ents arise in the cytoplasm
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The structural asym

m
etry of the actin subunit and the ATP hydrolysis that accom

panies actin
polym

erization under physiological conditions com
plicate the polym

erization kinetics in tw
o

w
ays.   First, the structural asym

m
etry of the m

onom
er and the head-to tail polym

erization
ensure the filam

ent is also asym
m

etric, a feature first recognized by the appearance in EM
 of

F-actin bound to saturation by the m
yosin S1 fragm

ent.  Such decorated filam
ents have an

arrow
head appearance in negative stain preparations and from

 this appearance the term
s barbed

and pointed end w
ere derived to identify the tw

o filam
ent ends.  W

ith reference to the Heidelberg
m

odel of F-actin (see Figure 3), actin subunits at the barbed end are arranged w
ith subdom

ains
1 and 3 at the outside, and the nucleotide binding cleft oriented tow

ard the pointed end.   The
DNase binding loop of actin is exposed at the pointed end, and occluded at the barbed end. The
structural asym

m
etry of F-actin is independent of ATP hydrolysis and unrelated to w

hether the
polym

erization is at equilibrium
 or steady state.  The rate constants of addition and dissociation

from
 the tw

o ends could also be different, but the principle of m
icroscopic reversibility

requires that at equilibrium
 the tw

o distinct ends are each separately at equilibrium
, so the

dissociation constants m
ust be the sam

e at the two ends.
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The structure of the actin m

onom
er obtained from

 the actin-DNAse-1 crystal is superim
posed

on the density m
ap of the actin filam

ent derived from
 X-ray diffraction and EM

.   Derived from
w

w
w

.m
ih.unibas.ch/Hom

epages/stoffler/Slides/Actin/Actin.htm
l.

The ATPase activity of actin w
as one of its first characterized biochem

ical properties (Straub
and Feuer, 1950), but the physiologic   al    function of this reaction, w

hich can constitute a
significant fraction of total cellular ATPase (Daniel et al., 1986) is not yet clear. The coupling
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