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Similarity to glassy materials

field between images in time. Each image is divided into 1,024
subregions, and the peak position of the 2D spatial autocorrela-
tion function of each subregion at successive time points pro-
duces a displacement vector for each subregion across the entire
image. Short-time, subcellular motions add random fluctuations
to the frame-by-frame displacement field, dðr;tÞ, and the displa-
cement autocorrelation function exhibits a rapid decay at short
times, and a plateau at lag times between 100 and 200 min. Thus,
before breaking the displacement field into groups of length
200 min, we use a running boxcar-average of 100 min over the
full dataset, determining a well defined migration velocity field
in space and time, vðr;tÞ. We observe that cells within the conflu-
ent layer are confined by their neighbors and move with a nearly
constant velocity over time scales of hundreds of minutes
(Fig. S1).

The resulting migration velocity fields are spatially heteroge-
neous, exhibiting a variation in magnitude from region to region.
There is no apparent structural heterogeneity in cell density that
correlates with cell motion, suggesting that the large scale hetero-
geneities in the migration velocity field are dynamic in nature
(Fig. S2). To characterize the spatial extent of the area containing
these dynamic heterogeneities, ξh, we employ a method similar to

that used in dense colloidal systems: we identify the fastest 20%
of all migration velocity vectors at each time point and calculate
the average area of the subregions that contain the selected
vectors and are contiguous; this determines ξh in each 200 min
dataset (Fig. 1B). The cell density increases with time; concomi-
tantly the dynamic heterogeneities grow in spatial extent. At the
lowest cell densities the dynamic heterogeneity comprises an area
of about ten cells; however there is a marked increase in this
size scale as the cell density increases. The size of the dynamic
heterogeneities saturates at a spatial extent of an area of about
30 cell bodies, but decreases again beyond a cell density of
approximately 2;800 mm−2 (Fig. 1C).

To quantify the migration rate, we calculate the speed from
the averaged-velocity fields, v ¼ hjvðr;tÞjir;t, where angle brackets
indicate an average over the position of the velocity vectors, r,
throughout the entire field of view, and an average over time,
t, throughout each 200 min period. Although ξh grows with
density, v decreases, shown in Fig. 1D. This combination of grow-
ing dynamic heterogeneities and slowing migration speed with
increasing cell density is strikingly reminiscent of the nature of
the relaxations observed in supercooled fluids approaching the
glass transition, suggesting the possibility of an analogy between
cell motion within a confluent layer and the crowding within a
particulate system approaching a glass transition with increasing
density (12, 13).

The Dynamic Structure Factor of Confluent Cell Motion. To further
explore possible analogies between glass-forming systems and
collective migration within confluent cell layers, we search for
other signatures of the glass transition by measuring the dynamic
structure factor, Sðq;ωÞ of the confluent cell layer. The dynamic
structure factor is traditionally measured with inelastic neutron,
X-ray, or light scattering methods, and we adapt a similar method
for the analysis of time-lapse images of cell motion; this provides
dynamical information over a wide range of wavelengths and fre-
quencies. Formally, the dynamic structure factor is the modulus-
squared of the time and space Fourier transform of a dynamic
variable such as electron density or neutron density (14). By
analogy, we use the image intensity to determine Sðq;ωÞ of the
cell layer; this characterizes dynamic fluctuations in cell shape
at short wavelengths, and also in cell density at long wavelengths.
We assume the sample is isotropic, and orientationally average
to determine Sðq;ωÞ; an example is shown in Fig. 2A.

To describe the data, we use the damped harmonic oscillator
(DHO) model, often employed to measure the dynamics of fluids
and disordered materials,

Sðq;ωÞ
SðqÞ

¼ I0ðqÞ
1
2Γ0ðqÞ

ω2 þ ð12Γ0ðqÞÞ2
þ IðqÞ ΩðqÞΓ2ðqÞ

½ω2 −Ω2ðqÞ&2 þ ω2Γ2ðqÞ
:

[1]

Fig. 1. MDCK cells within a confluent monolayer migrate in a spatially
heterogeneous manner (A, B). The average area of contiguous regions of
the fastest velocity vectors defines ξh, the area of dynamic heterogeneities
(B, white regions). As cell density rises, ξh grows from an area of about 10 cell
bodies to 30 cell bodies (C, inset: ξh in μm2). The average migration speed of
cells within the entire field of view, v, decreases with increasing cell density
(D). (Scale bar, 100μm.).

Fig. 2. The dynamic structure factor Sðq;ωÞ of themigrating cell monolayer is calculated to quantify cooperative and self motions over a broad range of length
scales and time scales (A). An example slice through Sðq;ωÞ at q ¼ 0.8 rad μm−1 shows that the spectral line shape is well described by the DHOmodel, consisting
of a diffusive Rayleigh peak (red line) and a Brillouin peak (blue line) (B). The spectrum of diffusing particles is dramatically different than the DHO spectrum, as
seen on a log - log plot (C, diffusing particle data: empty black square, red line: Rayleigh peak fit, cell data: filled black circle, blue line: DHO fit).
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subregions, and the peak position of the 2D spatial autocorrela-
tion function of each subregion at successive time points pro-
duces a displacement vector for each subregion across the entire
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to the frame-by-frame displacement field, dðr;tÞ, and the displa-
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To quantify the migration rate, we calculate the speed from
the averaged-velocity fields, v ¼ hjvðr;tÞjir;t, where angle brackets
indicate an average over the position of the velocity vectors, r,
throughout the entire field of view, and an average over time,
t, throughout each 200 min period. Although ξh grows with
density, v decreases, shown in Fig. 1D. This combination of grow-
ing dynamic heterogeneities and slowing migration speed with
increasing cell density is strikingly reminiscent of the nature of
the relaxations observed in supercooled fluids approaching the
glass transition, suggesting the possibility of an analogy between
cell motion within a confluent layer and the crowding within a
particulate system approaching a glass transition with increasing
density (12, 13).

The Dynamic Structure Factor of Confluent Cell Motion. To further
explore possible analogies between glass-forming systems and
collective migration within confluent cell layers, we search for
other signatures of the glass transition by measuring the dynamic
structure factor, Sðq;ωÞ of the confluent cell layer. The dynamic
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quencies. Formally, the dynamic structure factor is the modulus-
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scales and time scales (A). An example slice through Sðq;ωÞ at q ¼ 0.8 rad μm−1 shows that the spectral line shape is well described by the DHOmodel, consisting
of a diffusive Rayleigh peak (red line) and a Brillouin peak (blue line) (B). The spectrum of diffusing particles is dramatically different than the DHO spectrum, as
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Figure 3.1: (a) Total particle displacements in a system with density 0.8035,
after 27% shear strain. (b) The corresponding non-affine displacement field. (c)

Zoomed-in view of the non-affine displacements, with several vortices highlighted.

tion of local density. This dependence, however, can be scaled out using a simple

scaling, resulting in an invariant distribution regardless of the mean density.

3.1 Particle Displacements

The key for shear bands is strain localization, which can be visualized through parti-

cle tracking. Here, I demonstrate that this shear protocol prevents strain localization

by generating a smooth particle displacement field.

In this test, the shear is applied quasi-statically in up to 100 small steps with

∆γ = 0.27% per step. The particle positions and radii are obtained from the methods

46

Figure 2.1: (a) Sketch of the simple shear setup, which deforms a rectangular-
shaped cell into a parallelogram. The bottom of the cell is divided into narrow slats
that co-move with the boundaries, to create quasi-uniform shear. (b) A picture of
the actual shear cell.

quasi-uniform on the particle scale; 2) the size ratio of the big/small particles should

considerably deviate from unity to maximally ensure disordered packing [86]; and

3) the system should have relatively more small particles than big ones, in order to

increase the total number of particles in the apparatus and enhance statistics.

The density of the packing is chosen within a range φS ≤ φ ≤ φJ , where φJ � 0.84

is the isotropic jamming point in 2D, and φS � 0.75 is the minimum density for shear

jamming[6, 87]. This density range ensures that the system starts from a completely

stress-free state, while it also allows particle interactions to happen under shear. In

addition, the particles are frictional, with friction coefficients of 0.7 between particles
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field between images in time. Each image is divided into 1,024
subregions, and the peak position of the 2D spatial autocorrela-
tion function of each subregion at successive time points pro-
duces a displacement vector for each subregion across the entire
image. Short-time, subcellular motions add random fluctuations
to the frame-by-frame displacement field, dðr;tÞ, and the displa-
cement autocorrelation function exhibits a rapid decay at short
times, and a plateau at lag times between 100 and 200 min. Thus,
before breaking the displacement field into groups of length
200 min, we use a running boxcar-average of 100 min over the
full dataset, determining a well defined migration velocity field
in space and time, vðr;tÞ. We observe that cells within the conflu-
ent layer are confined by their neighbors and move with a nearly
constant velocity over time scales of hundreds of minutes
(Fig. S1).

The resulting migration velocity fields are spatially heteroge-
neous, exhibiting a variation in magnitude from region to region.
There is no apparent structural heterogeneity in cell density that
correlates with cell motion, suggesting that the large scale hetero-
geneities in the migration velocity field are dynamic in nature
(Fig. S2). To characterize the spatial extent of the area containing
these dynamic heterogeneities, ξh, we employ a method similar to

that used in dense colloidal systems: we identify the fastest 20%
of all migration velocity vectors at each time point and calculate
the average area of the subregions that contain the selected
vectors and are contiguous; this determines ξh in each 200 min
dataset (Fig. 1B). The cell density increases with time; concomi-
tantly the dynamic heterogeneities grow in spatial extent. At the
lowest cell densities the dynamic heterogeneity comprises an area
of about ten cells; however there is a marked increase in this
size scale as the cell density increases. The size of the dynamic
heterogeneities saturates at a spatial extent of an area of about
30 cell bodies, but decreases again beyond a cell density of
approximately 2;800 mm−2 (Fig. 1C).

To quantify the migration rate, we calculate the speed from
the averaged-velocity fields, v ¼ hjvðr;tÞjir;t, where angle brackets
indicate an average over the position of the velocity vectors, r,
throughout the entire field of view, and an average over time,
t, throughout each 200 min period. Although ξh grows with
density, v decreases, shown in Fig. 1D. This combination of grow-
ing dynamic heterogeneities and slowing migration speed with
increasing cell density is strikingly reminiscent of the nature of
the relaxations observed in supercooled fluids approaching the
glass transition, suggesting the possibility of an analogy between
cell motion within a confluent layer and the crowding within a
particulate system approaching a glass transition with increasing
density (12, 13).

The Dynamic Structure Factor of Confluent Cell Motion. To further
explore possible analogies between glass-forming systems and
collective migration within confluent cell layers, we search for
other signatures of the glass transition by measuring the dynamic
structure factor, Sðq;ωÞ of the confluent cell layer. The dynamic
structure factor is traditionally measured with inelastic neutron,
X-ray, or light scattering methods, and we adapt a similar method
for the analysis of time-lapse images of cell motion; this provides
dynamical information over a wide range of wavelengths and fre-
quencies. Formally, the dynamic structure factor is the modulus-
squared of the time and space Fourier transform of a dynamic
variable such as electron density or neutron density (14). By
analogy, we use the image intensity to determine Sðq;ωÞ of the
cell layer; this characterizes dynamic fluctuations in cell shape
at short wavelengths, and also in cell density at long wavelengths.
We assume the sample is isotropic, and orientationally average
to determine Sðq;ωÞ; an example is shown in Fig. 2A.

To describe the data, we use the damped harmonic oscillator
(DHO) model, often employed to measure the dynamics of fluids
and disordered materials,

Sðq;ωÞ
SðqÞ

¼ I0ðqÞ
1
2Γ0ðqÞ

ω2 þ ð12Γ0ðqÞÞ2
þ IðqÞ ΩðqÞΓ2ðqÞ

½ω2 −Ω2ðqÞ&2 þ ω2Γ2ðqÞ
:

[1]

Fig. 1. MDCK cells within a confluent monolayer migrate in a spatially
heterogeneous manner (A, B). The average area of contiguous regions of
the fastest velocity vectors defines ξh, the area of dynamic heterogeneities
(B, white regions). As cell density rises, ξh grows from an area of about 10 cell
bodies to 30 cell bodies (C, inset: ξh in μm2). The average migration speed of
cells within the entire field of view, v, decreases with increasing cell density
(D). (Scale bar, 100μm.).

Fig. 2. The dynamic structure factor Sðq;ωÞ of themigrating cell monolayer is calculated to quantify cooperative and self motions over a broad range of length
scales and time scales (A). An example slice through Sðq;ωÞ at q ¼ 0.8 rad μm−1 shows that the spectral line shape is well described by the DHOmodel, consisting
of a diffusive Rayleigh peak (red line) and a Brillouin peak (blue line) (B). The spectrum of diffusing particles is dramatically different than the DHO spectrum, as
seen on a log - log plot (C, diffusing particle data: empty black square, red line: Rayleigh peak fit, cell data: filled black circle, blue line: DHO fit).
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field between images in time. Each image is divided into 1,024
subregions, and the peak position of the 2D spatial autocorrela-
tion function of each subregion at successive time points pro-
duces a displacement vector for each subregion across the entire
image. Short-time, subcellular motions add random fluctuations
to the frame-by-frame displacement field, dðr;tÞ, and the displa-
cement autocorrelation function exhibits a rapid decay at short
times, and a plateau at lag times between 100 and 200 min. Thus,
before breaking the displacement field into groups of length
200 min, we use a running boxcar-average of 100 min over the
full dataset, determining a well defined migration velocity field
in space and time, vðr;tÞ. We observe that cells within the conflu-
ent layer are confined by their neighbors and move with a nearly
constant velocity over time scales of hundreds of minutes
(Fig. S1).

The resulting migration velocity fields are spatially heteroge-
neous, exhibiting a variation in magnitude from region to region.
There is no apparent structural heterogeneity in cell density that
correlates with cell motion, suggesting that the large scale hetero-
geneities in the migration velocity field are dynamic in nature
(Fig. S2). To characterize the spatial extent of the area containing
these dynamic heterogeneities, ξh, we employ a method similar to

that used in dense colloidal systems: we identify the fastest 20%
of all migration velocity vectors at each time point and calculate
the average area of the subregions that contain the selected
vectors and are contiguous; this determines ξh in each 200 min
dataset (Fig. 1B). The cell density increases with time; concomi-
tantly the dynamic heterogeneities grow in spatial extent. At the
lowest cell densities the dynamic heterogeneity comprises an area
of about ten cells; however there is a marked increase in this
size scale as the cell density increases. The size of the dynamic
heterogeneities saturates at a spatial extent of an area of about
30 cell bodies, but decreases again beyond a cell density of
approximately 2;800 mm−2 (Fig. 1C).

To quantify the migration rate, we calculate the speed from
the averaged-velocity fields, v ¼ hjvðr;tÞjir;t, where angle brackets
indicate an average over the position of the velocity vectors, r,
throughout the entire field of view, and an average over time,
t, throughout each 200 min period. Although ξh grows with
density, v decreases, shown in Fig. 1D. This combination of grow-
ing dynamic heterogeneities and slowing migration speed with
increasing cell density is strikingly reminiscent of the nature of
the relaxations observed in supercooled fluids approaching the
glass transition, suggesting the possibility of an analogy between
cell motion within a confluent layer and the crowding within a
particulate system approaching a glass transition with increasing
density (12, 13).

The Dynamic Structure Factor of Confluent Cell Motion. To further
explore possible analogies between glass-forming systems and
collective migration within confluent cell layers, we search for
other signatures of the glass transition by measuring the dynamic
structure factor, Sðq;ωÞ of the confluent cell layer. The dynamic
structure factor is traditionally measured with inelastic neutron,
X-ray, or light scattering methods, and we adapt a similar method
for the analysis of time-lapse images of cell motion; this provides
dynamical information over a wide range of wavelengths and fre-
quencies. Formally, the dynamic structure factor is the modulus-
squared of the time and space Fourier transform of a dynamic
variable such as electron density or neutron density (14). By
analogy, we use the image intensity to determine Sðq;ωÞ of the
cell layer; this characterizes dynamic fluctuations in cell shape
at short wavelengths, and also in cell density at long wavelengths.
We assume the sample is isotropic, and orientationally average
to determine Sðq;ωÞ; an example is shown in Fig. 2A.
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(DHO) model, often employed to measure the dynamics of fluids
and disordered materials,
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Fig. 1. MDCK cells within a confluent monolayer migrate in a spatially
heterogeneous manner (A, B). The average area of contiguous regions of
the fastest velocity vectors defines ξh, the area of dynamic heterogeneities
(B, white regions). As cell density rises, ξh grows from an area of about 10 cell
bodies to 30 cell bodies (C, inset: ξh in μm2). The average migration speed of
cells within the entire field of view, v, decreases with increasing cell density
(D). (Scale bar, 100μm.).

Fig. 2. The dynamic structure factor Sðq;ωÞ of themigrating cell monolayer is calculated to quantify cooperative and self motions over a broad range of length
scales and time scales (A). An example slice through Sðq;ωÞ at q ¼ 0.8 rad μm−1 shows that the spectral line shape is well described by the DHOmodel, consisting
of a diffusive Rayleigh peak (red line) and a Brillouin peak (blue line) (B). The spectrum of diffusing particles is dramatically different than the DHO spectrum, as
seen on a log - log plot (C, diffusing particle data: empty black square, red line: Rayleigh peak fit, cell data: filled black circle, blue line: DHO fit).
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Rep. Prog. Phys. 76 (2013) 046602 F Höfling and T Franosch

as Langevin equations, which incorporate the randomness of
the kicks by the medium as ‘noise’. The modern formulation
in terms of a Langevin equation is mostly due to Ornstein, who
shaped the notion of what is now known as random Gaussian
white noise. A mathematical rigorous introduction to the
stochastic differential equations and Brownian motion can be
found in the excellent textbook by Øksendal [17].

For overdamped motion, the displacements R(t) are
assumed to obey the stochastic differential equation

∂tR(t) = η(t), (12)

with noise terms η(t) = (η1(t), . . . , ηd(t)) that are
considered as independent, random quantities on sufficiently
coarse-grained time scales. In fact, these ηi (t), i =
1, . . . , d, represent already averages over many independent
processes occurring on even shorter time scales such that the
central-limit theorem applies. The probability distribution
then corresponds to a multivariate Gaussian, symbolically
written as P [η(t)] ∝ D[η(t)] exp(−

∫
dtη(t)2/4D), which

is characterized completely by the only non-vanishing
cumulant [15],

〈
ηi (t) ηj (t

′)
〉
= 2Dδijδ(t − t ′), i, j = 1, . . . , d. (13)

Such a noise displays only short-time correlations and
corresponds to a power spectral density that is flat at the
frequencies of interest, commonly referred to as white noise.
We have imposed that different Cartesian directions ηi (t) are
uncorrelated and, invoking isotropy, the strength of the noise,
2D, is identical for all directions. The idea of coarse-graining
and the seemingly innocent assumption of independence then
necessarily leads to Gaussian white noise as the universal law
for the statistics of the displacements at small times. Any
deviation from this law indicates the existence of non-trivial
persistent correlations in the system.

The displacement after a finite lag time follows from
formally integrating the Langevin equation, $R(t) = R(t) −
R(0) =

∫ t

0 dt ′η(t ′), and being a sum of Gaussian variables,
it obeys again a Gaussian distribution. Thus it suffices to
calculate the first two cumulants. Since the mean of the noise
vanishes, one infers 〈$R(t)〉 = 0, and the correlation function
of the displacements follows from the delta-correlated noise as

〈
$Ri(t)$Rj(t)

〉
= 2Dtδij . (14)

In particular, one recovers δr2(t) =
〈
$R(t)2

〉
= 2dDt ,

and the probability distribution is determined by the diffusion
propagator, equation (2).

2.2. Anomalous and complex transport

The probabilistic reasoning presented in the previous
subsection suggests that normal diffusion emerges as a
statistical law essentially by the central-limit theorem. In
particular, the MSD is expected to increase linearly in time
for time scales much larger than microscopic. In simple
systems such as normal liquids [11, 12] one observes diffusion
already at time scales exceeding the picosecond scale. The
phenomena of anomalous or complex transport deal with
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Figure 1. Schematic mean-square displacement (MSD) for
intermediate subdiffusive Free diffusion at microscopic
scales is followed by subdiffusive transport at intermediate time
scales. In a physical system, the subdiffusive growth ends typically
at a second crossover, where the MSD grows linearly again with
reduced diffusion constant, D & D0, or where it saturates, e.g. due
to boundaries like the cell membrane.

dynamics where this diffusive regime is not visible even on
time scales that are by many orders of magnitude larger than
picoseconds. Conventionally, non-linear growth of the MSD
is taken as an indicator of such unusual behaviour. Typically,
the MSD is proportional to a power law, δr2(t) ∝ tα , with
an exponent 0 < α < 1. Hence the MSD increases slower
than for normal diffusion, formally the diffusion coefficient
becomes zero, nevertheless the tracer is not localized. This
kind of behaviour is referred to as subdiffusion or anomalous
transport3. Theoretically, the phenomenon then calls for
reasons why the central-limit theorem does not apply at the
time scales of interest. Rephrasing the argument in terms of
increments reveals that persistent correlations are hidden in the
dynamics on meso- or macroscopic time scales.

We would like to make a distinction between a simple
violation of the central-limit theorem in some intermediate
time window and mechanisms leading to subdiffusive
behaviour that can in principle persist forever. In the first
case some dynamic processes are unusually slow that spoil the
central-limit theorem on these scales, yet ultimately normal
transport sets in. This scenario of complex transport occurs
generically by having constituents of the medium of different
sizes or soft interactions, e.g. polymers. Then the MSD
displays only a crossover from some short-time motion to
long-time diffusion. Since the crossover can extend over
several decades (due to a series of slow processes occurring
in the medium), fits by power laws are often a satisfactory
description. In the second case, the correlations in the
increments decay slowly and upon tuning suitable control
parameters the window of subdiffusion can become arbitrarily
long. Hence in a well-defined limit the subdiffusion persists
forever and the central-limit theorem never applies. We
reserve the term anomalous transport for the latter scenario.
Typically, the MSD is expected to display two crossover
time scales, see figure 1 and [18], which is also found in

3 In different contexts one finds also superdiffusive transport corresponding
to α > 1, which is beyond the scope of this review.
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as Langevin equations, which incorporate the randomness of
the kicks by the medium as ‘noise’. The modern formulation
in terms of a Langevin equation is mostly due to Ornstein, who
shaped the notion of what is now known as random Gaussian
white noise. A mathematical rigorous introduction to the
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∫
dtη(t)2/4D), which

is characterized completely by the only non-vanishing
cumulant [15],

〈
ηi (t) ηj (t

′)
〉
= 2Dδijδ(t − t ′), i, j = 1, . . . , d. (13)
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deviation from this law indicates the existence of non-trivial
persistent correlations in the system.

The displacement after a finite lag time follows from
formally integrating the Langevin equation, $R(t) = R(t) −
R(0) =

∫ t

0 dt ′η(t ′), and being a sum of Gaussian variables,
it obeys again a Gaussian distribution. Thus it suffices to
calculate the first two cumulants. Since the mean of the noise
vanishes, one infers 〈$R(t)〉 = 0, and the correlation function
of the displacements follows from the delta-correlated noise as

〈
$Ri(t)$Rj(t)

〉
= 2Dtδij . (14)

In particular, one recovers δr2(t) =
〈
$R(t)2

〉
= 2dDt ,

and the probability distribution is determined by the diffusion
propagator, equation (2).

2.2. Anomalous and complex transport

The probabilistic reasoning presented in the previous
subsection suggests that normal diffusion emerges as a
statistical law essentially by the central-limit theorem. In
particular, the MSD is expected to increase linearly in time
for time scales much larger than microscopic. In simple
systems such as normal liquids [11, 12] one observes diffusion
already at time scales exceeding the picosecond scale. The
phenomena of anomalous or complex transport deal with
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intermediate subdiffusive Free diffusion at microscopic
scales is followed by subdiffusive transport at intermediate time
scales. In a physical system, the subdiffusive growth ends typically
at a second crossover, where the MSD grows linearly again with
reduced diffusion constant, D & D0, or where it saturates, e.g. due
to boundaries like the cell membrane.

dynamics where this diffusive regime is not visible even on
time scales that are by many orders of magnitude larger than
picoseconds. Conventionally, non-linear growth of the MSD
is taken as an indicator of such unusual behaviour. Typically,
the MSD is proportional to a power law, δr2(t) ∝ tα , with
an exponent 0 < α < 1. Hence the MSD increases slower
than for normal diffusion, formally the diffusion coefficient
becomes zero, nevertheless the tracer is not localized. This
kind of behaviour is referred to as subdiffusion or anomalous
transport3. Theoretically, the phenomenon then calls for
reasons why the central-limit theorem does not apply at the
time scales of interest. Rephrasing the argument in terms of
increments reveals that persistent correlations are hidden in the
dynamics on meso- or macroscopic time scales.

We would like to make a distinction between a simple
violation of the central-limit theorem in some intermediate
time window and mechanisms leading to subdiffusive
behaviour that can in principle persist forever. In the first
case some dynamic processes are unusually slow that spoil the
central-limit theorem on these scales, yet ultimately normal
transport sets in. This scenario of complex transport occurs
generically by having constituents of the medium of different
sizes or soft interactions, e.g. polymers. Then the MSD
displays only a crossover from some short-time motion to
long-time diffusion. Since the crossover can extend over
several decades (due to a series of slow processes occurring
in the medium), fits by power laws are often a satisfactory
description. In the second case, the correlations in the
increments decay slowly and upon tuning suitable control
parameters the window of subdiffusion can become arbitrarily
long. Hence in a well-defined limit the subdiffusion persists
forever and the central-limit theorem never applies. We
reserve the term anomalous transport for the latter scenario.
Typically, the MSD is expected to display two crossover
time scales, see figure 1 and [18], which is also found in

3 In different contexts one finds also superdiffusive transport corresponding
to α > 1, which is beyond the scope of this review.
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Why might tissues generically be close to a glass 
transition?

• For wound healing, embryonic development, 
cancer invasion:

✴ Initially need large scale flows (i.e. fluid-
like rheology)

✴ Subsequently need to support forces and 
shear stresses (i.e. a solid-like rheology)
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What is the microscopic origin of glassy behavior 
in non-active materials?
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✴ The existence of a complex potential 
energy landscape

✴ System close to energy landscape 
surface

✴ System is trapped in metastable states, 
needs energy fluctuations to escape

∆E1
∆E2

e−∆E1/kBT e−∆E2/kBT Energy

state 1 state 2

C. Monthus & J.-P Bouchaud
J. Phys. A 29 3847 (1996)

Trap Model for glassy dynamics

Soft Glassy Rheology

P. Sollich et al
PRL 78 2020 (1997) 

Wednesday, April 2, 2014



Exploring the Potential Energy Landscape

Alexandre J Kabla

Energy injection by cellGlobal injection of energy

Sheared foam
Cells in tissues
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The Shape Equilibrium Model / Vertex Model

• Developed more than 10 years 
ago and well-studied

• Generalization of a foam model
• Reasonably good agreement with 

experimentally observed cell 
shapes

Ecell = kA(A−A0)
2 + kP (P − P0)

2

= kA(A−A0)
2 + kP (P

2 − 2P0P + P 2
0 )

Bulk elasticity term
Contractility

 Line tension and Adhesion

Nagai & Honda Phil. Mag. B vol. 81 (7) (2001)
Hufnagel et al, PNAS vol. 104 (10) pp. 3835 (2007)
Farhadifar et al, Current Biology (2007)
Jülicher et al Phys. Rep. (2007)
Manning et al, PNAS (2010)
Staple et al EPJE 33 (2) 117 (2010)
Chiou et al PLOS Comp Bio 8 (5) e1002512 (2012)
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✴Modeling tissues using Surface Evolver
• Using refined polygon tiling to represent 2-d confluent 

monolayer
• Configurations obtained by minimizing Etot =

�

cell

Ecell

Simulating a cellular structure
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Coarsening
(unstable) Stable Soft

(unstable)

utissue =
�

i

ui; ui = κp2i − 2κp0pi + (ai − 1)2

D. Bi et al, unpublished

Tension dominates Adhesion dominates

Phase space of disordered metastable states

Ground states first studied by
Staple et al, EPJ-E 33(2) 117 (2010)
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Migration in 2D happens via T-1 transitions

Cell divisions also and cell death (T2) also cause migrations, but it is not necessary for 
fluid behavior

D. Bi et al, Soft Matter 2014
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Energy trace for T-1 transitions
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Energy trace for T-1 transitions
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Sheared foams, grainsTissues

Energy barrier statistics

✴ Robust exponential tail
✴ Energy is injected locally, all 

sites are probed
✴ Power-law distributed, with 

exponential cut-off
✴ Energy is injected globally 

and failure occurs a special 
soft spots in a material that 
is tuned near a critical point

behavior; this can also be seen in the other event statistics in
Table I. The average rearrangement rate is only slightly
larger in the Okuzono-Kawasaki simulations, 0.50 per
bubble per unit strain.
While event rates may be comparable, the nature of the

flows and the quantitative details of the probability density,
P(�E), for events with energy drop �E , are entirely differ-
ent for the bubble and vertex models. Figure 9 shows this
distribution based on the simulation runs summarized in
Table I. Results for the four system sizes are nearly indistin-
guishable, as seen already in Table I, and adequately repre-
sent the infinite-sample limit. Evidently, the range of energy
drops produced by the bubble model spans an enormous
range, from 10�7 to 50 times the average bubble energy, Eb .
The preponderance of events is small, with the median size
being about 0.6Eb and the average being about 2.5Eb . For
small events, below this average, the distribution is a power
law with exponent �0.70�0.05; for large events, it decays
as exp��0.2�E/Eb�. Without this exponential cutoff, the av-
erage and width of the distribution reported in Table I would
not be well defined. This contrasts with the Okuzono-
Kawasaki vertex model simulations �30�, where energy
drops occur over only two decades, in spite of the larger
system, and where the distribution is a power law,
P(�E)��E�3/2. Not only is their exponent different, but
they find no sign of an exponential cutoff for large events. A
related difference is that the largest events in the vertex
model presumably depend on system size, but do not in the
bubble model.

The avalanche statistics of the bubble model, though in
conflict with those of the vertex model, are actually in good
accord with the experiments by Gopal and myself �9�. Both
show lack of a power-law tail in the distribution of large
events, which leads to a well-defined average event size. And
both show that the average event is relatively small, only a
few bubbles across. For the bubble model, this can be seen
two ways. First, most events are smaller than the average
bubble energy Eb and are exponentially rare above 5Eb .
Second, and perhaps more significantly, the extent of bubble
motion is not very large. For example, the event motion
shown in Fig. 8 is actually atypical; it is for the largest
energy drop seen in the 12�12 system. Even for this largest
of events, the clusters of bubbles undergoing topology
change only involve a few bubbles, and the individual mo-
tions are not more than a typical bubble size. Work is now in
progress �42� to determine whether the choice of dissipative
dynamics in Eq. �3� plays a role in forcing the typical event
size to be commensurate with the bubble size.
Physically, the cause for better agreement with experi-

ment may be that the bubbles are less constrained and hence
can rearrange before being significantly distorted. In both
experiment and bubble model, rearrangements can be in-
duced by strains of only a few percent; as more strain is
imposed, the bubbles simply rearrange to maintain shapes
fairly close to equilibrium. Accordingly, the elastic energy is
never much higher than in unstrained equilibrium and the
magnitude of the stress fluctuations is comparable to the av-
erage, as seen in Fig. 7. In the vertex model, by contrast,
rearrangements are not induced until the bubbles are very
highly distorted and the strains exceed 1; as more strain is
imposed, rearrangements occur but only relieve a small por-
tion of the extra energy, leaving the bubbles still highly dis-
torted. Accordingly, the elastic energy is significantly higher
than in unstrained equilibrium and the stress fluctuations are
small compared to the average, as seen in Figs. 3 and 4 of
Ref. �30�. This ‘‘loading’’ produced in the vertex model may
be the crucial difference. It does not occur in the bubble
model, presumably because the bubbles are always spherical
and the corresponding repulsive springs cannot be signifi-
cantly compressed via shear. It does not occur in experiment
either, presumably because bubbles are harder to constrain
for a foam which is fairly wet and which exists in three
dimensions.
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FIG. 9. Probability density for rearrangement events releasing
energy �E , normalized by the average energy per bubble Eb . De-
tails of the simulation runs are given in Table I. Independent of
system size �labeled�, there is a preponderance of small events ex-
hibiting power-law behavior, with exponent 0.70�0.05, and an ex-
ponential cutoff of large events.
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From energy barriers to cell migration

A very minimal model:

∆E
bt

R = ω0 exp [−(∆E − bt)/ε]

ρ(∆E) = e−∆E/ε0

ε

✴ A cell is ʻcagedʼ by its neighbors
✴ Can escape cage by:
✓ Polarized cell motion  b

 +
✓ Active shape fluctuations

✴ Energy landscape has shape 
given by

These are sufficient to lead to glassy 
dynamics!

∂

∂t
P (∆E, t) =− ω0e

−[∆E−bt]/εP (∆E, t)

+ �(∆E)

�
d∆E�ω0e

−[∆E�−bt]/εP (∆E�, t)

Monthus & Bouchaud(1996)
Trap model for glassy dynamics

Soft Glassy Rheology

Sollich et al, PRL (1997) 

Master equation for dynamics 
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From energy barriers to cell migration: 
experimentally accessible predictions
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α2 = 0: Brownian motion α2 ∼ 1: Cage breaking

3. Results
3.1. Statistics of individual cell trajectories
We first analyse the structure and dynamics of cells in ecto-
derm and mesendoderm zebrafish explants. We reconstruct
the three-dimensional static positions for a subset of the
nuclei in the explant at each timepoint and estimate cell
shapes by taking a three-dimensional Voronoi tessellation
[33] of the nuclei positions. In both tissue types, the structure
of the tissue is disordered; the cell nuclei are not arranged in a
crystalline pattern, and the cell shapes are irregular poly-
hedra with roughly similar volumes. A two-dimensional
slice through the tissue therefore appears as curved polygons
with widely varying areas (figure 1a).

A second observation is that the tissue is confluent, where
there are no visible extracellular gaps in membrane-labelled
images. One way to quantify a cellular structure is the dimen-
sionless packing fraction f, which is the ratio of the sum of
the volumes of all the individual cells compared to the total
volume taken up by the aggregate. For tissueswith extracellular
gaps, the packing fraction is less than one, but for completely
confluent tissues the packing fraction is unity. This value can
be directly compared with results from simulations.

To non-dimensionalize other observables, we define the
average effective radius R of cells by calculating the average
distance between nuclei in the middle of the aggregate,
which is 15+2 mm. Since the overlap between soft disor-
dered spheres at packing fraction unity is approximately
15% [35], we find that twice the effective radius averages
17 mm and the average effective radius is R ¼ 8+ 1 mm.

By combining the static three-dimensional positions of
nuclei from different timepoints, we can track them over time
and analyse their dynamics inside the tissue explants [32].

A standard metric for studying the motion of particles is
the mean-squared displacement (MSD), which is the square
of the net distance an individual particle moves as a function
of time, averaged over all particles. The motion of the nuclei
is diffusive if the MSD scales linearly with time and super
(sub)-diffusive if the MSD increases with the time to a
power greater (less) than one. For diffusive tissues in three
dimensions, the diffusion constant D is one-sixth the long
time limit of the ratio between the MSD and time.

Figure 1e shows the log of the MSD as a function of
log of the time for ectoderm and mesendoderm tissues.
We find that D¼ 0.22+0.05 mm2min–1 for ectoderm and
D ¼ 0.60+0.05 mm2min–1 for mesendoderm. Ectoderm and
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Figure 1. (a) Two-dimensional cross section of three-dimensional experimental tissue showing packing fraction unity. Cell membranes are labelled using Gap43GFP,
cell nuclei using Hoechst. (b,c) Two sample cell tracks extracted from experimental data illustrating ‘caging’ behaviour as described in the text. (d) Two-dimensional
cross section of three-dimensional tissue simulation, interfaces generated using a Voronoi tessellation and the surface evolver computer program [34]. (e) MSD data
for experimental ectoderm (thin dashed) and mesendoderm (solid) explants. Thick dashed lines are slope 1, drawn to guide the eye. ( f ) MSD data for best-fit
simulation parameters shown in natural units as discussed in the electronic supplementary material text. (g,h) Non-Gaussian parameter (described in text) for
experimental (g) and best-fit simulation (h) data achieve a maximum at a timescale tc discussed in the main text. Secondary peak at very short timescales
for ectoderm data is likely caused by misidentified features. (Online version in colour.)
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From energy barriers to cell migration: 
experimentally accessible predictions
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3. Results
3.1. Statistics of individual cell trajectories
We first analyse the structure and dynamics of cells in ecto-
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the three-dimensional static positions for a subset of the
nuclei in the explant at each timepoint and estimate cell
shapes by taking a three-dimensional Voronoi tessellation
[33] of the nuclei positions. In both tissue types, the structure
of the tissue is disordered; the cell nuclei are not arranged in a
crystalline pattern, and the cell shapes are irregular poly-
hedra with roughly similar volumes. A two-dimensional
slice through the tissue therefore appears as curved polygons
with widely varying areas (figure 1a).

A second observation is that the tissue is confluent, where
there are no visible extracellular gaps in membrane-labelled
images. One way to quantify a cellular structure is the dimen-
sionless packing fraction f, which is the ratio of the sum of
the volumes of all the individual cells compared to the total
volume taken up by the aggregate. For tissueswith extracellular
gaps, the packing fraction is less than one, but for completely
confluent tissues the packing fraction is unity. This value can
be directly compared with results from simulations.

To non-dimensionalize other observables, we define the
average effective radius R of cells by calculating the average
distance between nuclei in the middle of the aggregate,
which is 15+2 mm. Since the overlap between soft disor-
dered spheres at packing fraction unity is approximately
15% [35], we find that twice the effective radius averages
17 mm and the average effective radius is R ¼ 8+ 1 mm.

By combining the static three-dimensional positions of
nuclei from different timepoints, we can track them over time
and analyse their dynamics inside the tissue explants [32].

A standard metric for studying the motion of particles is
the mean-squared displacement (MSD), which is the square
of the net distance an individual particle moves as a function
of time, averaged over all particles. The motion of the nuclei
is diffusive if the MSD scales linearly with time and super
(sub)-diffusive if the MSD increases with the time to a
power greater (less) than one. For diffusive tissues in three
dimensions, the diffusion constant D is one-sixth the long
time limit of the ratio between the MSD and time.

Figure 1e shows the log of the MSD as a function of
log of the time for ectoderm and mesendoderm tissues.
We find that D¼ 0.22+0.05 mm2min–1 for ectoderm and
D ¼ 0.60+0.05 mm2min–1 for mesendoderm. Ectoderm and
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Figure 1. (a) Two-dimensional cross section of three-dimensional experimental tissue showing packing fraction unity. Cell membranes are labelled using Gap43GFP,
cell nuclei using Hoechst. (b,c) Two sample cell tracks extracted from experimental data illustrating ‘caging’ behaviour as described in the text. (d) Two-dimensional
cross section of three-dimensional tissue simulation, interfaces generated using a Voronoi tessellation and the surface evolver computer program [34]. (e) MSD data
for experimental ectoderm (thin dashed) and mesendoderm (solid) explants. Thick dashed lines are slope 1, drawn to guide the eye. ( f ) MSD data for best-fit
simulation parameters shown in natural units as discussed in the electronic supplementary material text. (g,h) Non-Gaussian parameter (described in text) for
experimental (g) and best-fit simulation (h) data achieve a maximum at a timescale tc discussed in the main text. Secondary peak at very short timescales
for ectoderm data is likely caused by misidentified features. (Online version in colour.)
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Energy barrier depend on cell topology 
utissue =

�

i

ui; ui = κp2i − 2κp0pi + (ai − 1)2

D. Bi et al, unpublished
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Migration of ʻabnormalʼ cells embedded in healthy cells
Work in progress
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Migration of ʻabnormalʼ cells embedded in healthy cells
Work in progress
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Work in progress

Dynamical simulation with active T-1 rearrangements
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Conclusion

•Many tissue types show evidence of being close to a glass 
transition (wound healing, embryonic development)

•For confluent (density ~ 1) tissues, we have developed a 
framework for estimating energy barriers to cell rearrangements,
•Self propelled particle models are perhaps less useful than 

shape equilibrium models at this density
•energy barriers are exponentially distributed
•energy barriers depend strongly on a cell’s number of 

nearest neighbors (experimentally accessible predictions)

•Our model predicts how changing single-cell properties changes 
cell migration rates. Can apply cell sorting or cancer migration? 

D. Bi et al, Soft Matter 2014,10, 1885-1890
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