ACTIVE MODEL B Michael Cates (Edinburgh Univ.) KITP Mar 13, 2014 Motility-induced phase separation Density-dependent swim speed

NNIVE

Free energy mapping for local $v(\rho)$ J Tailleur + MEC, PRL 100, 208301 (2008); EPL 101, 20010 (2013)

Gradient terms: No free energy mapping Coarsening kinetics surprisingly unaltered Phase coexistence surprisingly altered Minimal ϕ^4 model : Active Model B J Stenhammar, A Tiribocchi, D. Marenduzzo, R. Allen + MEC, PRL 111, 145702 (2013)

J Stenhammar et al, Soft Matter (2014) in press

R Wittkowski et al, arXiv:1311.1256

+ work in progress

Active vs Passive Matter

Detailed Balance = Time Reversal Symmetry Restored for steady state in isolated system

With DB

Unique Boltzmann SS Evaluate $Z = \Sigma \exp[-\beta H]$ Minimize $\beta F = -\log Z$

e.g. Brownian motion

Find SS by hand Map onto DB if lucky Few general principles

e.g. bacterial swimming

JT+*MEC*, *EPL* 101, 20010 (2013)

swim speed v, tumble rate α

Rotational relaxation time:

swim speed v, rotational diffusivity D_r

ABPs = Synthetic swimmers Bacteria = RTPs VS

Coarse Graining \Rightarrow **Random walks in d dimensions**

 $D = \frac{v^2 \tau}{d}$

$$v = v(\mathbf{r}), \quad \alpha = \alpha(\mathbf{r}), \quad D_r = D_r(\mathbf{r})$$

Explicit coarse-graining gives EOM for 1-body probability density

Equivalent to isothermal Brownian particle in external potential:

$$\beta U(\mathbf{r}) = \ln v(\mathbf{r})$$

M Schnitzer et al, Symp. Soc. Gen. Microbiol., 46, 15 (1990); PRE 48,2553 (1993)

$$\rho_{ss}(\mathbf{r}) \propto \exp[-\beta U(\mathbf{r})] = \frac{1}{v(\mathbf{r})}$$

Active particles accumulate where they move slowest

1D illustration: isothermal Brownian

Active

$$\begin{array}{c|c} D_1 = \langle v^2 \rangle \tau_1 & D_2 = \langle v^2 \rangle \tau_2 \\ J_{1 \rightarrow 2} \sim \rho_1 v_{TH} & & \\$$

Coarse Graining: From Microscopics to Diffusion-Drift

MEC and J Tailleur, EPL 101 20010 (2013), PRL 100 218103 (2008)

So far, one particle \Leftrightarrow Brownian motion in $\beta U(\mathbf{r}) = -\ln v(\mathbf{r})$

 \Rightarrow for N independent Brownian particles:

coarse grained collective density $\frac{1}{4}r = \S_i \stackrel{\frown}{\pm} (r_i r_i)$

$$\frac{\frac{1}{2}}{1} = \frac{1}{1} r :J$$

$$J(r) = \frac{1}{1} D(r)r \frac{1}{2} + V(r)\frac{1}{2} + (2D(r)\frac{1}{2})^{1-2}x$$

$$x = unit white noise (Ito)$$

e.g., D S Dean, J. Phys. A L613 (1996)

Coarse Graining: From Microscopics to Diffusion-Drift

MEC and J Tailleur, EPL 101 20010 (2013), PRL 100 218103 (2008)

Allow spatial dependence of v, τ to be mediated by ρ itself

$$\frac{1/2}{2} = i r :J$$

$$J(r) = i D[\frac{1}{4}r \frac{1}{2} + V[\frac{1}{4}\frac{1}{2} + (2D[\frac{1}{4}\frac{1}{4}\frac{1}{4}]^{1-2}x$$

where

$$D([1/2]; r) = v^{2} = d V([1/2]; r) = i Dr (Inv) \begin{cases} v = v([1/2]; r) \\ z = z([1/2]; r) \end{cases}$$

Density-Dependent Swimming Speed

J. Tailleur + MEC, PRL 100, 218103 (2008), EPL 101, 20010 (2013)

Equivalent to interacting Brownian particles iff

$$\frac{V([1/2]; r)}{D([1/2]; r)} = i r^{1}_{ex}(r) \text{ where }^{1}_{ex} = \frac{\pm F_{ex}[1/2]}{\pm 1/2}r$$

 \Rightarrow a colloidal fluid with free energy

$$F[\frac{1}{4}] = \frac{1}{4} \ln \frac{1}{2} \ln 1 dr + F_{ex}[\frac{1}{4}]$$

units: $\beta = 1$

Density-Dependent Swimming Speed

J. Tailleur + MEC, PRL 100, 218103 (2008), EPL 101, 20010 (2013)

If $v([\rho], \mathbf{r}) \approx v(\rho(\mathbf{r}))$ is local:

$$f(\frac{1}{2}) = \frac{1}{2} \ln \frac{1}{2} \ln 1 + \ln v(s) ds$$

spinodal instability

 $d^{2}f = d^{1/2} < 0$ dln v=dln $\frac{1}{2} < 1$

coexistence condition: common tangent on $f(\rho)$ 9

Case Study: Spherical ABPs + Collisions

Y Fily, M C Marchetti, PRL 108 235702 (2012) GS Redner, A Baskaran, M F Hagan, PRL 110 057701 (2013) J Stenhammar et al, PRL 111, 145702 (2013)

A. Wysocki, R. G. Winkler and G. Gompper, arXiv:1308.6423

average projected velocity v = v.u

$$v(\rho) = v_0(1 - \rho/\rho_m)$$

no rotation in collision: τ unaffected

Phase Separation Kinetics

J. Stenhammar et al, PRL 111, 145702 (2013)

Mapping with local approximation $v([\rho], \mathbf{r}) \approx v(\rho(\mathbf{r}))$:

DB system unstable towards phase separation

But model has:

Infinitely sharp interfaces, no surface tension

 \Rightarrow no driving force for domain growth

X

need nonlocal terms to describe kinetics

ACTIVE MODEL B

Motility-induced phase separation

Density-dependent swim speed

Free energy mapping for local $v(\rho)$

J Tailleur + MEC, PRL 100, 208301 (2008); EPL 101, 20010 (2013)

Gradient terms: No free energy mapping Coarsening kinetics surprisingly unaltered Phase coexistence surprisingly altered Minimal ϕ^4 model : Active Model B J Stenhammar, A Tiribocchi, D. Marenduzzo, R. Allen + MEC, PRL 111, 145702 (2013)

J Stenhammar et al, Soft Matter (2014) in press

R Wittkowski et al, arXiv:1311.1256

+ work in progress

Phase Separation Kinetics

J. Stenhammar et al, PRL 111, 145702 (2013) **Consider slight nonlocality:**

$$v([1/3]; r) = v(1/3)$$

$$\frac{1}{2}(r) = \frac{1}{2}(r) + \frac{2}{2}r^{-2} \frac{1}{2}$$

$$\rho \text{ sampled on "persistence length"} = \frac{2}{0} \frac{1}{2}v(1/3)$$

$$O(1)$$

$$\frac{1}{D} = \frac{1}{2}r(\ln v(1/3)) = \frac{1}{2}r^{-1} \frac{1}{2}r^{-1}$$

$$\frac{1}{2}r^{-1} \frac{1}{2}r^{-1} \frac{1}{2}r^{-1}$$

Gradient terms break Detailed Balance once again!

Phase Separation Kinetics

J. Stenhammar et al, PRL 111, 145702 (2013)

Resulting model:

$$\dot{\rho} = -\nabla J$$

$$\mathbf{J} = -D(\rho)\rho\nabla\mu + \text{noise}$$

$$\mu(\rho) = \ln\rho + \ln v(\rho) - \kappa(\rho)\nabla^2\rho \left[-\frac{d\kappa(\rho)(\nabla\rho)^2}{d\rho}\frac{1}{2}\right]$$

$$v(\rho) = v_0(1 - A\rho) \quad (+ \text{hardcore correction})$$

$$\kappa(\rho) = -\gamma_0^2 \tau_r^2 v(\rho) \frac{dv(\rho)}{d\rho}$$

compare:

$$\mathcal{F} = \int \left(f(\rho) + \frac{\kappa(\rho)}{2} \nabla(\rho)^2 \right) d^3 \mathbf{r}$$

DB restoring term

Scaling of domain size L(t)

J Stenhammar et al, PRL 111, 145702 (2013)

Scaling of domain size L(t)

J Stenhammar et al, PRL 111, 145702 (2013)

ABPs: The Story So Far

J Stenhammar et al, PRL 111, 145702 (2013)

- Free energy mapping is broken at square gradient level
- Near perfect agreement of continuum and ABP simulations
- DB violations have little effect on phase separation kinetics
- Modest exponent shift: $D(\rho)$ not DB violations
- But.....

ABPs: The Story So Far

J Stenhammar et al, PRL 111, 145702 (2013)

• DB violations do affect phase diagram!

Small but clear shift in coexisting densities with/without DB

ABPs: The Story So Far

J Stenhammar et al, PRL 111, 145702 (2013)

How can gradient terms change the common tangent construction?

$$\beta f(\rho) = \rho(\ln \rho - 1) + \int_0^\rho \ln v(s) ds$$

Minimal Model

R Wittkowski et al, in review

Free energy density

$$\mathcal{F} = \int d^d \mathbf{x} \left(-\frac{\phi^2}{2} + \frac{\phi^4}{4} + \frac{\nabla \phi^2}{2} \right)$$

Equilibrium chemical potential

$$\mu_0 = -\phi + \phi^3 - \frac{\nabla^2 \phi}{2}$$

Add generic leading-order DB violation

$$\mu = \mu_0 + \lambda (\nabla \phi)^2$$

[For previous ABP model $\lambda \propto -d\kappa(
ho)/d
ho$ = const.]

Minimal Model

R Wittkowski et al, in review

Free energy density

$$\mathcal{F} = \int d^d \mathbf{x} \left(-\frac{\phi^2}{2} + \frac{\phi^4}{4} + \frac{\nabla \phi^2}{2} \right)$$

Equilibrium chemical potential

$$\mu_0 = -\phi + \phi^3 - \frac{\nabla^2 \phi}{2}$$

Add generic leading-order DB violation

$$\mu = \mu_0 + \lambda (\nabla \phi)^2$$

Now proceed as usual

$$\mathbf{J} = -\nabla \mu \ (+ \text{ noise})$$
$$\dot{\phi} = -\nabla . \mathbf{J}$$

Active Model B: L(t)

R Wittkowski et al, in review

 λ causes asymmetry

little else altered

Active Model B: L(t)

R Wittkowski et al, in review

R Wittkowski et al, in review

 $\lambda = 0$: equilibrium common tangent

$$f = -\frac{\phi^2}{2} + \frac{\phi^4}{4}$$

- 1. equal chemical potential (= slope $df/d\phi$)
- 2. equal pressure (= intercept, $\mu\phi-f$)

Result:
$$\mu = 0; \phi = \pm 1$$

R Wittkowski et al, in review

 $\lambda \neq 0$:

"uncommon tangent" construction

$$f = -\frac{\phi^2}{2} + \frac{\phi^4}{4}$$

 $J \sim \nabla \mu = 0 \Longrightarrow \mu = uniform = \mu_0$ in bulk phases

- \Rightarrow common slope retained
- But pressures not equal: $\mu_0 \neq 0$

R Wittkowski et al, in review

Explicit calculation of offset:

seek 1D profile $\phi(z)$ connecting bulk phases of $\mu \neq 0$

$$J = 0 \Rightarrow -\phi + \phi^3 - \phi'' + \lambda(\phi')^2 = \mu$$

[nonlinear eigenvalue problem for μ]

 $\phi(z) \Leftrightarrow x(t)$ for Newtonian particle in inverted potential

$$U(x) = \mu x + \frac{x^2}{2} - \frac{x^4}{4}$$
$$\ddot{x} = -U'(x) + \lambda \dot{x}^2$$

 $\lambda \Leftrightarrow$ velocity dependent force

R Wittkowski et al, in review

 $\mu = 0$:

R Wittkowski et al, in review

 $\mu = 0$: all solutions oscillatory \Rightarrow microphase separation

R Wittkowski et al, in review

For eigenvalue $\mu(\lambda)$:

R Wittkowski et al, in review

For eigenvalue $\mu(\lambda)$: planar interface between bulk phases

R Wittkowski et al, in review

Active pressure vs Laplace pressure

R Wittkowski et al, in review

For $\lambda \ll 1$: active pressure jump across flat interface $\Delta P_{\lambda} = \frac{8}{15}\lambda$

Passive droplet, radius R: Laplace pressure

$$\Delta P_L = (d-1)\frac{\sigma}{R} = (d-1)\frac{2\sqrt{2}}{3R}$$

Explicit calculation gives $\mu = 0$ solution when these balance

$$R^* = \frac{5(d-1)}{2\sqrt{2\lambda}}$$

Active pressure is "thermodynamically real" like Laplace pressure (within mapping)

Stable Droplet Phases?

R Wittkowski et al, in review

Experiments sometimes see stable clusters/droplets

Palacci et al Science 339, 936 (2013), Theurkauff et al PRL 108, 268303 (2012)

Schwarz-Linek et al PNAS 109, 4052 (2012)

Q: Can we get a stable phase of **R*** droplets?

Stable Droplet Phases?

R Wittkowski et al, in review

Experiments sometimes see stable clusters/droplets

Palacci et al Science 339, 936 (2013), Theurkauff et al PRL 108, 268303 (2012) Schwarz-Linek et al PNAS 109, 4052 (2012)

R

Q: Can we get a stable phase of **R*** droplets?

A: No!

R > R*: growth R < R*: shrinkage

Ostwald ripening as in passive case

All droplet phases unstable

Active Model B: Summary

R Wittkowski et al, in review

Phase separation kinetics \approx as with DB no new kinetic universality class (?) no arrest into cluster phase Uncommon tangent construction 'active Laplace pressure' planar interface solution always exists Antecedents:

shear banding, driven surface coarsening models

PD Olmsted, Rheol. Acta 47, 283 (2008)

SJ Watson and SA Norris, Phys. Rev. Lett. 96, 176103 (2006).

ACTIVE MODEL B

WHIVE ROMAN

Density-dependent swim speed

Motility-induced phase separation

Free energy mapping for local $v(\rho)$

J Tailleur + MEC, PRL 100, 208301 (2008); EPL 101, 20010 (2013)

Gradient terms: No free energy mapping Coarsening kinetics surprisingly unaltered Phase coexistence surprisingly altered Minimal ϕ^4 model : Active Model B J Stenhammar, A Tiribocchi, D. Marenduzzo, R. Allen + MEC, PRL 111, 145702 (2013)

J Stenhammar et al, Soft Matter (2014) in press

R Wittkowski et al, arXiv:1311.1256

+ work in progress

