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Background:	
  swimming	
  at	
  low	
  Reynolds	
  number	
  

In	
  nature,	
  several	
  swimming	
  mechanisms	
  are	
  observed:	
  
e.g.	
  flagellar	
  propulsion	
  (E	
  Coli,	
  B	
  SubHlis,	
  C.	
  Rheinhardii…)	
  
	
  
Reynolds	
  number	
  is	
  very	
  small	
  	
  ~	
  10^(-­‐4)	
  

We	
  look	
  at	
  micro-­‐swimmers	
  classified	
  into	
  pusher	
  or	
  puller	
  types	
  due	
  to	
  
the	
  leading	
  order	
  force	
  dipole	
  /	
  stresslet	
  they	
  create	
  due	
  to	
  locomoHon.	
  

Extensile	
  force	
  dipole	
  

ContracHle	
  force	
  
dipole	
  

were tracked as they swam through a suspension of fluorescent
tracer particles (see Materials and Methods). Measurements far
from walls were obtained by focusing on a plane 50 μm from
the top and bottom surfaces of the sample chamber, and record-
ing approximately 2 terabytes of movie data. Within this data we
identified approximately 104 rare events when cells swam within
the depth of field (2 μm thick) for >1.5 s. By tracking the fluid
tracers during each of the rare events, relating their position and
velocity to the position and orientation of the bacterium, and per-
forming an ensemble average over all bacteria, the time-averaged
flow field in the swimming plane was determined down to 0.1% of
the mean swimming speed V 0 ¼ 22" 5 μm∕s. As E. coli rotate
about their swimming direction, their time-averaged flow field
in three dimensions is cylindrically symmetric. The present mea-
surements capture all components of this cylindrically symmetric
flow except the azimuthal flow due to the rotation of the cell
about its body axis. In contrast with the flow around higher
organisms such as Chlamydomonas (37, 38) and Volvox (37), the
topology of the measured bacterial flow field (Fig. 1A) is that of a
force dipole (shown in Fig. 1B). Yet, there are some differences
between the force dipole flow and the measurements close to the
cell body, as shown by the residual of the fit (Fig. 1C).

The decay of the flow speed with distance r from the center of
the cell body (Fig. 1D) illustrates that the measured flow field
displays the characteristic 1∕r2 form of a force dipole. However,
the force dipole model significantly overestimates the flow to the
side and behind the cell body, where the measured flow magni-
tude is nearly constant over the length of the flagellar bundle. The
force dipole fit to the far field (r > 8 μm) was achieved with two

opposite force monopoles (Stokeslets) at variable locations along
the swimming direction. As r ¼ 0 corresponds to the center of
the cell body in Fig. 1D, and not the halfway point between the
two opposite Stokeslets, the fit captures some of the anterior–
posterior asymmetry in the flow magnitude u. From the best fit,
which is insensitive to the specific algorithms used, we obtained
the dipole length ℓ ¼ 1.9 μm and dipole force F ¼ 0.42 pN. This
value of F is consistent with optical trap measurements (39) and
resistive force theory calculations (40). It is interesting to note
that in the best fit, the cell drag Stokeslet is located 0.1 μm behind
the center of the cell body, possibly reflecting the fluid drag on
the flagellar bundle.

Flow Field Near a Surface. Having found that a force dipole flow
describes the measured flow around E. coli with good accuracy
in the bulk (far from boundaries), we investigated whether this
approximation is also valid when E. coli swim close to a wall.
Focusing 2 μm below the top of the sample chamber, and applying
the same measurement technique as before, we obtained the
flow field shown in Fig. 1E. This flow decays much faster than
that in the bulk due to the proximity of a no-slip surface (Fig. 1H),
and the inward and outward streamlines are now joined to pro-
duce loops (Fig. 1E). However, both of these differences are
consistent with a simple force dipole model and are therefore
not due to a change in bacterial behavior. In particular, closed
streamlines are known to be a rather general feature of point
singularities near no-slip surfaces (41). Using the solution of a
Stokeslet near a wall (31) to obtain that of a force dipole near
a wall yields streamlines (Fig. 1F) and a decay (Fig. 1H) of the

Fig. 1. Average flow field created by a single freely swimming bacterium far from surfaces (A–D) and close to a wall (E–H). Streamlines indicate the local
direction of flow, and the logarithmic color scheme indicates flow speed magnitudes. (A) Experimentally measured flow field in the bacterial swimming plane,
with the inset showing the anterior-posterior asymmetry close to the cell body. (B) Best-fit force dipole flow. (C) Residual flow field, obtained by subtracting the
best-fit dipole model from the measured field. (D) Radial decay of the flow speed u in different directions, with r ¼ 0 corresponding to the center of the cell
body. For distances r ≲ 6 μm the dipole model overestimates the flow field behind and to the side of the cell body. (E) Experimentally measured flow field in the
bacterial swimming plane, for bacteria swimming parallel to a wall at a distance of 2 μm. (F) Best-fit force dipole flow, where the presence of the wall causes
inward and outward streamlines to join. (G) Residual flow field. (H) The flow speed decays much faster for bacteria swimming close to a wall, as the fluid
velocity must vanish on the surface.
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flow may be important [30]. We are currently investigating
whether similar conclusions hold for the flow field around
bacteria, the prototypical ‘‘pusher’’ microorganisms.
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FIG. 4 (color online). Time- and azimuthally-averaged flow field of C. reinhardtii. (a) Streamlines (red [medium gray]) computed
from velocity vectors (blue [dark gray]). The spiraling near elliptic points is an artifact of the direct integration of a noisy experimental
velocity field. A color scheme indicates flow speed magnitudes. (b) Streamlines of the azimuthally-averaged flow of the three-Stokeslet
model: flagellar thrust is distributed among two Stokeslets placed (not fitted) at the approximate flagellar position (lateral green
arrows), whose sum balances drag on the cell body (central red arrow). (c) Decay of kuðrÞk for the three directions indicated by
separate colors in the inset, compared to results from the three-Stokeslet model (dashed lines).
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SchemaHc	
  interacHon	
  of	
  two	
  swimmers	
  

Pushers	
   Pullers	
  (?)	
  



InteracHons	
  in	
  suspensions	
  of	
  micro-­‐swimmers	
  
Bacterial	
  ``turbulence’’.	
  

ObservaHons:	
  
• 	
  collecHve	
  behavior	
  drives	
  the	
  fluid	
  	
  
• 	
  correlated	
  moHons	
  over	
  large	
  length	
  scales,	
  collecHve	
  speed	
  ~10	
  Hmes	
  individual	
  speed	
  
• 	
  density	
  fluctuaHons,	
  self-­‐organizaHon	
  -­‐>	
  jets,	
  vorHces	
  
• 	
  enhanced	
  transport	
  and	
  diffusion,	
  etc.	
  

Bacterium	
  Sub-lis	
  	
  rod-­‐shaped	
  ~4	
  μm	
  long	
  
swimming	
  speed	
  20-­‐30	
  μm/sec	
  
not	
  much	
  tumbling	
  

Bacterial	
  bath:	
  Colony	
  of	
  B.	
  SubHlis	
  in	
  a	
  pendant	
  drop,	
  	
  
Dombrowski,	
  Kessler	
  and	
  Goldstein,	
  2004	
  



Minimal	
  swimmer	
  model:	
  leading	
  order	
  dynamics	
  in	
  
swimmer	
  slenderness	
  

Center	
  of	
  mass	
  and	
  orientaHon	
  

Low	
  Re	
  flow	
  with	
  extra	
  stress	
  (acHve	
  +	
  due	
  pairwise	
  steric	
  interacHons)	
  

Figure 1: (Color online.) Left: sketch of a “pusher” slender swimmer. The propulsive
stress is applied in the posterior half, the no-slip condition is in the first half of its body.
Right: sketch of a “puller” slender swimmer. The propulsive stress is applied in the first
half whereas the no-slip condition is applied in the second half of its body.

the propulsive tangential stress, viscosity, and particle aspect ratio �. The
first equation (2) describes the dynamics of the center of mass and tells how
the particle self-propels and is advected by the fluid flow that is evaluated
at the the center of mass. The second equation (3) is Je⇥rey’s Equation [22]
that describes how a slender rod is rotated by the fluid flow u evaluated at
it’s center of mass. In our model we non-dimensionalize by the swimmer
length and propulsion speed, which sets l = 1 and U0 = 1.

If an external flow v(x, t) is present, then the leading order equations of
motion can include it as

Ẋc = U0P+ u(Xc) + v(Xc) (4)

Ṗ = (I�PPT )[⌅u(Xc) +⌅v(Xc)]P. (5)

2.2. Pair Interactions

Direct interactions between the micro-swimmers can be included in their
dynamics so that they do not overlap or cross. These interactions are com-
monly referred to as excluded volume or steric. Borrowing from the field
of molecular dynamics, we add short-range repulsive forces between the
swimmers via an anisotropic potential by considering the swimmers as soft
sphero-cylinders or slender ellipsoidal particles. Commonly used potentials
for pairwise interactions of such anisotropic particles are of the Gay-Berne
[14]-type �e(rij ,Pi,Pj) where rij = Xci�Xcj is the distance vector between
the two particles’ centers of mass and Pi,Pj their swimming directions. The
interaction activates only once the particles are within 21/6 ⇤ 1.12 body-
lengths away of each-other. The force and torque exerted on the particle i
by the particle j are respectively

Fe
ij = �⌅rij�

e(rij ,Pi,Pj) (6)

Te
ij = �Pi ⇥⌅Pi�

e(rij ,Pi,Pj). (7)

5

discretize in each spatial direction. The major computational cost is the
fluid solver, which with FFT-s employed is only O(NlogN) with N the total
number of mesh points. This approach is appropriate when the suspension is
dilute enough and swimmer crossings and overlaps are rare. In concentrated
suspensions where excluded volume e⇥ects have to be included, the equations
of motion become sti⇥ as the WCA [12] or Gay-Berne [4] potentials depend
on the inverse of the distance between two particles, thus when two particles
are close the repulsive forces and torques are large. We use a second-order
predictor-corrector method method with a maximum time-step of �t =
5 ⇤ 10�4, which is restrictive. The interactions between the M particles
however are computed fast in O(M) cost per time-step, thus bringing the
cost of the method to O(NlogN +M) per time-step.

Ẋi = u�(x�Xi) + VP+
1

2
(I+PiP

T
i )

M�

j ⇥=i

Fe
ij (21)

Ṗi = (I�PPT )[⌅u�(x�Xi)]P+ 6
M�

j ⇥=i

Te
ij ⇥Pi (22)
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Figure 1: (Color online.) Left: sketch of a “pusher” slender swimmer. The propulsive
stress is applied in the posterior half, the no-slip condition is in the first half of its body.
Right: sketch of a “puller” slender swimmer. The propulsive stress is applied in the first
half whereas the no-slip condition is applied in the second half of its body.

the propulsive tangential stress, viscosity, and particle aspect ratio �. The
first equation (2) describes the dynamics of the center of mass and tells how
the particle self-propels and is advected by the fluid flow that is evaluated
at the the center of mass. The second equation (3) is Je⇥rey’s Equation [22]
that describes how a slender rod is rotated by the fluid flow u evaluated at
it’s center of mass. In our model we non-dimensionalize by the swimmer
length and propulsion speed, which sets l = 1 and U0 = 1.

If an external flow v(x, t) is present, then the leading order equations of
motion can include it as

Ẋc = U0P+ u(Xc) + v(Xc) (4)

Ṗ = (I�PPT )[⌅u(Xc) +⌅v(Xc)]P. (5)

2.2. Pair Interactions

Direct interactions between the micro-swimmers can be included in their
dynamics so that they do not overlap or cross. These interactions are com-
monly referred to as excluded volume or steric. Borrowing from the field
of molecular dynamics, we add short-range repulsive forces between the
swimmers via an anisotropic potential by considering the swimmers as soft
sphero-cylinders or slender ellipsoidal particles. Commonly used potentials
for pairwise interactions of such anisotropic particles are of the Gay-Berne
[14]-type �e(rij ,Pi,Pj) where rij = Xci�Xcj is the distance vector between
the two particles’ centers of mass and Pi,Pj their swimming directions. The
interaction activates only once the particles are within 21/6 ⇤ 1.12 body-
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Numerical	
  Methodology	
  

•  Coupled	
  dynamics	
  of	
  the	
  micro-­‐swimmers	
  (Lagrangian)	
  and	
  the	
  fluid	
  equaHons	
  
(solved	
  in	
  an	
  Eulerian	
  grid)	
  

•  We	
  use	
  an	
  Immersed	
  Boundary	
  Framework.	
  

•  Triply	
  periodic	
  fluid	
  domain	
  –	
  we	
  solve	
  the	
  fluid	
  equaHons	
  spectrally.	
  

•  Steric	
  interacHons	
  done	
  via	
  a	
  son	
  anisotropic	
  potenHal.	
  

•  ComputaHonal	
  cost	
  O(N	
  log	
  N	
  +	
  M)	
  with	
  N	
  the	
  total	
  number	
  of	
  mesh	
  points,	
  M	
  
total	
  swimming	
  parHcles.	
  

•  Methodology	
  extendable	
  to	
  include	
  domain	
  boundaries	
  (e.g.	
  thin	
  films),	
  curved	
  
surfaces,	
  obstacles,	
  	
  etc.	
  

•  The	
  parHcles	
  need	
  not	
  be	
  uniform	
  in	
  speed,	
  shape	
  or	
  type.	
  



3D	
  simulaHon:	
  iniHally	
  nearly-­‐aligned	
  pusher	
  swimmers	
  
10^3	
  box,	
  triply-­‐periodic	
  
(slice	
  of	
  the	
  domain	
  shown)	
  
	
  
4000	
  swimmers,	
  	
  
length	
  1,	
  diameter	
  1/10,	
  
iniHally	
  nearly	
  aligned	
  in	
  the	
  
verHcal	
  direcHon	
  
	
  
volume	
  fracHon	
  <10%	
  
	
  
	
  
	
  

Suspension	
  becomes	
  
isotropic	
  on	
  the	
  whole,	
  but	
  
swimmers	
  locally	
  align.	
  

We	
  observe	
  the	
  emergence	
  
of	
  large-­‐scale	
  fluid	
  flows.	
  	
  



CollecHve	
  dynamics	
  of	
  SPP-­‐s	
  
-­‐  Direct	
  measurements	
  of	
  the	
  flow	
  field	
  around	
  a	
  single	
  micro-­‐swimmer	
  by	
  Drescher	
  

et	
  al	
  PNAS	
  2011	
  indicate	
  that	
  direct	
  collisions	
  and	
  noise	
  are	
  significant	
  factors	
  in	
  the	
  
moHon	
  of	
  such	
  organisms,	
  especially	
  at	
  short	
  range.	
  

-­‐  Recently	
  there	
  have	
  been	
  many	
  studies	
  of	
  suspensions	
  of	
  SPP	
  (self-­‐propelled	
  
parHcles)	
  with	
  no	
  hydrodynamics	
  but	
  someHme	
  with	
  aligning	
  interacHons.	
  

!tþ1
j ¼ arg

!X

k#j

sign½cosð!tk & !tjÞ(ei!
t
k

"
þ "#t

j (1)

r tþ1
j ¼ rtj þ v0e

i!tþ1
k ; (2)

where the sum is taken over all particles k within unit
distance of j (including j itself), and # is a white noise
uniformly distributed in ½& $

2 ;
$
2( [17]. (A continuous-time

version of this model can be found in [18].) The system has
two main control parameters: the noise amplitude ", and
the particle density % ¼ N=A, where A is the domain area.
We consider periodic boundary conditions. Polar and ne-
matic order can be characterized by means of the two time-
dependent global scalar order parameters PðtÞ ¼
jhexpði!tjÞijj (polar) and SðtÞ ¼ jhexpði2!tjÞijj (nematic),

as well as their asymptotic time averages P ¼ hPðtÞit and
S ¼ hSðtÞit.

Here, we mostly report on the behavior of the system for
% ¼ 1

8 and v0 ¼ 1
2 , varying ". We start with a brief survey

of the stationary states observed in a square domain of
linear size L ¼ 2048 (Figs. 2 and 3). Despite the polar
nature of the particles, only nematic orientational order
arises at low noise, while P always remains near zero (not
shown). This is in agreement with the findings of [16].
Both the ordered and the disordered regimes are subdi-
vided in two phases, one that is spatially homogeneous
[Figs. 2(a) and 2(e)], and one where density segregation
occurs, leading to high-density ordered bands along which
the particles move back and forth [Figs. 2(b)–2(d)]. A total
of four phases is thus observed, labeled I to IV by increas-
ing noise strength hereafter. Phases I and II are nematically
ordered, phases III and IV are disordered.

Phase I, present at the lowest " values, is ordered and
spatially homogeneous [Fig. 2(a)]. Nematic order arises
quickly from any initial condition, even though long-lived
dense polar packets are observed locally: statistically, two
subpopulations of particles migrate in opposite directions
[Fig. 4(a)], constantly exchanging particles. These ‘‘turn
around’’ events occur at exponentially-distributed times &
[Fig. 4(b)]. Increasing system size, the nematic order pa-
rameter S is almost constant, decaying slower than a power

law [Fig. 4(c)]. A good fit of this decay is given by an
algebraic approach to a constant asymptotic value S).
Thus, our data seem to indicate the existence of true
long-range nematic order. (Quasi-long-range order, ex-
pected classically for two-dimensional nematic phases, is
characterized by an algebraic decay of S.) A discussion of
this striking fact is given below. Finally, as expected on
general grounds for homogeneous ordered phases of active
particles [10], phase I exhibits so-called giant number
fluctuations: the fluctuations !n2 ¼ hðn& hniÞ2i of the
average number of particles hni ¼ %‘2 contained in a
square of linear size ‘ follow the power law !n# hni'
with '> 1

2 [Fig. 4(d)]. Our estimate of ' is compatible to

that measured for polarly ordered phases ' ¼ 0:8 [8].
Phase II differs from phase I by the presence, in the

steady state, of a low-density disordered region. In large-
enough systems, for " * "I-II ’ 0:098ð2Þ, a narrow, low-
density channel emerges rather suddenly, like in a nuclea-
tion process [Fig. 2(b)]. It becomes wider at larger "
values, so that one can then speak of a high-density ordered
band, typically oriented along one of the main axes of the
box, amidst a disordered sea [Fig. 2(c)]. Particles travel
along the high-density band, turning around or leaving the
band from time to time. Within the band, nematic order
with properties similar to those of phase I is found (slow
decay of S with system size, giant number fluctuations).
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FIG. 3 (color online). Nematic order parameter S (in black)
and its rms fluctuations !S (in red) as function of the squared
noise amplitude "2 for a square domain of linear size L ¼ 2048.
Here, and throughout the Letter, time averages are over at least
106 time steps.

(a) (b) (c) (d) (e)

VIIIIIII

FIG. 2 (color online). (a)–(c) Typical steady-state snapshots at different noise values (linear size L ¼ 2048). (a) " ¼ 0:08,
(b) " ¼ 0:10, (c) " ¼ 0:13, (d) " ¼ 0:168, (e) " ¼ 0:20. Arrows indicate the polar orientation of particles [except in (d)]; only a
fraction of the particles are shown for clarity reasons. For a movie corresponding to (d) see [19].
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.
We consider N rodlike particles moving on a plane. Each

particle is equipped with a self-propelling force acting along
the long axis of the particle. We assume that particles are
submerged in a viscous medium. The velocity and angular
velocity are proportional to the force and torque, respec-
tively. The rod shape of the particles requires three different
friction coefficients that correspond to the resistance exerted
by the medium when particles either rotate or move along
their long and short axes. Inertial terms are neglected !over-
damped motion". Consequently the movement of the ith rod
is governed by the following equations for the velocity of its
center of mass and angular velocity:

!v#
!i",v!

!i"" = $ 1
!#
%F −

!U!i"

!x#
&,−

1
!!

!U!i"

!x!
'

"̇!i" = −
1
!"

!U!i"

!"
, !1"

where v#
!i" ,v!

!i" refer to the velocities along the long and short
axes of the rods, respectively, !i indicates the corresponding

friction coefficients !!" is related to the friction torque", U!i"

refers to the energy of the interaction of the ith rod with all
other rods, and F is the magnitude of the self-propelling
force. The motion of the center of mass ẋ!i"= !vx

!i" ,vy
!i"" of the

ith rod is given by

vx
!i" = v#

!i" cos "!i" + v!
!i" sin "!i",

vy
!i" = v#

!i" sin "!i" − v!
!i" cos "!i". !2"

Particles interact by “soft” volume exclusion, i.e., by a po-
tential that penalizes particle overlaps in the following way:

U!i"!x!i","!i",x!j","!j""

= # (
j=1,j"i

N

)*$ − ao!x!i","!i",x!j","!j""+−% − $−%, !3"

where ao!x!i" ,"!i" ,x!j" ,"!j"" is the overlap area of the rods i
and j, $ is a parameter that can be associated with the maxi-
mum compressibility, % controls the stiffness of the particle,
and # is the interaction strength. The simulations were per-
formed placing N identical particles initially at random in-
side a box of area A with periodic boundary conditions. The
values of the parameters are given in *15+.

There are three key parameters that control the dynamics:
!i" persistence of particle motion, regulated by F, !ii" the
packing fraction &, i.e., the area occupied by rods divided by
the total area !&=Na /A, where N is the number of particles
in the system, a is the area of a single particle, and A is the
total area of the box", and !iii" the length-to-width aspect
ratio ' !'=L /W, where L is the length and W is the width of
the rods". Simulations yield an increase of cluster formation
with increasing ' or & !see Fig. 2". Individual clusters are
defined by connected particles that have nonzero overlap
area. Simulations can be characterized by the mean maxi-
mum cluster size M and the weighted cluster size distribution
p!m", which indicates the probability of finding a given par-
ticle inside a cluster of mass m. Figure 3!a" shows that for a
given &, M seems to saturate after the critical 'c, which is
defined as the value of ' for which the shape of p!m"
changes from unimodal to bimodal. In Fig. 3!b" typical
shapes of p!m" are shown: before clustering and correspond-
ing to low values of ' !circles", and after clustering and
corresponding to large values of ' !crosses". We define the
onset of clustering by the emergence of a second peak in
p!m". We have also tested the robustness of the model
against fluctuations by inserting additive noise terms Ri /!i in
Eqs. !1", which correspond to a switch from purely active to
active Brownian particles *5+. We found that clustering is
still present in rods of the latter kind, albeit the transition is
moved to larger values of ' and &. Clustering was absent in
all simulations with purely Brownian rods !F=0".

We have studied the clustering effects described above
through a MFA by deriving kinetic equations for the number
nj of clusters of a given size j. The equations for nj contain
terms for cluster fusion and fission. For the fusion terms we
have adapted kinetic equations originally derived for coagu-
lation of colloids *16+, while the fission terms are empirically
defined from the typical behavior seen in the above simula-

FIG. 2. !Color online" Simulation snapshots of the steady states
for different particle anisotropy ' and the same packing fraction &
!a"–!c", and the same ' and different & !d"–!f". Fixing &=0.24: !a"
before the transition, '=1; !b" almost at the transition, '=5; !c"
after the transition, '=8. Fixing '=6: !d" before the transition, &
=0.18; !e" just crossing the transition, &=0.24; !f" after the transi-
tion, &=0.34. In all cases, particles N=100 and particle area a
=0.2. The arrows indicate the direction of motion of some of the
clusters.

PERUANI, DEUTSCH, AND BÄR PHYSICAL REVIEW E 74, 030904!R" !2006"

RAPID COMMUNICATIONS

030904-2

Wensink	
  et	
  al,	
  PNAS	
  2012,	
  Peruani	
  et	
  al,	
  PRE	
  2007,	
  Ginelli	
  et	
  a,	
  PRL	
  2010	
  	
  	
  

forces, flagellar bundling of neighboring cells) can be expected to
govern physical reorientation and alignment, whereas intrinsic
Brownian motion effects (30) become less important in this colli-
sion-dominated high-density regime (46). Chemotaxis (7, 18) can
strongly affect bacterial dynamics in droplets or near liquid–gas
interfaces but is less relevant in closed chambers as considered in
our experiments. Recent direct measurements of individual
Escherichia coli flow fields (30) suggest that hydrodynamic far-
field interactions are negligible for bacterial reorientation, espe-
cially when bacteria swim close to a no-slip surface. Earlier
experiments (8, 24, 25) on 2D films and 3D bulk suspensions
also show that the average swimming speeds of individual bacter-
ia [typically of the order of 10 μm∕s in isolation (8, 30)] can be
enhanced up to five times through collective hydrodynamic
near-field effects. In the simplest approximation, however, a suf-
ficiently dense bacterial suspension can be viewed as a system of
deterministic, self-propelled, rod-like particles with an effective
swimming speed V (for B. subtilis at ϕ ∼ 40% we find V ∼ 30 to
100 μm∕s depending on oxygen concentration and boundary con-
ditions). One of our objectives is to test such a minimal model
against experiments in the limit of highly concentrated suspen-
sions and to provide systematic guidance for more accurate future
models.

Non-Equilibrium Phase Diagram of the SPRModel.To identify generic
requirements for the formation of turbulent phases in active sys-
tems, we performed simulations of a minimal 2D SPR model
with periodic boundary conditions (see SI Appendix for details).
In its simplest form, the model assumes that a rod-shaped self-
propelled particle moves deterministically in the overdamped
low-Re regime with an effective swimming speed V , while inter-
acting with the other particles by steric forces. Mutual repulsion is
implemented by discretizing each rod into spherical segments and
imposing a repulsive Yukawa force potential ∼ expð−r∕λÞ∕r,
where r is the distance, between the segments of any two rods
(i.e., the decay length λ > 0 defines the effective diameter of a
rod of length ℓ). If two sufficiently long rods perform a pair colli-
sion, this short-range interaction results in an effective nematic
(apolar) alignment, before the rods become pushed apart by the
repulsive force.

Depending on the effective volume filling fraction ϕ and the
rod aspect ratio a, both defined in terms of the scale parameter λ
and rod length ℓ, the SPR model exhibits a range of qualitatively
different dynamical phases (Fig. 1). The numerically estimated
nonequilibrium phase diagram (Fig. 1A) illustrates the impor-
tance of the effective particle “shape” in 2D: Upon increasing
ϕ, short rods undergo a transition from a dilute state (D), with
little or no cooperative motion, to a jammed state (J); this transi-
tion can be identified by the mean square displacement per par-
ticle, which drops off nearly two orders in magnitude along the
transition curve. By contrast, very long rods (a > 13) do not jam
at moderate filling fractions but exhibit swarming (S) behavior
and large spatiotemporal density fluctuations. Generally, the
transitions from the dilute phase (D) to cooperative motion (re-
gions S, B and T) can be characterized by the Onsager overlap
density (47). Upon increasing ϕ further, very long rods tend to
assemble in homogeneous lanes (L), corresponding to quasi-
smectic regions of local polar order; the swarming-to-laning tran-
sition is signaled by a discontinuous increase in the correlation
length of the two-particle velocity correlation function. The
swarming (S) and laning (L) phases adjoin a so-called active bio-
nematic (18) phase (B), where vortices and extended jet-like
structures coexist (28, 45); this phase is characterized by large
fluctuations of the local vortex density. Most importantly for the
present study, however, the SPR model predicts homogeneous
turbulent states (T) at high filling fractions and intermediate as-
pect ratios 3≲ a≲ 13, a range that covers typical bacterial values
(e.g., 2≲ a≲ 4 for E. coli and 2≲ a≲ 10 for B. subtilis (SI

Appendix, Fig. S7). The transition between bionematic and turbu-
lent phase is also signaled by the velocity distribution, correlation
functions and density fluctuations (SI Appendix, Figs. S3 and S4).

Homogeneous Turbulent Phase in the SPR Model.A typical turbulent
flow state as found in the simulations, and the associated
(pseudo-scalar) 2D vorticity field ω ¼ ∂xvy − ∂yvx, are shown in
Fig. 2. The mean local flow field vðt; rÞ at time t and position
r was constructed by binning and averaging individual particle
velocities, using a spatial resolution similar to that in our
experiments (SI Appendix). To characterize the emergence of
homogeneous turbulence in the SPR model in terms of particle
geometry a and effective volume fraction ϕ, we quantify the
vortical energy through the enstrophy (27, 34, 35) per unit area,
Ω ¼ 1

2 hjωðt; rÞj
2i, where brackets h·i indicate spatial averages and

overbars denote time averages. For slender rods (a ≥ 3) the mean
enstrophy Ω exhibits a maximum when plotted versus the volume
fraction ϕ (Fig. 1B). This maximum coincides approximately with
the transition from the bionematic to the turbulent phase; in a
bacterial suspension, it corresponds to the optimal concentration
for fluid mixing. Typical aspect ratios of bacterial cell bodies in
our experiments lie in the range 2≲ a≲ 10 (mean 6.3$ 1.2;
see SI Appendix, Fig. S7). Hence, homogeneous bacterial turbu-
lence should be observable in 2D for a broad range of filling
fractions.

Experiments.We test the T-phase of the SPRmodel against experi-
mental observations of B. subtilis at high filling fractions
(ϕ≳ 50%, see Materials and Methods). In contrast to recent in-
vestigations of bacterial dynamics in 2D free-standing films (8),
on 2D surfaces (44, 48, 49) , and open 3D bulk suspensions (7, 18,
24, 25), bacteria were confined in closed microfluidic chambers to

Fig. 1. (A) Schematic non-equilibrium phase diagram of the 2D SPR model
and snapshots of six distinct phases from simulations: D-dilute state, J-jam-
ming, S-swarming, B-bionematic phase, T-turbulence, L-laning (see also SI
Appendix, Fig. S2 and Movies S1–S6). Our analysis focuses on the turbulent
regime T. (B) Enstrophy per unit area Ω in units ðV∕λÞ2 for different aspect
ratios a ¼ ℓ∕λ, obtained from SPR simulations with N ∼ 104 to 105 particles.
The maxima of the enstrophy indicate the optimal filling fraction for active
turbulence and mixing at a given value of the aspect ratio a. Note that values
ϕ > 1 are possible due to the softness of the repulsive force (see SI Appendix
for simulation parameters).
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FIG. 2. (color online). Steady-state circulation in highly concentrated B. subtilis droplet. (a) PIV flow field for a droplet with
a volume filling fraction ⇥ ⇠ 0.4. For clarity, not all PIV vectors are shown. (b) Enlarged region reveals the counterrotating
boundary layer. All PIV vectors are shown. (c-d) Vortex order parameter V for varying diameter d. (c) Drops of constant
height h ⇠ 25µm. Dashed lines denote the highly ordered single-vortex regime. (d) Averaged vortex order parameter � (5µm
bins) for h ⇠ 15µm (red dashed line) and h ⇠ 25µm (blue full line). Error bars indicate the standard deviation. (e) Azimuthal
flow vt(r) = hv · ti� profile for three di⇥erent experiments (blue full lines), compared with continuum bulk flow model results
(red dashed lines). Negative flow indicates the counterrotating boundary layer.

Small drops were created by slowly pipetting the sus-
pension, 10µL of which was placed between two cover-
slips such that it spread by surface tension to the cov-
erslip edge. This procedure yields many flattened drops
with h ⌅ 25µm and diameters ranging from 10–150µm,
and bacterial volume fraction ⇤ ⌅ 0.4. Bacteria re-
main active for several minutes in the largest drops and
up to 20 minutes for the smallest, reflecting the larger
di⇥usive influx of oxygen in the smaller drops. Cover-
slips were rendered hydrophobic with silane, resulting in
pancake-shaped drops that are wider at the midplane
of the chamber than at the top and bottom (Fig. 1a).
Movies were acquired at 125 fps with a high-speed cam-
era (Fastcam, Photron) on an inverted microscope (Cell
Observer, Zeiss), using a 100⇤ oil-immersion objective
and analyzed with custom Matlab algorithms. Flows
were imaged in the center of the chamber to minimize
optical distortions.

Confinement by the oil interface stabilizes rapidly ro-
tating vortices (Fig. 2 and Supplemental Video 1). To
quantify this e⇥ect, we determined the local bacterial ve-
locity field v(x), using a customized version of the parti-
cle image velocimetry (PIV) toolbox mPIV [34] that av-
erages pixel correlations over two seconds [35]. The PIV
algorithm yields the local mean velocity of the bacteria,
reflecting the locomotion due to swimming and advec-
tion by the fluid flow (Fig. 2a). The emergence of stable
azimuthal flow is captured by the vortex order parameter

� =

P
i |vi · ti|/

P
j ||vj ||� 2/⇥

1� 2/⇥
, (1)

where vi is the in-plane velocity and ti the azimuthal unit
vector (Fig. 1b) at PIV grid point xi. � = 1 for steady

azimuthal circulation, � = 0 for disordered chaotic flows
and � < 0 for predominantly radial flows. Plotting � as
a function of drop diameter reveals that a highly-ordered
single-vortex state with � > 0.7 forms if d� < d < d+
with d� ⌅ 30µm and d+ ⌅ 70µm (Fig. 2c). Clockwise
and counterclockwise vortices occur with equal proba-
bility. The lower critical diameter d� depends on the
chamber height h (Fig. 2d). Lowering h restores the
quasi-2D nature of the confinement and allows for for-
mation of vortex states at smaller diameter d. The up-
per critical diameter d+ is consistent with the size of the
transient turbulent swirls observed in 3D bulk bacterial
suspensions [16, 18, 24]. In drops slightly larger than d+
flow is still azimuthal near the boundary regions but the
vortex order decreases toward the center. Drops with
d & 100µm show fully developed bacterial turbulence as
seen in quasi-infinite suspensions [14, 16, 18, 24].

The azimuthal flow speed in a vortex state is maxi-
mal at a distance ⌅d/4 from the center (Fig. 2e). Across
experiments, the maximum speed increases with d, reach-
ing ⌅ 40µm/s for d+, roughly four times the typical
swimming speed of an isolated bacterium [17] and in
agreement with measurements in open B. subtilis sus-
pensions [16, 17]. While our setup does not supply oxy-
gen, and the bacterial motility decreases [18] with time,
recent studies of quasi-infinite suspensions [18, 24] have
shown that the flow correlation length is independent of
swimming speed at high cell density, so we may neglect
oxygen depletion in the analysis of patterns. In the fol-
lowing, we focus on the properties of single-vortex states
with � > 0.7 and take the azimuthal unit vector t to
point in the direction of bulk flow, so that we may treat
clockwise and counterclockwise vortices equally (Fig. 1b).
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FIG. 3. (color online). Schematic cell organization in
droplets. (a) Dashed line indicates continuum model bound-
ary, where bulk flow begins. (b-d) Physical mechanisms driv-
ing boundary layer formation. (b) Shear flow reorients cells
to face upstream. (c) Contact angle �m decreases with the
drop diameter, restricted by steric interactions. (d) Ratchet-
like steric repulsion and inward flow (red arrows) created by
boundary cells force the next layer to move in the opposite
azimuthal direction, thereby setting the bulk flow direction.

Detailed flow field analysis reveals that highly ordered
vortex states are always accompanied by a thin layer
of cells swimming along the oil interface in the oppo-
site direction to the bulk flow (Fig. 2b). This surpris-
ing fact is reflected in the azimuthally-averaged circu-
lation velocity profile vt(r) = ⌅v(x) · t⇧�, where x =
(r cos �, r sin �), which changes sign towards the edge of
the droplet (Fig. 2e). The basic form of vt(r) is pre-
served among well-ordered droplets (� > 0.7) with dif-
ferent diameters (Fig. 2e). To exclude the possibility
that the backflow arises from specific interactions be-
tween bacteria, DiPhyPC and oil, we performed control
experiments with dense suspensions in shallow cylindrical
polydimethylsiloxane chambers, and found qualitatively
similar behavior. This result suggests that the formation
of a thin counterflow boundary layer is a generic phe-
nomenon in bacterial suspensions confined by a higher-
viscosity medium. By determining the zeros of vt for all
ordered droplets, we find that the boundary layer thick-
ness b is independent of d (Fig. 2e). The average value
b̄ ⇤ 4µm is slightly smaller than the length ⌥ ⇤ 5µm of
B. subtilis [23], suggesting that the counterflow region is
comprised of a single layer of cells. We tested this hy-
pothesis by imaging droplets in a plane near the bottom
cover slip in order to resolve vertical cell layers more eas-
ily, and confirmed that cells swimming in the direction
opposite to the bulk flow are in direct contact with the
oil interface (Fig. 3a and Supplemental Video 2).

The presence of this previously unreported counter-
flow layer can be understood by considering the main
forces that cause reorientation of cells near the boundary.
Since the oil viscosity is ten times that of water, the inter-
face acts as a nearly-no-slip boundary for the suspension.
Thus, circular bulk motion creates a shear flow that ex-
erts torque on the cells in the boundary layer (Fig. 3b).
As recently shown for dilute suspensions [36], bacteria
prefer to swim upstream when exposed to such flow gradi-

FIG. 4. (color online). Bacterial orientation. (a) Local orien-
tation, averaged over 2 s. External ring lies at the water/oil
interface and shows local azimuthal direction, and cellular
orientation appears in the central disc. Discontinuity in color
between ring and disc indicates the angle between cells and
the azimuthal direction. (b) Boundary angle (Fig. 3c) as a
function of drop diameter, Symbols denote di⇥erent bacte-
rial concentrations; dashed black lines indicate geometric es-
timates of minimum packing angle � for di⇥erent cell lengths.

ents, thereby favoring the formation of a counterrotating
layer. If the concentration of cells is su⇧ciently high, ne-
matic ordering due to steric interactions further stabilizes
this layer [10, 21, 22]. Once the layer has formed, cells
trapped in it form a steric ratchet-like structure and, be-
cause they are pusher-type swimmers [30], they generate
a backflow in the direction opposite to their orientation
(Fig. 3d). Both e⇥ects force cells in the second layer to
move in the other direction: the boundary monolayer sta-
bilizes the bulk flow and vice versa. The absence of such
counter-circulation in the free-boundary geometry stud-
ied by Czirok et al. [31] provides further evidence that
the backflow is a consequence of rigid boundary e⇥ects.
A dense suspension of rod-like bacteria locally aligns

through active nematic interactions [10, 21, 22]. We ob-
serve cell orientation that is not parallel to the flow di-
rection: in the bulk circulation the cells point inwards,
and in the boundary layer they point outwards (Fig. 3a).
We extract the local mean orientation from the bac-
terial speckle by computing the orientation tensor [37]
(Fig. 4a). As for the flow, we examine the azimuthally-
averaged orientation angle �(r) relative to the circulation
direction t. Near the center of a drop, cells are aligned
roughly parallel to the bulk circulation (� ⇤ 0), and the
angle increases with r to a maximum value �m close to
the boundary. Viewing �m as a function of d, we find an
inverse correlation: the smaller the drop (and thus the
higher the boundary curvature), the larger the deviation
from the azimuthal direction, ranging from �m ⇥ 10� for
d = 70µm to �m ⇥ 35� for d = 30µm (Fig. 4b). To test
whether �m depends on the curvature or on the suspen-
sion size, we performed measurements with suspensions
diluted to ⇥ 2/3 of the starting concentration. In such
a drop, cells concentrate at the boundary, leaving the
center almost empty (Supplemental Video 3). Yet, the
measured angles are comparable to those of fully con-
centrated suspensions (Fig. 4b), indicating that this is
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Simulation Results
We first run simulations in an unconfined periodic domain.
When neglecting hydrodynamics (�=0=u), the suspension ex-
hibits swarming at low concentration (Fig. 2A) or a stable
bionematic state at higher concentration, as classified by [17]
and seen in swarming colonies on surfaces [36]. Introducing
hydrodynamics (Fig. 2B) destabilizes these two states to gen-
erate a turbulent dynamics qualitatively similar to experimen-
tal observation [5, 8]. Remarkably hydrodynamics disrupts
bacterial clusters, as also suggested by [18] for squirmers.

We now consider the case of a confined suspension with
di�erent parameters to understand how they interplay.

��

Fig. 3. Suspension organization in periodic domains or inside circular confinement.
(A) Self-propelled ellipses interacting without hydrodynamics achieve a swarming or
bionematic state when in a periodic domain. (B) Pusher swimmers in a periodic do-
main exhibit a turbulent dynamics and are less clustered. (C,D) Self-propelled ellipses
interacting sterically without any hydrodynamics, in (d) starting from an organized
state. (E) Circular pusher swimmers, (F) pusher swimmers with isotropic steric re-
pulsions (� ⇡ 1,k= 0,T = 0) (G) ellipsoid pusher swimmers, (h) bacterial flow
measured in experiments by PIV [28]. The upper-right insets in (C-G) indicate the
swimmer net circulation direction, re-scaled by 4,4,13,1.2,1.2 respectively. Lower-left
inset in (E-G) shows the fluid flow velocity arrows magnified by 5,1,1 respectively.

Without fluid interactions (�=0=u), Fig. 2C shows cells
concentrating or jamming at the drop boundary with small
unidirectional circulation or none at all [37], even if they start
from an ordered state as in Fig. 2D.

Next we consider disk pusher swimmers (⇥=0, �=-1,
Te

ij=0) subject to reorientation and advection by the fluid
flows they create. Fig. 2E shows that while the alignment
between neighbouring cells is lost, swimmers form unstable
layers with very small transient circulation.

Last, with more realistic conditions (ellipses, direct and
hydrodynamic interactions) we observe in Fig. 2G a spiral
vortex similar in form and dynamics to that of experiments
Fig. 2H. These three configurations show that steric interac-
tions force some swimmer local alignment however it is the
collectively-generated fluid flow taht produces the large-scale
organization and double-circulation. In fact, in simulations
with no local-alignment due to the ellipsoidal shape (i.e. set-
ting ⇥ � 1 but k=0, Te

ij=0) the spiral organization and
double-circulation are still obtained due to hydrodynamics,
as seen in Fig. 2F, except those cells are spaced more apart
due to isotropic steric repulsions with larger radius.

On a side note, circulation has been observed in confined
systems of self-propelling disks with prescribed alignment in-
teractions and possibly noise terms [38, 39], however the cir-
culation they obtain is unidirectional, just like in Fig. 2A&B.

Organization Emergence
To understand how the spiral order and double circulation
arise, we consider suspensions of increasing density. When
a few cells are trapped in a drop, they head to the oil in-
terface and slide at a small angle. When adding cells, they
form clusters sliding along the boundary (akin to those seen
with self-propelling rods in channels [40]). The clusters finally
merge to form the circulating outer boundary layer. (In the
images of Fig. 1B&E we note that this layer is the first to
form.) Bacteria point outward with an angle characteristic of
the spiral pattern. As pusher swimmers they push fluid back-
wards and the added e�ect produces the drop bulk fluid flow
that is in the opposite direction to the swimmer circulation.

When increasing the concentration to a dense suspension,
additional cells arrange into more layers with an angle dic-
tated by steric interactions, thus reproducing the spiral ar-
rangement. Almost all cells point outward and swim in the
same direction (clockwise in Fig. 2G). The emerging suspen-
sion dynamics consists of 2-3 boundary layers of cells sliding in
one direction and inner cell layers circulating in a large vortex
in the opposite direction, as in experiments Fig. 2H.

Cell orientation
Bacteria move by swimming and convection, the balance of
which gives the observable motion direction. In drops, PIV
measurements show that a boundary layer spins in opposite
direction to the bulk. One possible interpretation of the exper-
imental results was that the cells orient in di�erent directions,
i.e. cells in bulk point inwards and boundary layer ones point
outwards [28]). Simulations here however reveal that cells in
bulk also point outwards. Moreover the fluid flow is in the op-
posite direction to the bulk swimmer’s orientation and - in the
inner part of the drop - is strong enough to counter balance
the swimming speed. This is illustrated in Fig. 1 and sup-
plementary movie [?] where central cells point clockwise but
overall move counterclockwise. The revelation about the bulk
cell orientation and overall movement di�ers from the origi-
nal experiment interpretations [28] and thus necessitated new
experiments where the cell orientation could be measured.

Footline Author PNAS Issue Date Volume Issue Number 3



InvesHgate	
  the	
  causes	
  



InvesHgate	
  the	
  causes	
  

•  self-­‐propulsion	
  	
  
•  elongated	
  parHcles	
  
•  no	
  hydro	
  

	
  
-­‐>	
  (spiral)	
  organizaHon	
  
-­‐>	
  slow	
  unidirecHonal	
  
circulaHon.	
  

•  self-­‐propulsion	
  
•  disks	
  
•  with	
  hydro	
  

	
  
-­‐>	
  layers	
  form	
  
-­‐>	
  no	
  organizaHon	
  
-­‐>	
  unstable	
  
circulaHon	
  spurts	
  

Simulation Results
We first run simulations in an unconfined periodic domain.
When neglecting hydrodynamics (�=0=u), the suspension ex-
hibits swarming at low concentration (Fig. 2A) or a stable
bionematic state at higher concentration, as classified by [17]
and seen in swarming colonies on surfaces [36]. Introducing
hydrodynamics (Fig. 2B) destabilizes these two states to gen-
erate a turbulent dynamics qualitatively similar to experimen-
tal observation [5, 8]. Remarkably hydrodynamics disrupts
bacterial clusters, as also suggested by [18] for squirmers.

We now consider the case of a confined suspension with
di�erent parameters to understand how they interplay.
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Fig. 3. Suspension organization in periodic domains or inside circular confinement.
(A) Self-propelled ellipses interacting without hydrodynamics achieve a swarming or
bionematic state when in a periodic domain. (B) Pusher swimmers in a periodic do-
main exhibit a turbulent dynamics and are less clustered. (C,D) Self-propelled ellipses
interacting sterically without any hydrodynamics, in (d) starting from an organized
state. (E) Circular pusher swimmers, (F) pusher swimmers with isotropic steric re-
pulsions (� ⇡ 1,k= 0,T = 0) (G) ellipsoid pusher swimmers, (h) bacterial flow
measured in experiments by PIV [28]. The upper-right insets in (C-G) indicate the
swimmer net circulation direction, re-scaled by 4,4,13,1.2,1.2 respectively. Lower-left
inset in (E-G) shows the fluid flow velocity arrows magnified by 5,1,1 respectively.

Without fluid interactions (�=0=u), Fig. 2C shows cells
concentrating or jamming at the drop boundary with small
unidirectional circulation or none at all [37], even if they start
from an ordered state as in Fig. 2D.

Next we consider disk pusher swimmers (⇥=0, �=-1,
Te

ij=0) subject to reorientation and advection by the fluid
flows they create. Fig. 2E shows that while the alignment
between neighbouring cells is lost, swimmers form unstable
layers with very small transient circulation.

Last, with more realistic conditions (ellipses, direct and
hydrodynamic interactions) we observe in Fig. 2G a spiral
vortex similar in form and dynamics to that of experiments
Fig. 2H. These three configurations show that steric interac-
tions force some swimmer local alignment however it is the
collectively-generated fluid flow taht produces the large-scale
organization and double-circulation. In fact, in simulations
with no local-alignment due to the ellipsoidal shape (i.e. set-
ting ⇥ � 1 but k=0, Te

ij=0) the spiral organization and
double-circulation are still obtained due to hydrodynamics,
as seen in Fig. 2F, except those cells are spaced more apart
due to isotropic steric repulsions with larger radius.

On a side note, circulation has been observed in confined
systems of self-propelling disks with prescribed alignment in-
teractions and possibly noise terms [38, 39], however the cir-
culation they obtain is unidirectional, just like in Fig. 2A&B.

Organization Emergence
To understand how the spiral order and double circulation
arise, we consider suspensions of increasing density. When
a few cells are trapped in a drop, they head to the oil in-
terface and slide at a small angle. When adding cells, they
form clusters sliding along the boundary (akin to those seen
with self-propelling rods in channels [40]). The clusters finally
merge to form the circulating outer boundary layer. (In the
images of Fig. 1B&E we note that this layer is the first to
form.) Bacteria point outward with an angle characteristic of
the spiral pattern. As pusher swimmers they push fluid back-
wards and the added e�ect produces the drop bulk fluid flow
that is in the opposite direction to the swimmer circulation.

When increasing the concentration to a dense suspension,
additional cells arrange into more layers with an angle dic-
tated by steric interactions, thus reproducing the spiral ar-
rangement. Almost all cells point outward and swim in the
same direction (clockwise in Fig. 2G). The emerging suspen-
sion dynamics consists of 2-3 boundary layers of cells sliding in
one direction and inner cell layers circulating in a large vortex
in the opposite direction, as in experiments Fig. 2H.

Cell orientation
Bacteria move by swimming and convection, the balance of
which gives the observable motion direction. In drops, PIV
measurements show that a boundary layer spins in opposite
direction to the bulk. One possible interpretation of the exper-
imental results was that the cells orient in di�erent directions,
i.e. cells in bulk point inwards and boundary layer ones point
outwards [28]). Simulations here however reveal that cells in
bulk also point outwards. Moreover the fluid flow is in the op-
posite direction to the bulk swimmer’s orientation and - in the
inner part of the drop - is strong enough to counter balance
the swimming speed. This is illustrated in Fig. 1 and sup-
plementary movie [?] where central cells point clockwise but
overall move counterclockwise. The revelation about the bulk
cell orientation and overall movement di�ers from the origi-
nal experiment interpretations [28] and thus necessitated new
experiments where the cell orientation could be measured.
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Simulation Results
We first run simulations in an unconfined periodic domain.
When neglecting hydrodynamics (�=0=u), the suspension ex-
hibits swarming at low concentration (Fig. 2A) or a stable
bionematic state at higher concentration, as classified by [17]
and seen in swarming colonies on surfaces [36]. Introducing
hydrodynamics (Fig. 2B) destabilizes these two states to gen-
erate a turbulent dynamics qualitatively similar to experimen-
tal observation [5, 8]. Remarkably hydrodynamics disrupts
bacterial clusters, as also suggested by [18] for squirmers.

We now consider the case of a confined suspension with
di�erent parameters to understand how they interplay.
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Fig. 3. Suspension organization in periodic domains or inside circular confinement.
(A) Self-propelled ellipses interacting without hydrodynamics achieve a swarming or
bionematic state when in a periodic domain. (B) Pusher swimmers in a periodic do-
main exhibit a turbulent dynamics and are less clustered. (C,D) Self-propelled ellipses
interacting sterically without any hydrodynamics, in (d) starting from an organized
state. (E) Circular pusher swimmers, (F) pusher swimmers with isotropic steric re-
pulsions (� ⇡ 1,k= 0,T = 0) (G) ellipsoid pusher swimmers, (h) bacterial flow
measured in experiments by PIV [28]. The upper-right insets in (C-G) indicate the
swimmer net circulation direction, re-scaled by 4,4,13,1.2,1.2 respectively. Lower-left
inset in (E-G) shows the fluid flow velocity arrows magnified by 5,1,1 respectively.

Without fluid interactions (�=0=u), Fig. 2C shows cells
concentrating or jamming at the drop boundary with small
unidirectional circulation or none at all [37], even if they start
from an ordered state as in Fig. 2D.

Next we consider disk pusher swimmers (⇥=0, �=-1,
Te

ij=0) subject to reorientation and advection by the fluid
flows they create. Fig. 2E shows that while the alignment
between neighbouring cells is lost, swimmers form unstable
layers with very small transient circulation.

Last, with more realistic conditions (ellipses, direct and
hydrodynamic interactions) we observe in Fig. 2G a spiral
vortex similar in form and dynamics to that of experiments
Fig. 2H. These three configurations show that steric interac-
tions force some swimmer local alignment however it is the
collectively-generated fluid flow taht produces the large-scale
organization and double-circulation. In fact, in simulations
with no local-alignment due to the ellipsoidal shape (i.e. set-
ting ⇥ � 1 but k=0, Te

ij=0) the spiral organization and
double-circulation are still obtained due to hydrodynamics,
as seen in Fig. 2F, except those cells are spaced more apart
due to isotropic steric repulsions with larger radius.

On a side note, circulation has been observed in confined
systems of self-propelling disks with prescribed alignment in-
teractions and possibly noise terms [38, 39], however the cir-
culation they obtain is unidirectional, just like in Fig. 2A&B.

Organization Emergence
To understand how the spiral order and double circulation
arise, we consider suspensions of increasing density. When
a few cells are trapped in a drop, they head to the oil in-
terface and slide at a small angle. When adding cells, they
form clusters sliding along the boundary (akin to those seen
with self-propelling rods in channels [40]). The clusters finally
merge to form the circulating outer boundary layer. (In the
images of Fig. 1B&E we note that this layer is the first to
form.) Bacteria point outward with an angle characteristic of
the spiral pattern. As pusher swimmers they push fluid back-
wards and the added e�ect produces the drop bulk fluid flow
that is in the opposite direction to the swimmer circulation.

When increasing the concentration to a dense suspension,
additional cells arrange into more layers with an angle dic-
tated by steric interactions, thus reproducing the spiral ar-
rangement. Almost all cells point outward and swim in the
same direction (clockwise in Fig. 2G). The emerging suspen-
sion dynamics consists of 2-3 boundary layers of cells sliding in
one direction and inner cell layers circulating in a large vortex
in the opposite direction, as in experiments Fig. 2H.

Cell orientation
Bacteria move by swimming and convection, the balance of
which gives the observable motion direction. In drops, PIV
measurements show that a boundary layer spins in opposite
direction to the bulk. One possible interpretation of the exper-
imental results was that the cells orient in di�erent directions,
i.e. cells in bulk point inwards and boundary layer ones point
outwards [28]). Simulations here however reveal that cells in
bulk also point outwards. Moreover the fluid flow is in the op-
posite direction to the bulk swimmer’s orientation and - in the
inner part of the drop - is strong enough to counter balance
the swimming speed. This is illustrated in Fig. 1 and sup-
plementary movie [?] where central cells point clockwise but
overall move counterclockwise. The revelation about the bulk
cell orientation and overall movement di�ers from the origi-
nal experiment interpretations [28] and thus necessitated new
experiments where the cell orientation could be measured.
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Simulation Results
We first run simulations in an unconfined periodic domain.
When neglecting hydrodynamics (�=0=u), the suspension ex-
hibits swarming at low concentration (Fig. 2A) or a stable
bionematic state at higher concentration, as classified by [17]
and seen in swarming colonies on surfaces [36]. Introducing
hydrodynamics (Fig. 2B) destabilizes these two states to gen-
erate a turbulent dynamics qualitatively similar to experimen-
tal observation [5, 8]. Remarkably hydrodynamics disrupts
bacterial clusters, as also suggested by [18] for squirmers.

We now consider the case of a confined suspension with
di�erent parameters to understand how they interplay.
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Fig. 3. Suspension organization in periodic domains or inside circular confinement.
(A) Self-propelled ellipses interacting without hydrodynamics achieve a swarming or
bionematic state when in a periodic domain. (B) Pusher swimmers in a periodic do-
main exhibit a turbulent dynamics and are less clustered. (C,D) Self-propelled ellipses
interacting sterically without any hydrodynamics, in (d) starting from an organized
state. (E) Circular pusher swimmers, (F) pusher swimmers with isotropic steric re-
pulsions (� ⇡ 1,k= 0,T = 0) (G) ellipsoid pusher swimmers, (h) bacterial flow
measured in experiments by PIV [28]. The upper-right insets in (C-G) indicate the
swimmer net circulation direction, re-scaled by 4,4,13,1.2,1.2 respectively. Lower-left
inset in (E-G) shows the fluid flow velocity arrows magnified by 5,1,1 respectively.

Without fluid interactions (�=0=u), Fig. 2C shows cells
concentrating or jamming at the drop boundary with small
unidirectional circulation or none at all [37], even if they start
from an ordered state as in Fig. 2D.

Next we consider disk pusher swimmers (⇥=0, �=-1,
Te

ij=0) subject to reorientation and advection by the fluid
flows they create. Fig. 2E shows that while the alignment
between neighbouring cells is lost, swimmers form unstable
layers with very small transient circulation.

Last, with more realistic conditions (ellipses, direct and
hydrodynamic interactions) we observe in Fig. 2G a spiral
vortex similar in form and dynamics to that of experiments
Fig. 2H. These three configurations show that steric interac-
tions force some swimmer local alignment however it is the
collectively-generated fluid flow taht produces the large-scale
organization and double-circulation. In fact, in simulations
with no local-alignment due to the ellipsoidal shape (i.e. set-
ting ⇥ � 1 but k=0, Te

ij=0) the spiral organization and
double-circulation are still obtained due to hydrodynamics,
as seen in Fig. 2F, except those cells are spaced more apart
due to isotropic steric repulsions with larger radius.

On a side note, circulation has been observed in confined
systems of self-propelling disks with prescribed alignment in-
teractions and possibly noise terms [38, 39], however the cir-
culation they obtain is unidirectional, just like in Fig. 2A&B.

Organization Emergence
To understand how the spiral order and double circulation
arise, we consider suspensions of increasing density. When
a few cells are trapped in a drop, they head to the oil in-
terface and slide at a small angle. When adding cells, they
form clusters sliding along the boundary (akin to those seen
with self-propelling rods in channels [40]). The clusters finally
merge to form the circulating outer boundary layer. (In the
images of Fig. 1B&E we note that this layer is the first to
form.) Bacteria point outward with an angle characteristic of
the spiral pattern. As pusher swimmers they push fluid back-
wards and the added e�ect produces the drop bulk fluid flow
that is in the opposite direction to the swimmer circulation.

When increasing the concentration to a dense suspension,
additional cells arrange into more layers with an angle dic-
tated by steric interactions, thus reproducing the spiral ar-
rangement. Almost all cells point outward and swim in the
same direction (clockwise in Fig. 2G). The emerging suspen-
sion dynamics consists of 2-3 boundary layers of cells sliding in
one direction and inner cell layers circulating in a large vortex
in the opposite direction, as in experiments Fig. 2H.

Cell orientation
Bacteria move by swimming and convection, the balance of
which gives the observable motion direction. In drops, PIV
measurements show that a boundary layer spins in opposite
direction to the bulk. One possible interpretation of the exper-
imental results was that the cells orient in di�erent directions,
i.e. cells in bulk point inwards and boundary layer ones point
outwards [28]). Simulations here however reveal that cells in
bulk also point outwards. Moreover the fluid flow is in the op-
posite direction to the bulk swimmer’s orientation and - in the
inner part of the drop - is strong enough to counter balance
the swimming speed. This is illustrated in Fig. 1 and sup-
plementary movie [?] where central cells point clockwise but
overall move counterclockwise. The revelation about the bulk
cell orientation and overall movement di�ers from the origi-
nal experiment interpretations [28] and thus necessitated new
experiments where the cell orientation could be measured.
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Simulation Results
We first run simulations in an unconfined periodic domain.
When neglecting hydrodynamics (�=0=u), the suspension ex-
hibits swarming at low concentration (Fig. 2A) or a stable
bionematic state at higher concentration, as classified by [17]
and seen in swarming colonies on surfaces [36]. Introducing
hydrodynamics (Fig. 2B) destabilizes these two states to gen-
erate a turbulent dynamics qualitatively similar to experimen-
tal observation [5, 8]. Remarkably hydrodynamics disrupts
bacterial clusters, as also suggested by [18] for squirmers.

We now consider the case of a confined suspension with
di�erent parameters to understand how they interplay.
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Fig. 3. Suspension organization in periodic domains or inside circular confinement.
(A) Self-propelled ellipses interacting without hydrodynamics achieve a swarming or
bionematic state when in a periodic domain. (B) Pusher swimmers in a periodic do-
main exhibit a turbulent dynamics and are less clustered. (C,D) Self-propelled ellipses
interacting sterically without any hydrodynamics, in (d) starting from an organized
state. (E) Circular pusher swimmers, (F) pusher swimmers with isotropic steric re-
pulsions (� ⇡ 1,k= 0,T = 0) (G) ellipsoid pusher swimmers, (h) bacterial flow
measured in experiments by PIV [28]. The upper-right insets in (C-G) indicate the
swimmer net circulation direction, re-scaled by 4,4,13,1.2,1.2 respectively. Lower-left
inset in (E-G) shows the fluid flow velocity arrows magnified by 5,1,1 respectively.

Without fluid interactions (�=0=u), Fig. 2C shows cells
concentrating or jamming at the drop boundary with small
unidirectional circulation or none at all [37], even if they start
from an ordered state as in Fig. 2D.

Next we consider disk pusher swimmers (⇥=0, �=-1,
Te

ij=0) subject to reorientation and advection by the fluid
flows they create. Fig. 2E shows that while the alignment
between neighbouring cells is lost, swimmers form unstable
layers with very small transient circulation.

Last, with more realistic conditions (ellipses, direct and
hydrodynamic interactions) we observe in Fig. 2G a spiral
vortex similar in form and dynamics to that of experiments
Fig. 2H. These three configurations show that steric interac-
tions force some swimmer local alignment however it is the
collectively-generated fluid flow taht produces the large-scale
organization and double-circulation. In fact, in simulations
with no local-alignment due to the ellipsoidal shape (i.e. set-
ting ⇥ � 1 but k=0, Te

ij=0) the spiral organization and
double-circulation are still obtained due to hydrodynamics,
as seen in Fig. 2F, except those cells are spaced more apart
due to isotropic steric repulsions with larger radius.

On a side note, circulation has been observed in confined
systems of self-propelling disks with prescribed alignment in-
teractions and possibly noise terms [38, 39], however the cir-
culation they obtain is unidirectional, just like in Fig. 2A&B.

Organization Emergence
To understand how the spiral order and double circulation
arise, we consider suspensions of increasing density. When
a few cells are trapped in a drop, they head to the oil in-
terface and slide at a small angle. When adding cells, they
form clusters sliding along the boundary (akin to those seen
with self-propelling rods in channels [40]). The clusters finally
merge to form the circulating outer boundary layer. (In the
images of Fig. 1B&E we note that this layer is the first to
form.) Bacteria point outward with an angle characteristic of
the spiral pattern. As pusher swimmers they push fluid back-
wards and the added e�ect produces the drop bulk fluid flow
that is in the opposite direction to the swimmer circulation.

When increasing the concentration to a dense suspension,
additional cells arrange into more layers with an angle dic-
tated by steric interactions, thus reproducing the spiral ar-
rangement. Almost all cells point outward and swim in the
same direction (clockwise in Fig. 2G). The emerging suspen-
sion dynamics consists of 2-3 boundary layers of cells sliding in
one direction and inner cell layers circulating in a large vortex
in the opposite direction, as in experiments Fig. 2H.

Cell orientation
Bacteria move by swimming and convection, the balance of
which gives the observable motion direction. In drops, PIV
measurements show that a boundary layer spins in opposite
direction to the bulk. One possible interpretation of the exper-
imental results was that the cells orient in di�erent directions,
i.e. cells in bulk point inwards and boundary layer ones point
outwards [28]). Simulations here however reveal that cells in
bulk also point outwards. Moreover the fluid flow is in the op-
posite direction to the bulk swimmer’s orientation and - in the
inner part of the drop - is strong enough to counter balance
the swimming speed. This is illustrated in Fig. 1 and sup-
plementary movie [?] where central cells point clockwise but
overall move counterclockwise. The revelation about the bulk
cell orientation and overall movement di�ers from the origi-
nal experiment interpretations [28] and thus necessitated new
experiments where the cell orientation could be measured.
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Simulation Results
We first run simulations in an unconfined periodic domain.
When neglecting hydrodynamics (�=0=u), the suspension ex-
hibits swarming at low concentration (Fig. 2A) or a stable
bionematic state at higher concentration, as classified by [17]
and seen in swarming colonies on surfaces [36]. Introducing
hydrodynamics (Fig. 2B) destabilizes these two states to gen-
erate a turbulent dynamics qualitatively similar to experimen-
tal observation [5, 8]. Remarkably hydrodynamics disrupts
bacterial clusters, as also suggested by [18] for squirmers.

We now consider the case of a confined suspension with
di�erent parameters to understand how they interplay.
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Fig. 3. Suspension organization in periodic domains or inside circular confinement.
(A) Self-propelled ellipses interacting without hydrodynamics achieve a swarming or
bionematic state when in a periodic domain. (B) Pusher swimmers in a periodic do-
main exhibit a turbulent dynamics and are less clustered. (C,D) Self-propelled ellipses
interacting sterically without any hydrodynamics, in (d) starting from an organized
state. (E) Circular pusher swimmers, (F) pusher swimmers with isotropic steric re-
pulsions (� ⇡ 1,k= 0,T = 0) (G) ellipsoid pusher swimmers, (h) bacterial flow
measured in experiments by PIV [28]. The upper-right insets in (C-G) indicate the
swimmer net circulation direction, re-scaled by 4,4,13,1.2,1.2 respectively. Lower-left
inset in (E-G) shows the fluid flow velocity arrows magnified by 5,1,1 respectively.

Without fluid interactions (�=0=u), Fig. 2C shows cells
concentrating or jamming at the drop boundary with small
unidirectional circulation or none at all [37], even if they start
from an ordered state as in Fig. 2D.

Next we consider disk pusher swimmers (⇥=0, �=-1,
Te

ij=0) subject to reorientation and advection by the fluid
flows they create. Fig. 2E shows that while the alignment
between neighbouring cells is lost, swimmers form unstable
layers with very small transient circulation.

Last, with more realistic conditions (ellipses, direct and
hydrodynamic interactions) we observe in Fig. 2G a spiral
vortex similar in form and dynamics to that of experiments
Fig. 2H. These three configurations show that steric interac-
tions force some swimmer local alignment however it is the
collectively-generated fluid flow taht produces the large-scale
organization and double-circulation. In fact, in simulations
with no local-alignment due to the ellipsoidal shape (i.e. set-
ting ⇥ � 1 but k=0, Te

ij=0) the spiral organization and
double-circulation are still obtained due to hydrodynamics,
as seen in Fig. 2F, except those cells are spaced more apart
due to isotropic steric repulsions with larger radius.

On a side note, circulation has been observed in confined
systems of self-propelling disks with prescribed alignment in-
teractions and possibly noise terms [38, 39], however the cir-
culation they obtain is unidirectional, just like in Fig. 2A&B.

Organization Emergence
To understand how the spiral order and double circulation
arise, we consider suspensions of increasing density. When
a few cells are trapped in a drop, they head to the oil in-
terface and slide at a small angle. When adding cells, they
form clusters sliding along the boundary (akin to those seen
with self-propelling rods in channels [40]). The clusters finally
merge to form the circulating outer boundary layer. (In the
images of Fig. 1B&E we note that this layer is the first to
form.) Bacteria point outward with an angle characteristic of
the spiral pattern. As pusher swimmers they push fluid back-
wards and the added e�ect produces the drop bulk fluid flow
that is in the opposite direction to the swimmer circulation.

When increasing the concentration to a dense suspension,
additional cells arrange into more layers with an angle dic-
tated by steric interactions, thus reproducing the spiral ar-
rangement. Almost all cells point outward and swim in the
same direction (clockwise in Fig. 2G). The emerging suspen-
sion dynamics consists of 2-3 boundary layers of cells sliding in
one direction and inner cell layers circulating in a large vortex
in the opposite direction, as in experiments Fig. 2H.

Cell orientation
Bacteria move by swimming and convection, the balance of
which gives the observable motion direction. In drops, PIV
measurements show that a boundary layer spins in opposite
direction to the bulk. One possible interpretation of the exper-
imental results was that the cells orient in di�erent directions,
i.e. cells in bulk point inwards and boundary layer ones point
outwards [28]). Simulations here however reveal that cells in
bulk also point outwards. Moreover the fluid flow is in the op-
posite direction to the bulk swimmer’s orientation and - in the
inner part of the drop - is strong enough to counter balance
the swimming speed. This is illustrated in Fig. 1 and sup-
plementary movie [?] where central cells point clockwise but
overall move counterclockwise. The revelation about the bulk
cell orientation and overall movement di�ers from the origi-
nal experiment interpretations [28] and thus necessitated new
experiments where the cell orientation could be measured.
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Simulation Results
We first run simulations in an unconfined periodic domain.
When neglecting hydrodynamics (�=0=u), the suspension ex-
hibits swarming at low concentration (Fig. 2A) or a stable
bionematic state at higher concentration, as classified by [17]
and seen in swarming colonies on surfaces [36]. Introducing
hydrodynamics (Fig. 2B) destabilizes these two states to gen-
erate a turbulent dynamics qualitatively similar to experimen-
tal observation [5, 8]. Remarkably hydrodynamics disrupts
bacterial clusters, as also suggested by [18] for squirmers.

We now consider the case of a confined suspension with
di�erent parameters to understand how they interplay.

��

Fig. 3. Suspension organization in periodic domains or inside circular confinement.
(A) Self-propelled ellipses interacting without hydrodynamics achieve a swarming or
bionematic state when in a periodic domain. (B) Pusher swimmers in a periodic do-
main exhibit a turbulent dynamics and are less clustered. (C,D) Self-propelled ellipses
interacting sterically without any hydrodynamics, in (d) starting from an organized
state. (E) Circular pusher swimmers, (F) pusher swimmers with isotropic steric re-
pulsions (� ⇡ 1,k= 0,T = 0) (G) ellipsoid pusher swimmers, (h) bacterial flow
measured in experiments by PIV [28]. The upper-right insets in (C-G) indicate the
swimmer net circulation direction, re-scaled by 4,4,13,1.2,1.2 respectively. Lower-left
inset in (E-G) shows the fluid flow velocity arrows magnified by 5,1,1 respectively.

Without fluid interactions (�=0=u), Fig. 2C shows cells
concentrating or jamming at the drop boundary with small
unidirectional circulation or none at all [37], even if they start
from an ordered state as in Fig. 2D.

Next we consider disk pusher swimmers (⇥=0, �=-1,
Te

ij=0) subject to reorientation and advection by the fluid
flows they create. Fig. 2E shows that while the alignment
between neighbouring cells is lost, swimmers form unstable
layers with very small transient circulation.

Last, with more realistic conditions (ellipses, direct and
hydrodynamic interactions) we observe in Fig. 2G a spiral
vortex similar in form and dynamics to that of experiments
Fig. 2H. These three configurations show that steric interac-
tions force some swimmer local alignment however it is the
collectively-generated fluid flow taht produces the large-scale
organization and double-circulation. In fact, in simulations
with no local-alignment due to the ellipsoidal shape (i.e. set-
ting ⇥ � 1 but k=0, Te

ij=0) the spiral organization and
double-circulation are still obtained due to hydrodynamics,
as seen in Fig. 2F, except those cells are spaced more apart
due to isotropic steric repulsions with larger radius.

On a side note, circulation has been observed in confined
systems of self-propelling disks with prescribed alignment in-
teractions and possibly noise terms [38, 39], however the cir-
culation they obtain is unidirectional, just like in Fig. 2A&B.

Organization Emergence
To understand how the spiral order and double circulation
arise, we consider suspensions of increasing density. When
a few cells are trapped in a drop, they head to the oil in-
terface and slide at a small angle. When adding cells, they
form clusters sliding along the boundary (akin to those seen
with self-propelling rods in channels [40]). The clusters finally
merge to form the circulating outer boundary layer. (In the
images of Fig. 1B&E we note that this layer is the first to
form.) Bacteria point outward with an angle characteristic of
the spiral pattern. As pusher swimmers they push fluid back-
wards and the added e�ect produces the drop bulk fluid flow
that is in the opposite direction to the swimmer circulation.

When increasing the concentration to a dense suspension,
additional cells arrange into more layers with an angle dic-
tated by steric interactions, thus reproducing the spiral ar-
rangement. Almost all cells point outward and swim in the
same direction (clockwise in Fig. 2G). The emerging suspen-
sion dynamics consists of 2-3 boundary layers of cells sliding in
one direction and inner cell layers circulating in a large vortex
in the opposite direction, as in experiments Fig. 2H.

Cell orientation
Bacteria move by swimming and convection, the balance of
which gives the observable motion direction. In drops, PIV
measurements show that a boundary layer spins in opposite
direction to the bulk. One possible interpretation of the exper-
imental results was that the cells orient in di�erent directions,
i.e. cells in bulk point inwards and boundary layer ones point
outwards [28]). Simulations here however reveal that cells in
bulk also point outwards. Moreover the fluid flow is in the op-
posite direction to the bulk swimmer’s orientation and - in the
inner part of the drop - is strong enough to counter balance
the swimming speed. This is illustrated in Fig. 1 and sup-
plementary movie [?] where central cells point clockwise but
overall move counterclockwise. The revelation about the bulk
cell orientation and overall movement di�ers from the origi-
nal experiment interpretations [28] and thus necessitated new
experiments where the cell orientation could be measured.
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Simulation Results
We first run simulations in an unconfined periodic domain.
When neglecting hydrodynamics (�=0=u), the suspension ex-
hibits swarming at low concentration (Fig. 2A) or a stable
bionematic state at higher concentration, as classified by [17]
and seen in swarming colonies on surfaces [36]. Introducing
hydrodynamics (Fig. 2B) destabilizes these two states to gen-
erate a turbulent dynamics qualitatively similar to experimen-
tal observation [5, 8]. Remarkably hydrodynamics disrupts
bacterial clusters, as also suggested by [18] for squirmers.

We now consider the case of a confined suspension with
di�erent parameters to understand how they interplay.
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Fig. 3. Suspension organization in periodic domains or inside circular confinement.
(A) Self-propelled ellipses interacting without hydrodynamics achieve a swarming or
bionematic state when in a periodic domain. (B) Pusher swimmers in a periodic do-
main exhibit a turbulent dynamics and are less clustered. (C,D) Self-propelled ellipses
interacting sterically without any hydrodynamics, in (d) starting from an organized
state. (E) Circular pusher swimmers, (F) pusher swimmers with isotropic steric re-
pulsions (� ⇡ 1,k= 0,T = 0) (G) ellipsoid pusher swimmers, (h) bacterial flow
measured in experiments by PIV [28]. The upper-right insets in (C-G) indicate the
swimmer net circulation direction, re-scaled by 4,4,13,1.2,1.2 respectively. Lower-left
inset in (E-G) shows the fluid flow velocity arrows magnified by 5,1,1 respectively.

Without fluid interactions (�=0=u), Fig. 2C shows cells
concentrating or jamming at the drop boundary with small
unidirectional circulation or none at all [37], even if they start
from an ordered state as in Fig. 2D.

Next we consider disk pusher swimmers (⇥=0, �=-1,
Te

ij=0) subject to reorientation and advection by the fluid
flows they create. Fig. 2E shows that while the alignment
between neighbouring cells is lost, swimmers form unstable
layers with very small transient circulation.

Last, with more realistic conditions (ellipses, direct and
hydrodynamic interactions) we observe in Fig. 2G a spiral
vortex similar in form and dynamics to that of experiments
Fig. 2H. These three configurations show that steric interac-
tions force some swimmer local alignment however it is the
collectively-generated fluid flow taht produces the large-scale
organization and double-circulation. In fact, in simulations
with no local-alignment due to the ellipsoidal shape (i.e. set-
ting ⇥ � 1 but k=0, Te

ij=0) the spiral organization and
double-circulation are still obtained due to hydrodynamics,
as seen in Fig. 2F, except those cells are spaced more apart
due to isotropic steric repulsions with larger radius.

On a side note, circulation has been observed in confined
systems of self-propelling disks with prescribed alignment in-
teractions and possibly noise terms [38, 39], however the cir-
culation they obtain is unidirectional, just like in Fig. 2A&B.

Organization Emergence
To understand how the spiral order and double circulation
arise, we consider suspensions of increasing density. When
a few cells are trapped in a drop, they head to the oil in-
terface and slide at a small angle. When adding cells, they
form clusters sliding along the boundary (akin to those seen
with self-propelling rods in channels [40]). The clusters finally
merge to form the circulating outer boundary layer. (In the
images of Fig. 1B&E we note that this layer is the first to
form.) Bacteria point outward with an angle characteristic of
the spiral pattern. As pusher swimmers they push fluid back-
wards and the added e�ect produces the drop bulk fluid flow
that is in the opposite direction to the swimmer circulation.

When increasing the concentration to a dense suspension,
additional cells arrange into more layers with an angle dic-
tated by steric interactions, thus reproducing the spiral ar-
rangement. Almost all cells point outward and swim in the
same direction (clockwise in Fig. 2G). The emerging suspen-
sion dynamics consists of 2-3 boundary layers of cells sliding in
one direction and inner cell layers circulating in a large vortex
in the opposite direction, as in experiments Fig. 2H.

Cell orientation
Bacteria move by swimming and convection, the balance of
which gives the observable motion direction. In drops, PIV
measurements show that a boundary layer spins in opposite
direction to the bulk. One possible interpretation of the exper-
imental results was that the cells orient in di�erent directions,
i.e. cells in bulk point inwards and boundary layer ones point
outwards [28]). Simulations here however reveal that cells in
bulk also point outwards. Moreover the fluid flow is in the op-
posite direction to the bulk swimmer’s orientation and - in the
inner part of the drop - is strong enough to counter balance
the swimming speed. This is illustrated in Fig. 1 and sup-
plementary movie [?] where central cells point clockwise but
overall move counterclockwise. The revelation about the bulk
cell orientation and overall movement di�ers from the origi-
nal experiment interpretations [28] and thus necessitated new
experiments where the cell orientation could be measured.
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Simulation Results
We first run simulations in an unconfined periodic domain.
When neglecting hydrodynamics (�=0=u), the suspension ex-
hibits swarming at low concentration (Fig. 2A) or a stable
bionematic state at higher concentration, as classified by [17]
and seen in swarming colonies on surfaces [36]. Introducing
hydrodynamics (Fig. 2B) destabilizes these two states to gen-
erate a turbulent dynamics qualitatively similar to experimen-
tal observation [5, 8]. Remarkably hydrodynamics disrupts
bacterial clusters, as also suggested by [18] for squirmers.

We now consider the case of a confined suspension with
di�erent parameters to understand how they interplay.
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Fig. 3. Suspension organization in periodic domains or inside circular confinement.
(A) Self-propelled ellipses interacting without hydrodynamics achieve a swarming or
bionematic state when in a periodic domain. (B) Pusher swimmers in a periodic do-
main exhibit a turbulent dynamics and are less clustered. (C,D) Self-propelled ellipses
interacting sterically without any hydrodynamics, in (d) starting from an organized
state. (E) Circular pusher swimmers, (F) pusher swimmers with isotropic steric re-
pulsions (� ⇡ 1,k= 0,T = 0) (G) ellipsoid pusher swimmers, (h) bacterial flow
measured in experiments by PIV [28]. The upper-right insets in (C-G) indicate the
swimmer net circulation direction, re-scaled by 4,4,13,1.2,1.2 respectively. Lower-left
inset in (E-G) shows the fluid flow velocity arrows magnified by 5,1,1 respectively.

Without fluid interactions (�=0=u), Fig. 2C shows cells
concentrating or jamming at the drop boundary with small
unidirectional circulation or none at all [37], even if they start
from an ordered state as in Fig. 2D.

Next we consider disk pusher swimmers (⇥=0, �=-1,
Te

ij=0) subject to reorientation and advection by the fluid
flows they create. Fig. 2E shows that while the alignment
between neighbouring cells is lost, swimmers form unstable
layers with very small transient circulation.

Last, with more realistic conditions (ellipses, direct and
hydrodynamic interactions) we observe in Fig. 2G a spiral
vortex similar in form and dynamics to that of experiments
Fig. 2H. These three configurations show that steric interac-
tions force some swimmer local alignment however it is the
collectively-generated fluid flow taht produces the large-scale
organization and double-circulation. In fact, in simulations
with no local-alignment due to the ellipsoidal shape (i.e. set-
ting ⇥ � 1 but k=0, Te

ij=0) the spiral organization and
double-circulation are still obtained due to hydrodynamics,
as seen in Fig. 2F, except those cells are spaced more apart
due to isotropic steric repulsions with larger radius.

On a side note, circulation has been observed in confined
systems of self-propelling disks with prescribed alignment in-
teractions and possibly noise terms [38, 39], however the cir-
culation they obtain is unidirectional, just like in Fig. 2A&B.

Organization Emergence
To understand how the spiral order and double circulation
arise, we consider suspensions of increasing density. When
a few cells are trapped in a drop, they head to the oil in-
terface and slide at a small angle. When adding cells, they
form clusters sliding along the boundary (akin to those seen
with self-propelling rods in channels [40]). The clusters finally
merge to form the circulating outer boundary layer. (In the
images of Fig. 1B&E we note that this layer is the first to
form.) Bacteria point outward with an angle characteristic of
the spiral pattern. As pusher swimmers they push fluid back-
wards and the added e�ect produces the drop bulk fluid flow
that is in the opposite direction to the swimmer circulation.

When increasing the concentration to a dense suspension,
additional cells arrange into more layers with an angle dic-
tated by steric interactions, thus reproducing the spiral ar-
rangement. Almost all cells point outward and swim in the
same direction (clockwise in Fig. 2G). The emerging suspen-
sion dynamics consists of 2-3 boundary layers of cells sliding in
one direction and inner cell layers circulating in a large vortex
in the opposite direction, as in experiments Fig. 2H.

Cell orientation
Bacteria move by swimming and convection, the balance of
which gives the observable motion direction. In drops, PIV
measurements show that a boundary layer spins in opposite
direction to the bulk. One possible interpretation of the exper-
imental results was that the cells orient in di�erent directions,
i.e. cells in bulk point inwards and boundary layer ones point
outwards [28]). Simulations here however reveal that cells in
bulk also point outwards. Moreover the fluid flow is in the op-
posite direction to the bulk swimmer’s orientation and - in the
inner part of the drop - is strong enough to counter balance
the swimming speed. This is illustrated in Fig. 1 and sup-
plementary movie [?] where central cells point clockwise but
overall move counterclockwise. The revelation about the bulk
cell orientation and overall movement di�ers from the origi-
nal experiment interpretations [28] and thus necessitated new
experiments where the cell orientation could be measured.
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Simulation Results
We first run simulations in an unconfined periodic domain.
When neglecting hydrodynamics (�=0=u), the suspension ex-
hibits swarming at low concentration (Fig. 2A) or a stable
bionematic state at higher concentration, as classified by [17]
and seen in swarming colonies on surfaces [36]. Introducing
hydrodynamics (Fig. 2B) destabilizes these two states to gen-
erate a turbulent dynamics qualitatively similar to experimen-
tal observation [5, 8]. Remarkably hydrodynamics disrupts
bacterial clusters, as also suggested by [18] for squirmers.

We now consider the case of a confined suspension with
di�erent parameters to understand how they interplay.
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Fig. 3. Suspension organization in periodic domains or inside circular confinement.
(A) Self-propelled ellipses interacting without hydrodynamics achieve a swarming or
bionematic state when in a periodic domain. (B) Pusher swimmers in a periodic do-
main exhibit a turbulent dynamics and are less clustered. (C,D) Self-propelled ellipses
interacting sterically without any hydrodynamics, in (d) starting from an organized
state. (E) Circular pusher swimmers, (F) pusher swimmers with isotropic steric re-
pulsions (� ⇡ 1,k= 0,T = 0) (G) ellipsoid pusher swimmers, (h) bacterial flow
measured in experiments by PIV [28]. The upper-right insets in (C-G) indicate the
swimmer net circulation direction, re-scaled by 4,4,13,1.2,1.2 respectively. Lower-left
inset in (E-G) shows the fluid flow velocity arrows magnified by 5,1,1 respectively.

Without fluid interactions (�=0=u), Fig. 2C shows cells
concentrating or jamming at the drop boundary with small
unidirectional circulation or none at all [37], even if they start
from an ordered state as in Fig. 2D.

Next we consider disk pusher swimmers (⇥=0, �=-1,
Te

ij=0) subject to reorientation and advection by the fluid
flows they create. Fig. 2E shows that while the alignment
between neighbouring cells is lost, swimmers form unstable
layers with very small transient circulation.

Last, with more realistic conditions (ellipses, direct and
hydrodynamic interactions) we observe in Fig. 2G a spiral
vortex similar in form and dynamics to that of experiments
Fig. 2H. These three configurations show that steric interac-
tions force some swimmer local alignment however it is the
collectively-generated fluid flow taht produces the large-scale
organization and double-circulation. In fact, in simulations
with no local-alignment due to the ellipsoidal shape (i.e. set-
ting ⇥ � 1 but k=0, Te

ij=0) the spiral organization and
double-circulation are still obtained due to hydrodynamics,
as seen in Fig. 2F, except those cells are spaced more apart
due to isotropic steric repulsions with larger radius.

On a side note, circulation has been observed in confined
systems of self-propelling disks with prescribed alignment in-
teractions and possibly noise terms [38, 39], however the cir-
culation they obtain is unidirectional, just like in Fig. 2A&B.

Organization Emergence
To understand how the spiral order and double circulation
arise, we consider suspensions of increasing density. When
a few cells are trapped in a drop, they head to the oil in-
terface and slide at a small angle. When adding cells, they
form clusters sliding along the boundary (akin to those seen
with self-propelling rods in channels [40]). The clusters finally
merge to form the circulating outer boundary layer. (In the
images of Fig. 1B&E we note that this layer is the first to
form.) Bacteria point outward with an angle characteristic of
the spiral pattern. As pusher swimmers they push fluid back-
wards and the added e�ect produces the drop bulk fluid flow
that is in the opposite direction to the swimmer circulation.

When increasing the concentration to a dense suspension,
additional cells arrange into more layers with an angle dic-
tated by steric interactions, thus reproducing the spiral ar-
rangement. Almost all cells point outward and swim in the
same direction (clockwise in Fig. 2G). The emerging suspen-
sion dynamics consists of 2-3 boundary layers of cells sliding in
one direction and inner cell layers circulating in a large vortex
in the opposite direction, as in experiments Fig. 2H.

Cell orientation
Bacteria move by swimming and convection, the balance of
which gives the observable motion direction. In drops, PIV
measurements show that a boundary layer spins in opposite
direction to the bulk. One possible interpretation of the exper-
imental results was that the cells orient in di�erent directions,
i.e. cells in bulk point inwards and boundary layer ones point
outwards [28]). Simulations here however reveal that cells in
bulk also point outwards. Moreover the fluid flow is in the op-
posite direction to the bulk swimmer’s orientation and - in the
inner part of the drop - is strong enough to counter balance
the swimming speed. This is illustrated in Fig. 1 and sup-
plementary movie [?] where central cells point clockwise but
overall move counterclockwise. The revelation about the bulk
cell orientation and overall movement di�ers from the origi-
nal experiment interpretations [28] and thus necessitated new
experiments where the cell orientation could be measured.
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FIG. 3. (color online). Schematic cell organization in
droplets. (a) Dashed line indicates continuum model bound-
ary, where bulk flow begins. (b-d) Physical mechanisms driv-
ing boundary layer formation. (b) Shear flow reorients cells
to face upstream. (c) Contact angle �m decreases with the
drop diameter, restricted by steric interactions. (d) Ratchet-
like steric repulsion and inward flow (red arrows) created by
boundary cells force the next layer to move in the opposite
azimuthal direction, thereby setting the bulk flow direction.

Detailed flow field analysis reveals that highly ordered
vortex states are always accompanied by a thin layer
of cells swimming along the oil interface in the oppo-
site direction to the bulk flow (Fig. 2b). This surpris-
ing fact is reflected in the azimuthally-averaged circu-
lation velocity profile vt(r) = ⌅v(x) · t⇧�, where x =
(r cos �, r sin �), which changes sign towards the edge of
the droplet (Fig. 2e). The basic form of vt(r) is pre-
served among well-ordered droplets (� > 0.7) with dif-
ferent diameters (Fig. 2e). To exclude the possibility
that the backflow arises from specific interactions be-
tween bacteria, DiPhyPC and oil, we performed control
experiments with dense suspensions in shallow cylindrical
polydimethylsiloxane chambers, and found qualitatively
similar behavior. This result suggests that the formation
of a thin counterflow boundary layer is a generic phe-
nomenon in bacterial suspensions confined by a higher-
viscosity medium. By determining the zeros of vt for all
ordered droplets, we find that the boundary layer thick-
ness b is independent of d (Fig. 2e). The average value
b̄ ⇤ 4µm is slightly smaller than the length ⌥ ⇤ 5µm of
B. subtilis [23], suggesting that the counterflow region is
comprised of a single layer of cells. We tested this hy-
pothesis by imaging droplets in a plane near the bottom
cover slip in order to resolve vertical cell layers more eas-
ily, and confirmed that cells swimming in the direction
opposite to the bulk flow are in direct contact with the
oil interface (Fig. 3a and Supplemental Video 2).

The presence of this previously unreported counter-
flow layer can be understood by considering the main
forces that cause reorientation of cells near the boundary.
Since the oil viscosity is ten times that of water, the inter-
face acts as a nearly-no-slip boundary for the suspension.
Thus, circular bulk motion creates a shear flow that ex-
erts torque on the cells in the boundary layer (Fig. 3b).
As recently shown for dilute suspensions [36], bacteria
prefer to swim upstream when exposed to such flow gradi-

FIG. 4. (color online). Bacterial orientation. (a) Local orien-
tation, averaged over 2 s. External ring lies at the water/oil
interface and shows local azimuthal direction, and cellular
orientation appears in the central disc. Discontinuity in color
between ring and disc indicates the angle between cells and
the azimuthal direction. (b) Boundary angle (Fig. 3c) as a
function of drop diameter, Symbols denote di⇥erent bacte-
rial concentrations; dashed black lines indicate geometric es-
timates of minimum packing angle � for di⇥erent cell lengths.

ents, thereby favoring the formation of a counterrotating
layer. If the concentration of cells is su⇧ciently high, ne-
matic ordering due to steric interactions further stabilizes
this layer [10, 21, 22]. Once the layer has formed, cells
trapped in it form a steric ratchet-like structure and, be-
cause they are pusher-type swimmers [30], they generate
a backflow in the direction opposite to their orientation
(Fig. 3d). Both e⇥ects force cells in the second layer to
move in the other direction: the boundary monolayer sta-
bilizes the bulk flow and vice versa. The absence of such
counter-circulation in the free-boundary geometry stud-
ied by Czirok et al. [31] provides further evidence that
the backflow is a consequence of rigid boundary e⇥ects.
A dense suspension of rod-like bacteria locally aligns

through active nematic interactions [10, 21, 22]. We ob-
serve cell orientation that is not parallel to the flow di-
rection: in the bulk circulation the cells point inwards,
and in the boundary layer they point outwards (Fig. 3a).
We extract the local mean orientation from the bac-
terial speckle by computing the orientation tensor [37]
(Fig. 4a). As for the flow, we examine the azimuthally-
averaged orientation angle �(r) relative to the circulation
direction t. Near the center of a drop, cells are aligned
roughly parallel to the bulk circulation (� ⇤ 0), and the
angle increases with r to a maximum value �m close to
the boundary. Viewing �m as a function of d, we find an
inverse correlation: the smaller the drop (and thus the
higher the boundary curvature), the larger the deviation
from the azimuthal direction, ranging from �m ⇥ 10� for
d = 70µm to �m ⇥ 35� for d = 30µm (Fig. 4b). To test
whether �m depends on the curvature or on the suspen-
sion size, we performed measurements with suspensions
diluted to ⇥ 2/3 of the starting concentration. In such
a drop, cells concentrate at the boundary, leaving the
center almost empty (Supplemental Video 3). Yet, the
measured angles are comparable to those of fully con-
centrated suspensions (Fig. 4b), indicating that this is
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FIG. 3. (color online). Schematic cell organization in
droplets. (a) Dashed line indicates continuum model bound-
ary, where bulk flow begins. (b-d) Physical mechanisms driv-
ing boundary layer formation. (b) Shear flow reorients cells
to face upstream. (c) Contact angle �m decreases with the
drop diameter, restricted by steric interactions. (d) Ratchet-
like steric repulsion and inward flow (red arrows) created by
boundary cells force the next layer to move in the opposite
azimuthal direction, thereby setting the bulk flow direction.

Detailed flow field analysis reveals that highly ordered
vortex states are always accompanied by a thin layer
of cells swimming along the oil interface in the oppo-
site direction to the bulk flow (Fig. 2b). This surpris-
ing fact is reflected in the azimuthally-averaged circu-
lation velocity profile vt(r) = ⌅v(x) · t⇧�, where x =
(r cos �, r sin �), which changes sign towards the edge of
the droplet (Fig. 2e). The basic form of vt(r) is pre-
served among well-ordered droplets (� > 0.7) with dif-
ferent diameters (Fig. 2e). To exclude the possibility
that the backflow arises from specific interactions be-
tween bacteria, DiPhyPC and oil, we performed control
experiments with dense suspensions in shallow cylindrical
polydimethylsiloxane chambers, and found qualitatively
similar behavior. This result suggests that the formation
of a thin counterflow boundary layer is a generic phe-
nomenon in bacterial suspensions confined by a higher-
viscosity medium. By determining the zeros of vt for all
ordered droplets, we find that the boundary layer thick-
ness b is independent of d (Fig. 2e). The average value
b̄ ⇤ 4µm is slightly smaller than the length ⌥ ⇤ 5µm of
B. subtilis [23], suggesting that the counterflow region is
comprised of a single layer of cells. We tested this hy-
pothesis by imaging droplets in a plane near the bottom
cover slip in order to resolve vertical cell layers more eas-
ily, and confirmed that cells swimming in the direction
opposite to the bulk flow are in direct contact with the
oil interface (Fig. 3a and Supplemental Video 2).

The presence of this previously unreported counter-
flow layer can be understood by considering the main
forces that cause reorientation of cells near the boundary.
Since the oil viscosity is ten times that of water, the inter-
face acts as a nearly-no-slip boundary for the suspension.
Thus, circular bulk motion creates a shear flow that ex-
erts torque on the cells in the boundary layer (Fig. 3b).
As recently shown for dilute suspensions [36], bacteria
prefer to swim upstream when exposed to such flow gradi-

FIG. 4. (color online). Bacterial orientation. (a) Local orien-
tation, averaged over 2 s. External ring lies at the water/oil
interface and shows local azimuthal direction, and cellular
orientation appears in the central disc. Discontinuity in color
between ring and disc indicates the angle between cells and
the azimuthal direction. (b) Boundary angle (Fig. 3c) as a
function of drop diameter, Symbols denote di⇥erent bacte-
rial concentrations; dashed black lines indicate geometric es-
timates of minimum packing angle � for di⇥erent cell lengths.

ents, thereby favoring the formation of a counterrotating
layer. If the concentration of cells is su⇧ciently high, ne-
matic ordering due to steric interactions further stabilizes
this layer [10, 21, 22]. Once the layer has formed, cells
trapped in it form a steric ratchet-like structure and, be-
cause they are pusher-type swimmers [30], they generate
a backflow in the direction opposite to their orientation
(Fig. 3d). Both e⇥ects force cells in the second layer to
move in the other direction: the boundary monolayer sta-
bilizes the bulk flow and vice versa. The absence of such
counter-circulation in the free-boundary geometry stud-
ied by Czirok et al. [31] provides further evidence that
the backflow is a consequence of rigid boundary e⇥ects.
A dense suspension of rod-like bacteria locally aligns

through active nematic interactions [10, 21, 22]. We ob-
serve cell orientation that is not parallel to the flow di-
rection: in the bulk circulation the cells point inwards,
and in the boundary layer they point outwards (Fig. 3a).
We extract the local mean orientation from the bac-
terial speckle by computing the orientation tensor [37]
(Fig. 4a). As for the flow, we examine the azimuthally-
averaged orientation angle �(r) relative to the circulation
direction t. Near the center of a drop, cells are aligned
roughly parallel to the bulk circulation (� ⇤ 0), and the
angle increases with r to a maximum value �m close to
the boundary. Viewing �m as a function of d, we find an
inverse correlation: the smaller the drop (and thus the
higher the boundary curvature), the larger the deviation
from the azimuthal direction, ranging from �m ⇥ 10� for
d = 70µm to �m ⇥ 35� for d = 30µm (Fig. 4b). To test
whether �m depends on the curvature or on the suspen-
sion size, we performed measurements with suspensions
diluted to ⇥ 2/3 of the starting concentration. In such
a drop, cells concentrate at the boundary, leaving the
center almost empty (Supplemental Video 3). Yet, the
measured angles are comparable to those of fully con-
centrated suspensions (Fig. 4b), indicating that this is
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FIG. 2. (color online). Steady-state circulation in highly concentrated B. subtilis droplet. (a) PIV flow field for a droplet with
a volume filling fraction ⇥ ⇠ 0.4. For clarity, not all PIV vectors are shown. (b) Enlarged region reveals the counterrotating
boundary layer. All PIV vectors are shown. (c-d) Vortex order parameter V for varying diameter d. (c) Drops of constant
height h ⇠ 25µm. Dashed lines denote the highly ordered single-vortex regime. (d) Averaged vortex order parameter � (5µm
bins) for h ⇠ 15µm (red dashed line) and h ⇠ 25µm (blue full line). Error bars indicate the standard deviation. (e) Azimuthal
flow vt(r) = hv · ti� profile for three di⇥erent experiments (blue full lines), compared with continuum bulk flow model results
(red dashed lines). Negative flow indicates the counterrotating boundary layer.

Small drops were created by slowly pipetting the sus-
pension, 10µL of which was placed between two cover-
slips such that it spread by surface tension to the cov-
erslip edge. This procedure yields many flattened drops
with h ⌅ 25µm and diameters ranging from 10–150µm,
and bacterial volume fraction ⇤ ⌅ 0.4. Bacteria re-
main active for several minutes in the largest drops and
up to 20 minutes for the smallest, reflecting the larger
di⇥usive influx of oxygen in the smaller drops. Cover-
slips were rendered hydrophobic with silane, resulting in
pancake-shaped drops that are wider at the midplane
of the chamber than at the top and bottom (Fig. 1a).
Movies were acquired at 125 fps with a high-speed cam-
era (Fastcam, Photron) on an inverted microscope (Cell
Observer, Zeiss), using a 100⇤ oil-immersion objective
and analyzed with custom Matlab algorithms. Flows
were imaged in the center of the chamber to minimize
optical distortions.

Confinement by the oil interface stabilizes rapidly ro-
tating vortices (Fig. 2 and Supplemental Video 1). To
quantify this e⇥ect, we determined the local bacterial ve-
locity field v(x), using a customized version of the parti-
cle image velocimetry (PIV) toolbox mPIV [34] that av-
erages pixel correlations over two seconds [35]. The PIV
algorithm yields the local mean velocity of the bacteria,
reflecting the locomotion due to swimming and advec-
tion by the fluid flow (Fig. 2a). The emergence of stable
azimuthal flow is captured by the vortex order parameter

� =

P
i |vi · ti|/

P
j ||vj ||� 2/⇥

1� 2/⇥
, (1)

where vi is the in-plane velocity and ti the azimuthal unit
vector (Fig. 1b) at PIV grid point xi. � = 1 for steady

azimuthal circulation, � = 0 for disordered chaotic flows
and � < 0 for predominantly radial flows. Plotting � as
a function of drop diameter reveals that a highly-ordered
single-vortex state with � > 0.7 forms if d� < d < d+
with d� ⌅ 30µm and d+ ⌅ 70µm (Fig. 2c). Clockwise
and counterclockwise vortices occur with equal proba-
bility. The lower critical diameter d� depends on the
chamber height h (Fig. 2d). Lowering h restores the
quasi-2D nature of the confinement and allows for for-
mation of vortex states at smaller diameter d. The up-
per critical diameter d+ is consistent with the size of the
transient turbulent swirls observed in 3D bulk bacterial
suspensions [16, 18, 24]. In drops slightly larger than d+
flow is still azimuthal near the boundary regions but the
vortex order decreases toward the center. Drops with
d & 100µm show fully developed bacterial turbulence as
seen in quasi-infinite suspensions [14, 16, 18, 24].

The azimuthal flow speed in a vortex state is maxi-
mal at a distance ⌅d/4 from the center (Fig. 2e). Across
experiments, the maximum speed increases with d, reach-
ing ⌅ 40µm/s for d+, roughly four times the typical
swimming speed of an isolated bacterium [17] and in
agreement with measurements in open B. subtilis sus-
pensions [16, 17]. While our setup does not supply oxy-
gen, and the bacterial motility decreases [18] with time,
recent studies of quasi-infinite suspensions [18, 24] have
shown that the flow correlation length is independent of
swimming speed at high cell density, so we may neglect
oxygen depletion in the analysis of patterns. In the fol-
lowing, we focus on the properties of single-vortex states
with � > 0.7 and take the azimuthal unit vector t to
point in the direction of bulk flow, so that we may treat
clockwise and counterclockwise vortices equally (Fig. 1b).
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  boundary	
  layer	
  is	
  about	
  1-­‐2	
  swimmer	
  lengths	
  in	
  both.	
  
Counter-­‐rotaHng	
  bacterial	
  flow	
  magnitude	
  about	
  0.5-­‐1V	
  (V	
  is	
  individual	
  swimmer	
  speed)	
  
Max	
  bulk	
  bacterial	
  flow	
  magnitude	
  about	
  1-­‐2V.	
  

Experiments	
  +	
  conHnuum	
  theory	
   ParHcle	
  simulaHons	
  

0 2 4 6

−1

0

1

2

Distance to center r (in units of L)

v t



Swimming	
  OrientaHon	
  

IniHal	
  interpretaHon	
  of	
  
experiments	
  (Wioland	
  et	
  
al,	
  PRL,	
  2013):	
  cells	
  in	
  the	
  
bulk	
  point	
  inwards…	
  
	
  



Swimming	
  OrientaHon	
  

SimulaHons	
  however	
  
reveal	
  that	
  cells	
  in	
  the	
  
bulk	
  point	
  outwards…	
  
	
  

IniHal	
  interpretaHon	
  of	
  
experiments	
  (Wioland	
  et	
  
al,	
  PRL,	
  2013):	
  cells	
  in	
  the	
  
bulk	
  point	
  inwards…	
  
	
  



MoHon	
  of	
  B.	
  SubHlis	
  at	
  the	
  Boundary	
  
and	
  in	
  the	
  Bulk	
  

New	
  experiments	
  to	
  determine	
  the	
  configuraHon	
  of	
  the	
  swimmers.	
  
	
  
Mutant	
  B.	
  SubHlis	
  (DS1919	
  3610)	
  are	
  labeled	
  with	
  Alexa	
  Fluor	
  488	
  C5	
  maleimide	
  on	
  the	
  flagella	
  and	
  FM4-­‐64	
  on	
  the	
  cell	
  membrane.	
  
These	
  two-­‐colored	
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  wild-­‐type	
  cells	
  (strain	
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  form	
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  dense	
  suspensions.	
  
	
  

Fig. 4. Drop overview in gray scale: bright field image. Positions of the membrane (false coloured red at time t=0, blue at t=0.2s) and flagella (false coloured green at
t=0.1s) dyes help determine the cell orientation. (a) Forward motion: cell at the oil interface both point and move to the top left corner. (b) Backward motion: the cell is
pointing to the top left corner while moving overall in the opposite direction. Bar at the drop-images: 10µm. Bar at the individual bacterium images: 5µm.

Experiments
To precisely determine the cell configuration and orientation,
we use a mutant B. Subtilis (DS1919 3610, a generous gift of
H. Berg [41]), labelled with Alexa Fluor 488 C5 maleimide
on the flagella and FM4-64 on the cell membrane following
the Guttenplan et al. protocol [42]. From these two-colored
bacteria, mixed with a large amount of dense wild-type cells
(strain 168), we form numerous drops (10-100µm in diameter
and ⇥25µm in height) according to the protocol in [28].

We take a sequence of 4 pictures: first in bright field to
determine to spatial organization (grey scale on Fig. 3a, then
of the membrane (FM4-64 false colored red), flagella (Alexa-
488 a false colored green) and again of the membrane (FM4-64
false colored blue). From these we determine the cell position,
overall motion and swimming direction.

Fig. 3a highlights a cell at the oil interface. Both the cell
motion and swimming direction are toward the top-left cor-
ner. Fig. 3b highlights a bulk bacterium. The two membrane
pictures indicate that the cell is moving to the lower right cor-
ner. Yet the flagella position to the mean membrane position
and flagella bundling at the rear of the bacteria reveal that
the cell is pointing to the top-left corner, in opposite direction
to its motion.

These results, found over 20 cells, confirm the prediction
from simulations: while all the bacteria point to the same di-
rection (outward), the bulk micro-swimmers move overall in
a backward fashion, opposite to the boundary layer motion.

Order Properties
Experiments and simulations with both steric and hydro-
dynamics interactions are in qualitative agreement on both
micro- and macroscopic scale. We finally consider the quan-
titative measurements to compare with the experiments of
Wioland et.al. [28].

In experiments drops show stable circulation when 30-
70µm in diameter. To quantify the order in simulations we

introduce the vortex order parameter

⇥ = (�i|vi · ti|/�j ||vj ||� 2/�) /(1� 2/�) [4]

with vi the bacterial overall motion and ti the azimuthal unit
vector. ⇥=1 for purely azimuthal flows, ⇥=0 for disordered
chaotic flows and ⇥ <0 for mostly radial flows. ⇥ is computed
for drops with diameters between 4⇥⇥20µm and 25⇥⇥125µm
for dense (area fraction ⇥20%) and semi-dilute suspensions
(area fraction ⇥10%).

Fig. 4 shows a first transition from random to vortex state
around d=7⇥. For dense suspensions the plot reveals that a
highly-ordered single-vortex state with ⇥>0.7 is achieved in
drops with diameter d=7-16⇥ (versus 30-70µm, ⇥6-14⇥ in ex-
periments). In experiments and simulations, we observe that
turbulence arises in the center of the largest drops. In the case
of semi-dilute suspensions, this center is depleted in cells, thus
leading to ordered states even for d>14⇥.

Fig. 2. The vortex order parameter � for dense (solid color) or dilute (faded color)
suspensions in drops with various diameters for both simulations (triangular marker)
and experiments (circular marker).
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t=0.1s) dyes help determine the cell orientation. (a) Forward motion: cell at the oil interface both point and move to the top left corner. (b) Backward motion: the cell is
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Experiments
To precisely determine the cell configuration and orientation,
we use a mutant B. Subtilis (DS1919 3610, a generous gift of
H. Berg [41]), labelled with Alexa Fluor 488 C5 maleimide
on the flagella and FM4-64 on the cell membrane following
the Guttenplan et al. protocol [42]. From these two-colored
bacteria, mixed with a large amount of dense wild-type cells
(strain 168), we form numerous drops (10-100µm in diameter
and ⇥25µm in height) according to the protocol in [28].

We take a sequence of 4 pictures: first in bright field to
determine to spatial organization (grey scale on Fig. 3a, then
of the membrane (FM4-64 false colored red), flagella (Alexa-
488 a false colored green) and again of the membrane (FM4-64
false colored blue). From these we determine the cell position,
overall motion and swimming direction.

Fig. 3a highlights a cell at the oil interface. Both the cell
motion and swimming direction are toward the top-left cor-
ner. Fig. 3b highlights a bulk bacterium. The two membrane
pictures indicate that the cell is moving to the lower right cor-
ner. Yet the flagella position to the mean membrane position
and flagella bundling at the rear of the bacteria reveal that
the cell is pointing to the top-left corner, in opposite direction
to its motion.

These results, found over 20 cells, confirm the prediction
from simulations: while all the bacteria point to the same di-
rection (outward), the bulk micro-swimmers move overall in
a backward fashion, opposite to the boundary layer motion.

Order Properties
Experiments and simulations with both steric and hydro-
dynamics interactions are in qualitative agreement on both
micro- and macroscopic scale. We finally consider the quan-
titative measurements to compare with the experiments of
Wioland et.al. [28].

In experiments drops show stable circulation when 30-
70µm in diameter. To quantify the order in simulations we

introduce the vortex order parameter

⇥ = (�i|vi · ti|/�j ||vj ||� 2/�) /(1� 2/�) [4]

with vi the bacterial overall motion and ti the azimuthal unit
vector. ⇥=1 for purely azimuthal flows, ⇥=0 for disordered
chaotic flows and ⇥ <0 for mostly radial flows. ⇥ is computed
for drops with diameters between 4⇥⇥20µm and 25⇥⇥125µm
for dense (area fraction ⇥20%) and semi-dilute suspensions
(area fraction ⇥10%).

Fig. 4 shows a first transition from random to vortex state
around d=7⇥. For dense suspensions the plot reveals that a
highly-ordered single-vortex state with ⇥>0.7 is achieved in
drops with diameter d=7-16⇥ (versus 30-70µm, ⇥6-14⇥ in ex-
periments). In experiments and simulations, we observe that
turbulence arises in the center of the largest drops. In the case
of semi-dilute suspensions, this center is depleted in cells, thus
leading to ordered states even for d>14⇥.

Fig. 2. The vortex order parameter � for dense (solid color) or dilute (faded color)
suspensions in drops with various diameters for both simulations (triangular marker)
and experiments (circular marker).
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FIG. 2. (color online). Steady-state circulation in highly concentrated B. subtilis droplet. (a) PIV flow field for a droplet with
a volume filling fraction ⇥ ⇠ 0.4. For clarity, not all PIV vectors are shown. (b) Enlarged region reveals the counterrotating
boundary layer. All PIV vectors are shown. (c-d) Vortex order parameter V for varying diameter d. (c) Drops of constant
height h ⇠ 25µm. Dashed lines denote the highly ordered single-vortex regime. (d) Averaged vortex order parameter � (5µm
bins) for h ⇠ 15µm (red dashed line) and h ⇠ 25µm (blue full line). Error bars indicate the standard deviation. (e) Azimuthal
flow vt(r) = hv · ti� profile for three di⇥erent experiments (blue full lines), compared with continuum bulk flow model results
(red dashed lines). Negative flow indicates the counterrotating boundary layer.

Small drops were created by slowly pipetting the sus-
pension, 10µL of which was placed between two cover-
slips such that it spread by surface tension to the cov-
erslip edge. This procedure yields many flattened drops
with h ⌅ 25µm and diameters ranging from 10–150µm,
and bacterial volume fraction ⇤ ⌅ 0.4. Bacteria re-
main active for several minutes in the largest drops and
up to 20 minutes for the smallest, reflecting the larger
di⇥usive influx of oxygen in the smaller drops. Cover-
slips were rendered hydrophobic with silane, resulting in
pancake-shaped drops that are wider at the midplane
of the chamber than at the top and bottom (Fig. 1a).
Movies were acquired at 125 fps with a high-speed cam-
era (Fastcam, Photron) on an inverted microscope (Cell
Observer, Zeiss), using a 100⇤ oil-immersion objective
and analyzed with custom Matlab algorithms. Flows
were imaged in the center of the chamber to minimize
optical distortions.

Confinement by the oil interface stabilizes rapidly ro-
tating vortices (Fig. 2 and Supplemental Video 1). To
quantify this e⇥ect, we determined the local bacterial ve-
locity field v(x), using a customized version of the parti-
cle image velocimetry (PIV) toolbox mPIV [34] that av-
erages pixel correlations over two seconds [35]. The PIV
algorithm yields the local mean velocity of the bacteria,
reflecting the locomotion due to swimming and advec-
tion by the fluid flow (Fig. 2a). The emergence of stable
azimuthal flow is captured by the vortex order parameter

� =

P
i |vi · ti|/

P
j ||vj ||� 2/⇥

1� 2/⇥
, (1)

where vi is the in-plane velocity and ti the azimuthal unit
vector (Fig. 1b) at PIV grid point xi. � = 1 for steady

azimuthal circulation, � = 0 for disordered chaotic flows
and � < 0 for predominantly radial flows. Plotting � as
a function of drop diameter reveals that a highly-ordered
single-vortex state with � > 0.7 forms if d� < d < d+
with d� ⌅ 30µm and d+ ⌅ 70µm (Fig. 2c). Clockwise
and counterclockwise vortices occur with equal proba-
bility. The lower critical diameter d� depends on the
chamber height h (Fig. 2d). Lowering h restores the
quasi-2D nature of the confinement and allows for for-
mation of vortex states at smaller diameter d. The up-
per critical diameter d+ is consistent with the size of the
transient turbulent swirls observed in 3D bulk bacterial
suspensions [16, 18, 24]. In drops slightly larger than d+
flow is still azimuthal near the boundary regions but the
vortex order decreases toward the center. Drops with
d & 100µm show fully developed bacterial turbulence as
seen in quasi-infinite suspensions [14, 16, 18, 24].

The azimuthal flow speed in a vortex state is maxi-
mal at a distance ⌅d/4 from the center (Fig. 2e). Across
experiments, the maximum speed increases with d, reach-
ing ⌅ 40µm/s for d+, roughly four times the typical
swimming speed of an isolated bacterium [17] and in
agreement with measurements in open B. subtilis sus-
pensions [16, 17]. While our setup does not supply oxy-
gen, and the bacterial motility decreases [18] with time,
recent studies of quasi-infinite suspensions [18, 24] have
shown that the flow correlation length is independent of
swimming speed at high cell density, so we may neglect
oxygen depletion in the analysis of patterns. In the fol-
lowing, we focus on the properties of single-vortex states
with � > 0.7 and take the azimuthal unit vector t to
point in the direction of bulk flow, so that we may treat
clockwise and counterclockwise vortices equally (Fig. 1b).
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  drops	
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  micron	
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  for	
  drops	
  with	
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FIG. 2. (color online). Steady-state circulation in highly concentrated B. subtilis droplet. (a) PIV flow field for a droplet with
a volume filling fraction ⇥ ⇠ 0.4. For clarity, not all PIV vectors are shown. (b) Enlarged region reveals the counterrotating
boundary layer. All PIV vectors are shown. (c-d) Vortex order parameter V for varying diameter d. (c) Drops of constant
height h ⇠ 25µm. Dashed lines denote the highly ordered single-vortex regime. (d) Averaged vortex order parameter � (5µm
bins) for h ⇠ 15µm (red dashed line) and h ⇠ 25µm (blue full line). Error bars indicate the standard deviation. (e) Azimuthal
flow vt(r) = hv · ti� profile for three di⇥erent experiments (blue full lines), compared with continuum bulk flow model results
(red dashed lines). Negative flow indicates the counterrotating boundary layer.

Small drops were created by slowly pipetting the sus-
pension, 10µL of which was placed between two cover-
slips such that it spread by surface tension to the cov-
erslip edge. This procedure yields many flattened drops
with h ⌅ 25µm and diameters ranging from 10–150µm,
and bacterial volume fraction ⇤ ⌅ 0.4. Bacteria re-
main active for several minutes in the largest drops and
up to 20 minutes for the smallest, reflecting the larger
di⇥usive influx of oxygen in the smaller drops. Cover-
slips were rendered hydrophobic with silane, resulting in
pancake-shaped drops that are wider at the midplane
of the chamber than at the top and bottom (Fig. 1a).
Movies were acquired at 125 fps with a high-speed cam-
era (Fastcam, Photron) on an inverted microscope (Cell
Observer, Zeiss), using a 100⇤ oil-immersion objective
and analyzed with custom Matlab algorithms. Flows
were imaged in the center of the chamber to minimize
optical distortions.

Confinement by the oil interface stabilizes rapidly ro-
tating vortices (Fig. 2 and Supplemental Video 1). To
quantify this e⇥ect, we determined the local bacterial ve-
locity field v(x), using a customized version of the parti-
cle image velocimetry (PIV) toolbox mPIV [34] that av-
erages pixel correlations over two seconds [35]. The PIV
algorithm yields the local mean velocity of the bacteria,
reflecting the locomotion due to swimming and advec-
tion by the fluid flow (Fig. 2a). The emergence of stable
azimuthal flow is captured by the vortex order parameter

� =

P
i |vi · ti|/

P
j ||vj ||� 2/⇥

1� 2/⇥
, (1)

where vi is the in-plane velocity and ti the azimuthal unit
vector (Fig. 1b) at PIV grid point xi. � = 1 for steady

azimuthal circulation, � = 0 for disordered chaotic flows
and � < 0 for predominantly radial flows. Plotting � as
a function of drop diameter reveals that a highly-ordered
single-vortex state with � > 0.7 forms if d� < d < d+
with d� ⌅ 30µm and d+ ⌅ 70µm (Fig. 2c). Clockwise
and counterclockwise vortices occur with equal proba-
bility. The lower critical diameter d� depends on the
chamber height h (Fig. 2d). Lowering h restores the
quasi-2D nature of the confinement and allows for for-
mation of vortex states at smaller diameter d. The up-
per critical diameter d+ is consistent with the size of the
transient turbulent swirls observed in 3D bulk bacterial
suspensions [16, 18, 24]. In drops slightly larger than d+
flow is still azimuthal near the boundary regions but the
vortex order decreases toward the center. Drops with
d & 100µm show fully developed bacterial turbulence as
seen in quasi-infinite suspensions [14, 16, 18, 24].

The azimuthal flow speed in a vortex state is maxi-
mal at a distance ⌅d/4 from the center (Fig. 2e). Across
experiments, the maximum speed increases with d, reach-
ing ⌅ 40µm/s for d+, roughly four times the typical
swimming speed of an isolated bacterium [17] and in
agreement with measurements in open B. subtilis sus-
pensions [16, 17]. While our setup does not supply oxy-
gen, and the bacterial motility decreases [18] with time,
recent studies of quasi-infinite suspensions [18, 24] have
shown that the flow correlation length is independent of
swimming speed at high cell density, so we may neglect
oxygen depletion in the analysis of patterns. In the fol-
lowing, we focus on the properties of single-vortex states
with � > 0.7 and take the azimuthal unit vector t to
point in the direction of bulk flow, so that we may treat
clockwise and counterclockwise vortices equally (Fig. 1b).
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FIG. 2. (color online). Steady-state circulation in highly concentrated B. subtilis droplet. (a) PIV flow field for a droplet with
a volume filling fraction ⇥ ⇠ 0.4. For clarity, not all PIV vectors are shown. (b) Enlarged region reveals the counterrotating
boundary layer. All PIV vectors are shown. (c-d) Vortex order parameter V for varying diameter d. (c) Drops of constant
height h ⇠ 25µm. Dashed lines denote the highly ordered single-vortex regime. (d) Averaged vortex order parameter � (5µm
bins) for h ⇠ 15µm (red dashed line) and h ⇠ 25µm (blue full line). Error bars indicate the standard deviation. (e) Azimuthal
flow vt(r) = hv · ti� profile for three di⇥erent experiments (blue full lines), compared with continuum bulk flow model results
(red dashed lines). Negative flow indicates the counterrotating boundary layer.

Small drops were created by slowly pipetting the sus-
pension, 10µL of which was placed between two cover-
slips such that it spread by surface tension to the cov-
erslip edge. This procedure yields many flattened drops
with h ⌅ 25µm and diameters ranging from 10–150µm,
and bacterial volume fraction ⇤ ⌅ 0.4. Bacteria re-
main active for several minutes in the largest drops and
up to 20 minutes for the smallest, reflecting the larger
di⇥usive influx of oxygen in the smaller drops. Cover-
slips were rendered hydrophobic with silane, resulting in
pancake-shaped drops that are wider at the midplane
of the chamber than at the top and bottom (Fig. 1a).
Movies were acquired at 125 fps with a high-speed cam-
era (Fastcam, Photron) on an inverted microscope (Cell
Observer, Zeiss), using a 100⇤ oil-immersion objective
and analyzed with custom Matlab algorithms. Flows
were imaged in the center of the chamber to minimize
optical distortions.

Confinement by the oil interface stabilizes rapidly ro-
tating vortices (Fig. 2 and Supplemental Video 1). To
quantify this e⇥ect, we determined the local bacterial ve-
locity field v(x), using a customized version of the parti-
cle image velocimetry (PIV) toolbox mPIV [34] that av-
erages pixel correlations over two seconds [35]. The PIV
algorithm yields the local mean velocity of the bacteria,
reflecting the locomotion due to swimming and advec-
tion by the fluid flow (Fig. 2a). The emergence of stable
azimuthal flow is captured by the vortex order parameter

� =

P
i |vi · ti|/

P
j ||vj ||� 2/⇥

1� 2/⇥
, (1)

where vi is the in-plane velocity and ti the azimuthal unit
vector (Fig. 1b) at PIV grid point xi. � = 1 for steady

azimuthal circulation, � = 0 for disordered chaotic flows
and � < 0 for predominantly radial flows. Plotting � as
a function of drop diameter reveals that a highly-ordered
single-vortex state with � > 0.7 forms if d� < d < d+
with d� ⌅ 30µm and d+ ⌅ 70µm (Fig. 2c). Clockwise
and counterclockwise vortices occur with equal proba-
bility. The lower critical diameter d� depends on the
chamber height h (Fig. 2d). Lowering h restores the
quasi-2D nature of the confinement and allows for for-
mation of vortex states at smaller diameter d. The up-
per critical diameter d+ is consistent with the size of the
transient turbulent swirls observed in 3D bulk bacterial
suspensions [16, 18, 24]. In drops slightly larger than d+
flow is still azimuthal near the boundary regions but the
vortex order decreases toward the center. Drops with
d & 100µm show fully developed bacterial turbulence as
seen in quasi-infinite suspensions [14, 16, 18, 24].

The azimuthal flow speed in a vortex state is maxi-
mal at a distance ⌅d/4 from the center (Fig. 2e). Across
experiments, the maximum speed increases with d, reach-
ing ⌅ 40µm/s for d+, roughly four times the typical
swimming speed of an isolated bacterium [17] and in
agreement with measurements in open B. subtilis sus-
pensions [16, 17]. While our setup does not supply oxy-
gen, and the bacterial motility decreases [18] with time,
recent studies of quasi-infinite suspensions [18, 24] have
shown that the flow correlation length is independent of
swimming speed at high cell density, so we may neglect
oxygen depletion in the analysis of patterns. In the fol-
lowing, we focus on the properties of single-vortex states
with � > 0.7 and take the azimuthal unit vector t to
point in the direction of bulk flow, so that we may treat
clockwise and counterclockwise vortices equally (Fig. 1b).
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This	
  suggests	
  this	
  length-­‐scale	
  range	
  
for	
  confinement	
  is	
  important.	
  
	
  
Indeed,	
  it	
  plays	
  an	
  important	
  role	
  in	
  
suspension	
  self-­‐organizaHon	
  in	
  other	
  
domain	
  geometries	
  (current	
  work	
  
with	
  H.	
  Wioland	
  and	
  R.E.	
  Goldstein).	
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Summary	
  and	
  Discussion	
  

•  MinimalisHc	
  model	
  that	
  captures	
  the	
  physics	
  of	
  swimming	
  and	
  interacHons.	
  
Fast	
  numerical	
  simulaHon	
  allows	
  us	
  to	
  trace	
  a	
  very	
  large	
  number	
  of	
  swimmers.	
  
Method	
  is	
  amendable	
  for	
  domains	
  with	
  staHc	
  (or	
  moving)	
  boundaries,	
  parHcles	
  
need	
  not	
  be	
  uniform	
  in	
  shape,	
  speed,	
  etc.	
  

	
  
•  Method	
  captures	
  well	
  the	
  dynamics	
  as	
  observed	
  in	
  experiments.	
  	
  

•  	
  In	
  the	
  bacterial	
  drop	
  case,	
  the	
  simulaHons	
  correctly	
  predicted	
  what	
  drives	
  the	
  
dynamics	
  and	
  give	
  new	
  insights	
  into	
  the	
  microscopic	
  arrangement	
  of	
  the	
  bacteria.	
  

•  Most	
  importantly,	
  that	
  study	
  clearly	
  shows	
  that	
  hydrodynamics	
  is	
  crucial	
  in	
  
obtaining	
  and	
  reproducing	
  the	
  bacterial	
  organizaHon	
  observed	
  in	
  the	
  experiments.	
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Some	
  other	
  adaptaHons	
  &	
  current	
  direcHons	
  
•  InteracHons	
  of	
  many	
  bacterial	
  vorHces,	
  ferromagneHc	
  &	
  anHferromagneHc	
  order	
  

in	
  a	
  vortex	
  layce.	
  With	
  H.	
  Wioland,	
  F.	
  Woodhouse,	
  J.	
  Dunkel,	
  R.	
  Goldstein.	
  

•  Other	
  geometries;	
  direcHng	
  collecHve	
  moHon.	
  With	
  H.	
  Wioland,	
  R.	
  Goldstein.	
  
	
  
	
  
	
  

	
  
	
  



More	
  ``realisHc’’	
  models	
  for	
  micro-­‐swimmers 

a)	
  C.	
  Rheinhardii	
   b)	
  Forces	
  on	
  fluid	
   c)	
  2	
  beads	
  model	
   d)	
  3	
  beads	
  model	
  

Develop	
  minimalisHc	
  mathemathical	
  models	
   that	
   correctly	
   capture	
   the	
  
essenHal	
  dynamics	
  of	
  a	
  microswimmer,	
  in	
  bulk	
  or	
  near	
  boundaries.	
  

flow may be important [30]. We are currently investigating
whether similar conclusions hold for the flow field around
bacteria, the prototypical ‘‘pusher’’ microorganisms.
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FIG. 4 (color online). Time- and azimuthally-averaged flow field of C. reinhardtii. (a) Streamlines (red [medium gray]) computed
from velocity vectors (blue [dark gray]). The spiraling near elliptic points is an artifact of the direct integration of a noisy experimental
velocity field. A color scheme indicates flow speed magnitudes. (b) Streamlines of the azimuthally-averaged flow of the three-Stokeslet
model: flagellar thrust is distributed among two Stokeslets placed (not fitted) at the approximate flagellar position (lateral green
arrows), whose sum balances drag on the cell body (central red arrow). (c) Decay of kuðrÞk for the three directions indicated by
separate colors in the inset, compared to results from the three-Stokeslet model (dashed lines).
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Introduction
- say something about why problem is important and
interesting
- say something about the experimental results of
scattering angle a�ected by ciliary contact
- say something about 3 bead models used recently to
study various things
- explain how the basic model captures the experiments

Model We examine this question a basic model of a
three-bead self-propelled micro-swimmer. The swim-
mer is modelled as three spherical beads connected sti�
springs whose equilibrium length are as illustrated in Fig.
1a. We use the assumption that the propulsive forces are
concentrated on the (equally-sized) flagella beads. Us-
ing a zero force condition on the entire swimmer and a
balance of forces on each bead (similar to the two-bead
model of [11]), we can derive the equation of motion for
the centers of mass of each bead.

The coupled dynamics of the beads B,L,R (denoting
the swimmer body, left and right flagellum beads respec-
tively) can be compactly described as follows

dx
k

dt
=

1

⌅
k

h
�
k,(L,R)f

f

k

+ f

c

k

+ f

x

k

i

+
X
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G
aj (xk

,x
j

)
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(1� �
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)f c
j
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x

j
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+
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j

+ f

x

j

�
(1)

FIG. 1: (Color online) (a) Diagram of the three-bead swim-
mer. (b) The generated fluid flow in free space.

for k = (B,L,R). In the above, ⌅
k

= 6⇧µa
k

where µ is
the fluid viscosity and a

B

= 1/3, a
L

= a
R

:= a
F

= 1/6
are the radii of the beads. The propulsive forces ff

L

and f

f

R

are acting only on the two flagella beads L and R. As in
[11], the “sti�” connector spring forces f c follow a finitely
extensible nonlinear elastic (FENE) spring model with an
equilibrium length equal to the distances between beads
“at rest”. The excluded volume forces f

x

k

are calculated
with the repulsive Lennard-Jones potential and are only
activated when the beads (or the wall) are at 21/6a ⇡
1.12a distance away from a bead’s center. Here

G
a

(x
k

,x
j

) =
1

8⇧µ
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(r2 + a2)
3
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j
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3
2

�

with r = ||x
k

� x

j

|| is a regularized Stokeslet or Oseen’s
tensor in three dimensions where the regularization pa-
rameter a is the radius of the bead [5, 6]. If the swimmer
is near a wall, the bead dynamics is a�ected. The wall
is considered no-slip and the method of images [4] with
regularized image Stokeslets [1], here denoted by G̃

a

, are
employed to calculate at each bead’s position the fluid
flow. The fluid velocity at some x

e

in the domain is

u(x
e

) =
X

j=(B,L,R)

[G
aj (xe
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) + G̃
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,x
j

)]
�
f
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j

+ f

x

j

�

The wall is taken to be the z = 0 plane and the
swimmer in the z > 0 half-space. The dynamics and
simulations are in 3D, but the swimmer trajectory re-
mains in the same plane where the initial configuration
(x

B

,x
L

,x
R

) lies. For simplicity here, we take that to be
the y = 0 plane. The motion of the swimmer is in taken
to be the in the n = (x

L

+ x

R

)/2 � x

B

direction for a
typical puller swimmer (and negative that for a mutant
pusher swimmer). The propulsive flagella forces f

f

L

and

f

f

R

are taken to be �n/|n|/2 (refer to the diagram in Fig.
1) and are fixed in magnitude. The spring forces are then
calculated accordingly so that the configuration aims to
return to the rest state (see Fig. 1a). The angles of inci-
dence ⇥

in

and scattering ⇥
out

are the angles the swimmer
configuration makes with the horizontal, and they are
both measured at the distance 2 above the wall before
and after the collision (in synchrony with the experimen-
tal measurements of [12]).

So	
  we	
  build	
  a	
  model	
  that	
  consists	
  of	
  3	
  spherical	
  beads	
  connected	
  by	
  FENE	
  springs	
  

Direct	
  interacHons	
  with	
  walls	
  done	
  via	
  the	
  repulsive	
  part	
  of	
  the	
  LJ	
  potenHal	
  for	
  spheres.	
  
Model	
  captures	
  what	
  is	
  seen	
  in	
  experiments	
  of	
  Kantsler	
  et	
  al,	
  110(4)	
  1187-­‐1192	
  PNAS	
  2013.	
  

Most	
  minimal	
  models	
  of	
  C.	
  Rheinhardii	
  neglect	
  the	
  fore-­‐an	
  asymmetry	
  of	
  the	
  swimmer	
  
and	
  parHculars	
  of	
  the	
  geometry.	
  But	
  that	
  can	
  quite	
  affect	
  the	
  near-­‐wall	
  dynamics.	
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FIG. 2: (Color online) Typical scattering trajectory of a three-bead swimmer: in solid line for a puller swimmer and in dashed
line for a pusher swimmer (as the mbo1 Chlamydomonas strain used in [12]). Insets (a,b) show the configuration of the puller
swimmer and the generated fluid flow at y = 0 plane before and after the collision with the wall. Inset (c) shows the the
configuration of a mutant pusher swimmer after it has hit the wall. See the supplementary material at [15] for movies of the
dynamics. (d,e) Schematic dynamics of a triangular puller and pusher swimmer near a wall.
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) lies. For simplicity here, we take that to
be the y = 0 plane. The motion of the swimmer is in
taken to be the in the n = (x

L

+ x

R

)/2 � x

B

direction
for a typical puller swimmer (and negative that for a mu-
tant pusher swimmer). The propulsive flagella forces f

f

L

and f

f

R

are taken to be �n/|n|/2 (refer to the diagram
in Fig. 1) and are fixed in magnitude. The spring forces
are then calculated accordingly so that the configuration
aims to return to the rest state (see Fig. 1a). The angles
of incidence ✓

in

and scattering ✓
out

are the angles the
swimmer configuration makes with the horizontal, and
they are both measured at the distance 2 above the wall
before and after the collision (similarly to the experimen-
tal measurements of [12]).

In Fig. 2a we show a typical trajectory of a three-
bead swimmer when the incoming angle ✓

in

before the
collision with the angle is not steep (✓

in

+ ✓
F

/2 < ⇡/2).
When the swimmer is close to the wall and the excluded
volume forces are activated on the beads, the swimmer
will execute a turn. The lower flagellum bead experiences
more drag (as seen by the asymmetry of the configuration
in Fig. 2b), and begins to slide along the wall. The spring
forces push on the other flagellum and body bead in order
to return to the rest configuration, with the end result
being that the swimmer turns at the wall in a transient
time (see Fig. 2c for the configuration at mid-turn), and
then once re-oriented it swims o↵ the wall. It can be
easily seen that the angle at which is scatters after the
wall collision is not the same or close to the angle at
which it approached the wall before the collision.

Fig. 2a shows the trajectory of a mutant swimmer, in
which the flagella are located behind the body and thus
makes a “pusher” configuration. This is akin to a chlamy-
domonas in the escape mode or the mbo1 strain used
in [12]. Here we observe that this type of swimmer ap-
proaches the wall similar to a pusher, as evidenced by the
less steep before-collision trajectory which is a result of
the hydrodynamical interactions with the wall (and thus
the image). Once it collides with the wall (see Fig. 2d
for the after-turning configuration), it tends to stay there

and swim in parallel to the wall, essentially co-swimming
with its own image. This agrees with the experimen-
tal observations [12] for the mbo1 chlamydomonas strain
which stay close to the surface after collisions.
We measure the scattering angle of a typical swimmer

for a variety of incidence angles ✓
in

and swimmer flag-
ella lengths L

B

but fixed inter-flagella angle ✓
F

= 70o

(note that this fixes L
F

too). The results for four di↵er-
ent sets of L

B

are shown in Fig. 3. Strikingly, the angle
at which a swimmer scatters of a wall does not seem to
depend on the incidence angle. The results show a con-
sistent angle ⇡ 12.5o at which this swimmer, suggesting
that the memory of the incident angle was lost during
and after the turning at the wall. The turning at the
wall is mostly dependent on the contact of the flagellum
with the wall and the steric forces there overpowering the
hydrodynamic e↵ects , thus consistent with the observa-
tion of Kantsler et. al. [12] that the scattering angle
of chlamydomonas depends on the ciliary contact of the
swimmer with the wall.
Moreover we observe in Fig. 3a that changing the flag-

ella lengths L
B

yields a very minor change in this scat-
tering angle (which can be explained by the numerical
approximations of the simulations). This is in contrast
with Kantsler et. al. [12] which attribute the scattering
angle to the length of the flagellum, with the scattering
angle being larger (up to 20o) for a swimmer with lengthy
flagella. This discrepancy between the results can be ex-
plained in many ways, but the main reason is that in the
physical chlamydomonas swimmer the flagella are flex-
ible and bendable but not sti↵ straight springs as our
model assumes. However, our model can investigate this
e↵ect by varying the inter-flagella angle ✓

F

. In Fig. 3b
we show the scattering angle for a variety of inter-flagella
angle ✓

F

but fixed flagellum length L
B

= 4a and fixed
incidence angle ✓

in

= 45o. The results now show a very
pronounced increase of the scattering angle with increas-
ing ✓

F

.
- Need to say something about the geometric argument
about a triangular swimmer here.
If the incidence angle is steep (e.g. ✓

in

+ ✓
F

/2 < ⇡/2),



ScaIering	
  from	
  a	
  wall	
  	
  
Turning chlamydomonas at a wall ! ciliary contact with walls is important. 

ScaIering	
  angle	
  
depends	
  on	
  length	
  of	
  
flagella	
  and	
  the	
  angle	
  
in-­‐between	
  them,	
  but	
  
almost	
  not	
  at	
  all	
  on	
  
incident	
  angle.	
  	
  

5 10 15 20 25 30 35 40 45 50 55 60
11.5

12

12.5

13

13.5

14

14.5

�in

� ou
t

 

 Lf = 3.6*a,   mean( �out ) = 12.0042
Lf = 3.8*a,   mean( �out ) = 12.3114
Lf = 4.0*a,   mean( �out ) = 12.6468
Lf = 4.2*a,   mean( �out ) = 12.8351

30 40 50 60 70 80 90
8

10

12

14

16

�F

� ou
t

mean slope = 0.12 o

boundary is, in fact, mainly determined by the contact interactions
between their flagella and the surface, whereas hydrodynamic
effects only play a secondary role. Building on these insights, we
derive a simple criterion to predict an efficient ratchet design for
Chlamydomonas and confirm its validity experimentally, thereby

demonstrating that robust rectification of algal locomotion is pos-
sible. More generally, our results show that the interactions be-
tween swimming microorganisms and surfaces are more complex
than previously recognized, suggesting the need for a thorough
revision of currently accepted paradigms. Because mechano-elastic

A

B

C

Fig. 1. Surface scattering of bull spermatozoa is governed by ciliary contact interactions, as evident from the scattering sequences of individual cells at two
temperature values: (A) T = 10 °C and (B) T = 29 °C. The background has been subtracted from the micrographs to enhance the visibility of the cilia. The cyan-
colored line indicates the corner-shaped boundary of themicrofluidic channels (seeMovies S1 and S2 for raw imaging data). The horizontal dotted line in the last
image inB defines θ = 0. (Scale bars: 20 μm.) (C) Theprobability distributions of scattering angles θ from the corner peak at negative angles, due to the fact that the
beat amplitude of the cilia exceeds the size of the cell body (sample size: n = 116 for T = 10 °C and n = 115 for T = 29 °C). At higher temperatures, the cilia exhibit
a larger oscillation amplitude and beat frequency (29), resulting in a larger swimming speed and shifting the typical scattering angles to larger absolute values.

Fig. 2. Surface scattering of Chlamydomonas is governed by ciliary contact interactions. (A) Scattering sequence for WT Chlamydomonas CC-125 (Movie S3).
(Upper) Originalmicrographs. (Lower) Cilia manually marked red. Results for the long-flagellamutant lf3-2 and the short-flagellamutant shf1 look qualitatively
similar (Movies S4 and S5). (Scale bar: 20 μm.) (B) Themutant pushermbo1 remains trapped for several seconds (Movie S6). (Scale bar: 20 μm.) (C) The conditional
probability distributions P(θoutjθin) indicate that, for all four strains, memory of the incidence angle is lost during the collision process, due to multiple flagellar
contact with the surface. (D) The cumulative scattering distribution P(θout) shows how cilia length and swimming mechanisms determine the effective surface-
scattering law. (E) Schematic illustration of the flagella-induced scattering and trapping mechanisms.
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FIG. 2: (Color online) Typical scattering trajectory of a three-bead swimmer: in solid line for a puller swimmer and in dashed
line for a pusher swimmer (as the mbo1 Chlamydomonas strain used in [12]). Insets (a,b) show the configuration of the puller
swimmer and the generated fluid flow at y = 0 plane before and after the collision with the wall. Inset (c) shows the the
configuration of a mutant pusher swimmer after it has hit the wall. See the supplementary material at [15] for movies of the
dynamics. (d,e) Schematic dynamics of a triangular puller and pusher swimmer near a wall.
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for a typical puller swimmer (and negative that for a mu-
tant pusher swimmer). The propulsive flagella forces f

f

L

and f

f
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are taken to be �n/|n|/2 (refer to the diagram
in Fig. 1) and are fixed in magnitude. The spring forces
are then calculated accordingly so that the configuration
aims to return to the rest state (see Fig. 1a). The angles
of incidence ✓

in

and scattering ✓
out

are the angles the
swimmer configuration makes with the horizontal, and
they are both measured at the distance 2 above the wall
before and after the collision (similarly to the experimen-
tal measurements of [12]).

In Fig. 2a we show a typical trajectory of a three-
bead swimmer when the incoming angle ✓

in

before the
collision with the angle is not steep (✓

in

+ ✓
F

/2 < ⇡/2).
When the swimmer is close to the wall and the excluded
volume forces are activated on the beads, the swimmer
will execute a turn. The lower flagellum bead experiences
more drag (as seen by the asymmetry of the configuration
in Fig. 2b), and begins to slide along the wall. The spring
forces push on the other flagellum and body bead in order
to return to the rest configuration, with the end result
being that the swimmer turns at the wall in a transient
time (see Fig. 2c for the configuration at mid-turn), and
then once re-oriented it swims o↵ the wall. It can be
easily seen that the angle at which is scatters after the
wall collision is not the same or close to the angle at
which it approached the wall before the collision.

Fig. 2a shows the trajectory of a mutant swimmer, in
which the flagella are located behind the body and thus
makes a “pusher” configuration. This is akin to a chlamy-
domonas in the escape mode or the mbo1 strain used
in [12]. Here we observe that this type of swimmer ap-
proaches the wall similar to a pusher, as evidenced by the
less steep before-collision trajectory which is a result of
the hydrodynamical interactions with the wall (and thus
the image). Once it collides with the wall (see Fig. 2d
for the after-turning configuration), it tends to stay there

and swim in parallel to the wall, essentially co-swimming
with its own image. This agrees with the experimen-
tal observations [12] for the mbo1 chlamydomonas strain
which stay close to the surface after collisions.
We measure the scattering angle of a typical swimmer

for a variety of incidence angles ✓
in

and swimmer flag-
ella lengths L

B

but fixed inter-flagella angle ✓
F

= 70o

(note that this fixes L
F

too). The results for four di↵er-
ent sets of L

B

are shown in Fig. 3. Strikingly, the angle
at which a swimmer scatters of a wall does not seem to
depend on the incidence angle. The results show a con-
sistent angle ⇡ 12.5o at which this swimmer, suggesting
that the memory of the incident angle was lost during
and after the turning at the wall. The turning at the
wall is mostly dependent on the contact of the flagellum
with the wall and the steric forces there overpowering the
hydrodynamic e↵ects , thus consistent with the observa-
tion of Kantsler et. al. [12] that the scattering angle
of chlamydomonas depends on the ciliary contact of the
swimmer with the wall.
Moreover we observe in Fig. 3a that changing the flag-

ella lengths L
B

yields a very minor change in this scat-
tering angle (which can be explained by the numerical
approximations of the simulations). This is in contrast
with Kantsler et. al. [12] which attribute the scattering
angle to the length of the flagellum, with the scattering
angle being larger (up to 20o) for a swimmer with lengthy
flagella. This discrepancy between the results can be ex-
plained in many ways, but the main reason is that in the
physical chlamydomonas swimmer the flagella are flex-
ible and bendable but not sti↵ straight springs as our
model assumes. However, our model can investigate this
e↵ect by varying the inter-flagella angle ✓

F

. In Fig. 3b
we show the scattering angle for a variety of inter-flagella
angle ✓
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but fixed flagellum length L
B

= 4a and fixed
incidence angle ✓
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= 45o. The results now show a very
pronounced increase of the scattering angle with increas-
ing ✓

F

.
- Need to say something about the geometric argument
about a triangular swimmer here.
If the incidence angle is steep (e.g. ✓
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The	
  Hme	
  it	
  takes	
  a	
  ``puller’’	
  chlamy	
  to	
  
turn	
  at	
  the	
  wall	
  vs.	
  incident	
  angle.	
  

Depends	
  on	
  incident	
  angle,	
  approx.	
  linearly.	
  
Flagella	
  length	
  makes	
  very	
  liIle	
  difference.	
  	
  	
  

If	
  incident	
  angle	
  is	
  too	
  steep,	
  the	
  chlamy	
  
may	
  get	
  trapped	
  at	
  the	
  wall.	
  

Adding	
  noise	
  can	
  help	
  it	
  escape	
  
(depending	
  on	
  noise	
  strength).	
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So	
  does	
  hydrodynamics	
  maIer?	
  

``Pusher’’	
  chlamy,	
  with	
  and	
  	
  
without	
  hydrodynamics	
  
	
  (blue	
  and	
  black	
  lines	
  respecHvely).	
  
	
  
-­‐-­‐	
  orientaHon	
  gets	
  affected	
  
-­‐-­‐	
  but	
  so	
  does	
  going	
  off	
  an	
  edge!	
  

``Puller’’	
  chlamy,	
  with	
  and	
  	
  
without	
  hydrodynamics	
  
	
  (blue	
  and	
  black	
  lines	
  respecHvely).	
  
	
  
-­‐-­‐	
  orientaHon	
  gets	
  affected	
  
-­‐-­‐	
  but	
  so	
  does	
  the	
  scaIering!	
  

Lushi,	
  Kantsler,	
  Goldstein,	
  in	
  preparaHon	
  (2014).	
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