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Metabolic Networks

Summary.

An introduction to Flux Balance Analysis, FBA

Towards Statistical Mechanics: the Von Neumann approach.

Thermodynamic consistency and free energies.

(Hwa)
CAFBA
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First paper from our group about Von Neumann and MinOver for metabolic

networks:

, C. Martelli, A. De Martino, E.M., M. Marsili and I. Pérez
Castillo, PNAS 106 (2009) 2607.

Thermodynamic consistency and free energies:

, D. De
Martino, M. Figliuzzi, A. De Martino and E.M., PLoS Comp. Bio 8(6): 1002562
(2012);

, D. De Martino, F. Capuani, M. Mori, A. De
Martino, and E.M., Metabolites 2013 (2013) 946, preprint arXiv: 1310.3693.

An application to a very different system:

, F.
A. Massucci, M. Di Nuzzo, F. Giove, B. Maraviglia, I. Perez Castillo, E.M. and
A. De Martino, BMC Systems Biology 7 (2013) 103 arXiv: 1310.6556.

CAFBA.: , M. Mori, A. De Martino,
T. Hwa and E.M. in writing.
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People in Sapienza@Rome involved:
Andrea De Martino
Fabrizio Capuani

Daniele De Martino

Matteo Figliuzzi (now at Univ. PMC, Paris)

Matteo Mori

Collaboration on CAFBA with Terry Hwa, San Diego, and his group.

March 2014 KITP Santa Barbara Page 3



Metabolic Networks

Cellular metabolism at genome scale: constraint based models.
Minimal assumptions about the steady state.

Viable configuration of reaction fluxes + test for thermodynamic
feasibility.

Predict chemical activity and response to perturbations of cells
without relying on kinetic details (many parameters, imprecise data
available).

Specify minimal constraints to describe the reaction network.
1. flux vectors need to satisfy mass balance conditions.

2. the direction of each reaction should guarantee decrease in Gibbs
energy (unfeasible cycle could plague the network).

1. Von Neumann: More flexible approach than usual FBA. 2.Fast

and scalable algorithm (a relaxation procedure) to reconstruct the

Gibbs energy 4+ remove unfeasible reaction cycles.
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Problems can arise even when using at best estimates of chemical

potentials in physiological conditions.

Information on feasible Gibbs energy ranges: exploit the patterns of

reactions interconnections encoded in the stoichiometry to narrow

the experimental bounds.

Find the landscape of Gibbs free energies compatible with a given
vector of reaction directions using all stoichiometric information via

heuristics inspired by perceptron learning.
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Scheme of a cellular metabolic network.
Ext and Int: exterior and the interior of the cell.

(resp. metabolites) are denoted by (resp. squares).

S1 and 52: fluxes supplying nutrients nl and n2 to the environment.
T1, T2 and T3: membrane transport reactions by which metabolites
are taken in or expelled from the cell.

R: intracellular reaction.

Comp: cellular compartment.
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2 ADP <— ATP + AMP (a priori reversible)
ATP + HyO — ADP + Pi (a priori irreversible)
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Cell metabolic network: set of interconnected chemical reactions

coupled with a set of transport processes.

Bacteria: membrane transport mechanisms by which nutrients are
brought into the cell and intracellular reactions by which they are
degraded and new biochemical species are produced.

Eukaryotes: also account for the transport of metabolites into and

out of each compartment, i.e. for the cell’s actual geometric structure.

“Flux analysis”:

class of constraint based approaches

in the study of biochemical reaction networks.

Calculation of the reaction flux configurations {v}

compatible
with
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N reactions, M chemical species

M x N stoichiometric matriz 2 (sparse matrix)

¢ stoichiometric coefficient: species p in reaction 4

Convention. Products: £ > 0.

Reaction directionality (all in principle reversible, but under
physiological conditions some may occur in one direction only). We
treat physiologically reversible reactions as two separate processes.

= includes for the nutrients.
E.coli: N ~ 1100, M ~ 700. S.cerevisiee: N ~ 1500, M ~ 900
v > 0 N-dimensional vector of reaction fluxes

Time evolution of

March 2014 KITP Santa Barbara Page 9



Metabolic Networks

: as matter of principle one could start from the dependence
of fluxes from parameters like rate constants k, obtaining

and solving the dynamical system for the concentrations:

Standard modeling routes: ¢ = 0 (timescale separation between
chemical processes and genetic regulation).

=v = 0: Kirchhoftf-type mass-balance conditions.

N > M = set of solutions has dimension N — rank(E): equivalent
feasible flux states of the network. Uniform sampling is impossible.

Relevant configurations: maximize a objective function o - v.

max (a-v) subjectto ZEv =0
O0<v<vmax
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Vmax

This is Flux Balance Analysis, FBA.

The vector a contains the crucial biological assumptions, as much as

possible from experimental evidence.

One possibility is to maximize biomass: a combination of different

metabolites in precise stoichiometric proportions.

Other possibilities: maximize the total flux of all ATP-producing

reactions, or (a proxy for efficient

nutrient usage) or the (for

maximal enzymatic efficiency).
All these approaches are highly correlated.

Very interesting: extension to biologically complex situations. Gene

knock-outs that prevent the execution of certain reactions.
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The Von Neumann approach and producibility.

Link between the network’s structure and its productive capabilities.

A metabolite p is producible from a given set of nutrients if

Jv > 0such that Ev >0& [Ev], >0

(where [Ev| = Z,ﬁil v;&"). At least one flux vector exists allowing

for a net production of u irrespective of whether other metabolites

are being also produced.

Concentrations of producible metabolites can increase in a stationary
flux state with the sole consumption of the nutrients, so that the cell
is allowed to employ them for purposes other than metabolic (e.g. to

form proteins, membranes, etc.).
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Possibility to produce a metabolite: limited by conservation laws

from the stoichiometry.

Stoichiometric matrix: separate B (input coefficients) from A
(output coefficients): A — B = E.

Conserved pool G of metabolites:

> (af=b)=0 Vi=1,---N.

pned

Famili and Palsson, Biophys. J. 85 (2003) 16
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Robustness of the cellular production profile emerging in given
nutrient conditions. Study:

YV = {v such that Ev > 0} (ZVZ N) .

In this case we can apply Von Neumann approach (originally devised
to study economics), and even statistical sampling is feasible. A. De
Martino and M. Marsili, J. Stat. Mech. (2005) L09003.

Given a constant p > 0, a flux vector v such that Av > p Bv
describes a network state in which every species is being produced at
a rate at least equal to p.

What is p*, the maximum value of p for which flux vectors satisfying
(A—pB)vr>0

exist?
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p*: optimal productive performance.

p* > 1 optimal states expand.

Flux vectors {v} satisfying the constraints at p* are the optimal flux

states of the system.

When A and B are random matrices, statistical mechanics, replica
trick and the cavity approach can be applied.

Enhanced dilution increases p* in the expanding phase.

Enhanced dilution decreases p* in the contracting phase.

A single flux vector is optimal when p = p~*.
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In real biological systems, where A and B are real stoichiometric

coefficients, the situation is radically different.

Here at p, one finds a number of different solutions.
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The MinOver algorithm

W. Krauth and M. Mézard, “Learning algorithms with optimal stability in neural
networks” J. Phys. A: Math. Gen. 20 (1987) L745

Start by setting all fluxes equal to random values or to zero.

REPEAT: Calculate the M functions

and determine /o = arg (min,c*) i.e. the index of the metabolite
with the smallest value of ¢ (if degenerate get one at random).

If ¢#o > 0 (but not all ¢ are zero) we have a solution v for the fluxes

at growth rate p.

Else update the fluxes:

v; — v; = max (0,v; + a’® — pbl'?)

and repeat from REPEAT.
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Application to the . Very good reconstruction of its
metabolic network exists (J. L. Reed, T. D. Vo, C. H. Schilling and B. O.

Palsson, Genome Biology 4 (2003) R54).

Main findings: see next slides (I start from the end...).

Dynamically stiff variables (reactions with small ranges) correspond

to F.coli’s phenomenologically essential genes: genes that are both
necessary for the organism’s survival and highly conserved across

different bacterial species.

At least in some conditions metabolic networks may operate close to

their optimal productive capacity.
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Selection of the environment where the cell lives is an important step.

Three distinct environmental conditions:

(ii) minimal environment, with uptakes on a restricted set of

metabolites;

(iii) rich environment, with uptakes on all external metabolites.

Calculate p* applying MinOver at fixed p and then gradually

increasing it.
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p* = 0.999 4+ 0.001 independently of the environmental conditions:
the state of optimal growth has constant fluxes.

« glutamate
» glucose
= succinate
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in a minimal environment.

On close to two decades: scaling form P(s) ~ s~7 with exponent
close to —1 followed by a cutoff. Ok with experiments. The flux
histogram is very stable in different solutions.
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Comparison of reaction fluxes predicted by the Von Neumann scheme

with 17 fluxes measured in [Emmerling M et al., J. Bacteriol. 184 (2002) 152]

and analyzed in [Segre D, Vitkup D, and Church GM Proc Natl Acad Sci USA 99
(2002) 15112]. The different reactions (in no specific order) are on the
horizontal axis, their corresponding fluxes (relative to the glucose

uptake) on the vertical axis. Red markers are for experimental values,

blue ones theoretical predictions. Data points are for 300 solutions.
Simplified medium, not coinciding with the experimental situation.
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!_EI

400 500 600

100 200 300
metabolites

ct for different metabolites in 500 different solutions. White: c¢* = 0.
Colored marks: net production of the metabolite in that solution.
Mass balance holds for most metabolites, but some are consistently
unbalanced while for some it depends on the solution. This may also
signal incompleteness of the stoichiometric data.
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To get further insight on flux states at p* and on the shape of the
solution space we monitor the mean overlap between different
solutions.

Given two solutions o and 8 at fixed p, we define their overlap g,z
as:

2 SN 5i0S 1
_2 iwsis_ _ 1N~ ()
R A Zizl Qof

i=1
gop = 1 when s, and sg coincide, and becomes smaller when their

difference increase.

. a flux is taken to be zero whenever its value is below a
threshold €, to take into account the fact that there is a loss of
information about relative fluctuations between different solutions in
small fluxes (we take e = 107°). Also the overlap between null fluxes
must be defined by consistency to be equal to one.
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(a,b) Mean overlap between 500 different solutions in E. coli and in a
random metabolic network; the last point on the abscissa is p*.
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E. coli: the volume of solutions stops contracting when p reaches
roughly 0.8 from below. At p* multiple solutions survive.

Histogram: only about the 30% of reactions have an overlap close to

1. In other terms roughly 30% of the variables are frozen (i.e. assume

the same value on all solutions of the constrained optimization

problem), while the remaining are free.

Expect that for purely structural reasons reaction chains are entirely

frozen when the first reaction of the chain is.

Confirmed by the map of frozen/free fluxes in E. coli’s central

metabolism, next slide.
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SUGE
fadh2

Zdmmql8

Nodes: metabolites. Arrow joining two

nodes: reaction converting one into the other. Red (green) links are

for frozen (free) reactions, with overlap larger (smaller) than
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Biological significance of frozen fluxes?

Notion of essentiality: combines phenomenological relevance (a gene
is essential if knocking it out the cell dies) with evolutionary

retention (the presence of the gene in different species).

Gerdes et al., J. Bacteriol. 185 (2003) 5673: 59 essential genes of E. cols
involved in metabolism (also present in 80% of 32 different bacterial

genomes).

Next figure: 43 of these genes correspond to reactions with overlap

larger than 0.8 (only 7 genes relate to reactions with an overlap

significantly smaller than 80%).
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Qverlap

1

Essential genes (vertical axis) versus
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Now thermodynamical consistency.
G=FE-PV-TS5

does not increase spontaneously in an open system at constant 7', P.

Let u; = sign{v;} = £1, v; flux of reaction i (41 is for a forward

reaction, —1 for a backward one). Gibbs energy change AG; induced
by the reaction must be such that u;AG; < 0.

S,i: stoichiometric coefficient of metabolite « in reaction i: S,; > 0
product, S,; < 0 substrate.
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M
XiE—UiZSm,LLaZO Vi

a=1

We look for p.

March 2014 KITP Santa Barbara Page 30



Metabolic Networks

For fixed u; solution space for p is convex.

Relaxation methods: iterations where variables are updated and

violated inequalities get fixed.

MinOver (Krauth Mézard 1987 for perceptron learning) is also used

for computing fluxes in Von Neumann approach.

Start from trial probability distribution

PO(“>:HP(ILLO¢>

P§* uniform over a given u range.

P§* contains prior biochemical information (i.e. centered around
experimental value with width connected to experimental errors and

such to span a few orders of magnitude).
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Initialization Input data

A “trial' probability distribution Stoichiometric matrix, S
for Y, Po(H) Vector of reaction directions, u

K = vector of chemical potentials |

J @ Compute vector x={xi}, see (3)
/0 Generate M from Po(u)/v 4

€ x>0 for eachi?
O update Y, see (4)

O u is thermodynamically feasible
H is a vector of feasible chemical potentials
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The algorithm is based on the following steps:

1. Generate a chemical potential vector pu = {uq } from Py(p).

2. Compute x = {x;} and ig = arg min; z; (i.e., ig is the index of

the least satisfied constraint).

3. If z;, > 0 then p is a thermodynamically consistent chemical
potential vector for u; exit (or go to 1 to obtain a different

solution).

4. If z;, < 0, update p as

(where A > 0 is a constant and S; is the j-th column of matrix

S), go to 2 and iterate.
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The —Au;,S;, drives the adjustment of chemical potentials: at every

iteration the least satisfied constraint gets improved.

If a solution exists, convergence to a solution is guaranteed VA > 0

(and the time of convergence depends on \).

We can prove it: suppose that a solution pu* exists
—ui(S; ") =c Vi,

with ¢ > 0 constant.

p(l) - p p(l—1) - ™ = Asige—1)(Sige—1) - 17)
pl—1) - pu* + A
p(0) - p* + LAc,
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This implies

a(0) pll) -pr  p(0)-pr+LlAc
(¢ HH*\ [/ |(0)2 + £X2A

By Cauchy-Schwarz d(¢) < 1: imposing d(/.) = 1 one finds an upper
bound on the number of steps needed to converge.
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solutions...

L
Q
=
(au
—
i
-
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Starting from a random vector if a solution exists we find it. Starting
from different random vectors allows sampling the solutions (if there

are many).

The reinforcement steps build up the correlations.

Nature of solution space: unbounded cone passing through the origin.
To obtain boundness one can use different approaches:

1. can clamp some p, keeping them fixed;

2. can assign a fixed range o variability to some or all u,, :

min max .
:uoz < Mo < :ua )

3. add global constraint (for example fix the potential for external

metabolites in uptakes).
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Important questions:

1. Minimal amount of a priori information needed to bound the

solution space?

Here: we look at solutions close to prior biochemical information.

Our approach works “better” than relaxation and penalty methods

even under noisy and inconsistent biochemical priors.
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Identify and remove loops: an extension of the algorithm

A generic assignment of reaction directions can be unfeasible, i.e.
such that does not have any non-trivial
solution.

Farkas-Minkowski theorem: this happens if and only if there is at
least one unfeasible loop, i.e. it 4 a set L of reactions for which
I{k; > 0} constant such that

Z kiuiSa,i =0 Vo .
1eL

(work in progress in analyzing a statistical theory that
helps solving this problem: S. Colabrese, A. De Martino, D. De
Martino, E.M.).
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. run MinOver for (large) number of iteration steps T'. Keep track

of the last K unsatisfied constraints, with K large;

. select the reactions that appear more frequently in this set and

search for a loop among these reactions;
3. if you find a loop, change the direction of one of its reactions.

All codes available from http://chimera.romal.infn.it/SYSBIO/
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The red blood cell metabolic network

Flux configurations from MC sampling of FBA solutions (Price,
Schellenberger and Palsson 2004) and from Von Neumann (A. De
Martino, Granata, EM, Martelli, Van Kerrebroeck 2010).

They are similar:

in FBA all reactions are bidirectional, all others are forward;

Both sets of solutions turn out to be thermodynamically feasible.

Concentrations are computed from (dilute solution approximation)

O
RT

logC,, = fo

Water is clamped.
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VNC
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MBE

Page 42

KITP Santa Barbara

March 2014



Metabolic Networks

NADPHase
NADHase
ATPase
ApK

AK

ADA
AMPase
AMPDA
IMPase
PNPase
AdPRT
HGPRT
PRM
PRPPsyn
TKII

TA

TKI

X5P
R5PI
PDGH
PGL
G6PDH
LDH
PK

EN
PGM
DPGase
DPGM
PGK
GAPDH
TPI
ALD
PFK
PGI

HK | i e T T

-
=

 1nput information

x MBE
VNC

80 70 60 50 40 30 20
AG [KJ/mol]

March 2014 KITP Santa Barbara

Page 43



Metabolic Networks

On growth laws. See for example Scott et al., Science 330, 2010 (Hwa
group).

In bacteria cells under steady state exponential growth the rate of
cell proliferation and the level of gene expression are intimately

intertwined.

The existence of intrinsic constraints governing the allocation of

resources towards protein synthesis has been recently established.

Growth rate affects the expression of individual genes which in turn

affects the RNA over protein ratio r.
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A
r()\):r0+k—t.

Valid for fast to moderately slow growth.
Universal: valid for other microbes.

Linear correlation is expected if the ribosomes are growth limiting;

translation at a constant rate.

k; is proportional to the rate of protein synthesis. Proportional to

the translational capacity of the organism.
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Scott et al., Science 2010

Supplementary Figures

Figure S1

® Escherichia coli (30°C)

© Aerobacter aerogenes (37°C)
® Candida utilis (25°C)
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Fig. S1: Linear correlation between RNA/protein ratio and growth rate in various
microbes. The linear relation between the RNA/protein ratio and the growth rate is
evident in a number of bacteria studied. and in exponentially growing unicellular
eukaryotes, Lefi: Escherichia coli (blue. 30°C; Ref. (30)). Aerobacter aerogenes (green.
37°C: Ref. (37)). Candida utilis (red. 25°C and orange. 30°C: Ref. (38)). Neurospora
crassa (black. 30°C: Ref. (39)). Right: Euglena gracilis (magenta. 25°C: Ref. (40)).

For comparison. the grey line corresponds to the solid line drawn in Fig. 1A for various
E. coli strains grown at 37°C.
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A new correlation among r and A emerges:

A

" = T"max —
k
n

(see figure).

Increase of r with increasing degree of translational inhibition, for a

given nutrient source.
Valid for all nutrient sources.

k, has a strong positive correlation with the growth rate of cells in

drug free medium: nutritional capacity.
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Scott et al., Science 2010 (see dashed line)
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Fig. 1. Correlation of the RNA/protein ratio r with
growth rate X for various strains of E. coli. (A) Com-
parison among E. coli strains grown in minimal
medium: Strain B/r [(10), squares], 15t-bar [(12),
diamonds], and EQ2 (this work, solid circles). The
growth rate is modulated by changing the quality of
nutrients as indicated in the key at lower left. The
fraction of total protein devoted to ribosome-
affiliated proteins (¢g) is given by the RNA/protein
ratio as og = p - r (table S1). (B) The RNA/protein
ratio for a family of translational mutants SmR
(triangles) and SmP (inverted triangles) and their
parent strain Xac (circles) (27), grown with various
nutrients (see key at lower left) (table S2). Trans-
lational inhibition of the parent Xac strain via
exposure to sublethal doses of chloramphenicol

(circled numbers; see legend table) gave RNA/protein ratios similar to those of the mutant
strains grown in medium with the same nutrient but without chloramphenicol (light blue
symbols). Dashed line is a fit to Eq. 2. Inset: Linear correlation of k; values obtained for the
Xac, SmR, and SmP strains (table S2) with the measured translation rate of the respective
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Problems with FBA.

A major one: overflow metabolism.

E. coli undergoes a major metabolism switch upon increasing the
growth yield, passing from mainly aerobic to mainly anaerobic

energetics.
This cannot be explained by FBA without ad hoc constructions.
1. Regulatory scenario for the proteome organization

plus

2. Flux Balance (steady state and optimization)

leads to CAFBA, Constrained Allocation Flux Balance Analysis.
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M, R, (): different proteome sectors.
Mass fractions adjust with growth rate A.

M : metabolic proteins;
R: ribosomal proteins;
(): growth independent proteins.

On, PR, ¢g: mass fractions of different proteome sectors.

Ov +or+ oo =1.

In other terms:
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k;: “translational efficiency”.

k; ~ 5.9/h (in absence of translation limiting antibiotics).

dr ~ 0.06.

Both do not depend much on environmental conditions.

A robust regulatory mechanism enforces this behavior.
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We assume that the proteome fraction has the form

Y

¢? is the mass fraction of protein 7 (catalyzing reaction 7) present
when the reaction is not active (not important: it goes in the
constant),

and w; is a weight.
We consider the w; and the ¢! of regulatory origin.

The absolute value of the fluxes takes care of negative fluxes in

reversible reactions.
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We divide the metabolic M sector in two sectors: transporters 1" and

enzymes F.

This is very useful since in our model nutrient limitation is modeled
by an increase of the weight w,; of the relative transporters. It will be

useful to change separately the weights of the two sectors.

So, we are introducing a proteome allocation constraint of the form

or ({v}) + o {v}) + or (A) =K.

(all constant value have been included in K).
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Let S, ; be the stoichiometric matrix; [; and u; respectively the lower
and the upper bound for the i-th flux; ¢ a vector prescribing the
linear combination of fluxes we will optimize via the quantity c - v

typically the biomass.

> i Suivi =0
li < V; < Uz V1

or ({v}) + o5 ({v}) +or(N) =K.
(CAFBA constraint)
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We select external conditions as simple as possible: growth rate

maximization in glucose minimal medium.

Here (this is the only nutrient that gets
transported), i.e.

OT Wyl [Vgie| -

We fix wg by assuming that the maximum growth rate (achieved for

zero cost for transport, Wr=w,,=0) equals a reference value

Amax = 0.9/h.
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Metabolic Networks

Switch from anaerobial to aerobial metabolism.
TCA cycle is predominant at low growth rates.

At high growth rate a different pathway is activated, and acetate is
secreted.

The transport proteome fraction decreases with A, basically linearly.

Maximum growth rate is for null transport rate since wgy;. = 0.

See coarse grained model, Molenaar et al, Molecular Systems Biology
5:323 (2009).
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Metabolic Networks

What is actually measured in experiments are the total fluxes

concerning an ensemble of bacteria: one has to consider an average of

the fluxes.

We obtain such an average by averaging over CAFBA solutions with

randomly sampled weights w,; for the E-sector.

We extract independently the logarithm of the weights from the same
uniform distribution, such that the weights span one order of

magnitude.

Now we get a smooth pattern with the same features than before.
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Metabolic Networks

Binned data from 70 samples
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Metabolic Networks

Because of the CAFBA constraint to maximize the growth rate A is

equivalent to minimize ¢ ({v}) + ¢g ({v}).

Let us consider the simple case where in the transport section we

only have the glucose intake flux.

We can fix \ and:

2. Minimize ¢g. Equivalent to FBA with a bound on total flux in

the E-enzymatic sector.

The second solution presents overflow metabolism.

CAFBA interpolates between the two solutions.
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