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Metabolic Networks

Summary.

An introduction to Flux Balance Analysis, FBA

(at genome scale, i.e. at large scale, you better do not need too many

details).

Towards Statistical Mechanics: the Von Neumann approach.

Thermodynamic consistency and free energies.

Growth laws (Hwa) constrain allocation of resources when mass

balancing: CAFBA
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First paper from our group about Von Neumann and MinOver for metabolic

networks: Identifying essential genes in Escherichia coli from a metabolic

optimization principle, C. Martelli, A. De Martino, E.M., M. Marsili and I. Pérez

Castillo, PNAS 106 (2009) 2607.

Thermodynamic consistency and free energies: A Scalable Algorithm to Explore

the Gibbs energy Landscape of Genome-scale Metabolic Networks, D. De

Martino, M. Figliuzzi, A. De Martino and E.M., PLoS Comp. Bio 8(6): e1002562

(2012);

Counting and correcting thermodynamically unfeasible flux cycles in

genome-scale metabolic networks, D. De Martino, F. Capuani, M. Mori, A. De

Martino, and E.M., Metabolites 2013 (2013) 946, preprint arXiv: 1310.3693.

An application to a very different system: Energy metabolism and

glutamate-glutamine cycle in the brain: a stoichiometric modeling perspective, F.

A. Massucci, M. Di Nuzzo, F. Giove, B. Maraviglia, I. Perez Castillo, E.M. and

A. De Martino, BMC Systems Biology 7 (2013) 103 arXiv: 1310.6556.

CAFBA: Constrained Allocation Flux Balance Analysis, M. Mori, A. De Martino,

T. Hwa and E.M. in writing.
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People in Sapienza@Rome involved:

Andrea De Martino

Fabrizio Capuani

Daniele De Martino

Matteo Figliuzzi (now at Univ. PMC, Paris)

Matteo Mori

Collaboration on CAFBA with Terry Hwa, San Diego, and his group.
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Cellular metabolism at genome scale: constraint based models.

Minimal assumptions about the steady state.

Viable configuration of reaction fluxes + test for thermodynamic

feasibility. This can be computationally very demanding.

Predict chemical activity and response to perturbations of cells

without relying on kinetic details (many parameters, imprecise data

available).

Specify minimal constraints to describe the reaction network.

1. flux vectors need to satisfy mass balance conditions.

2. the direction of each reaction should guarantee decrease in Gibbs

energy (unfeasible cycle could plague the network).

1. Von Neumann: More flexible approach than usual FBA. 2.Fast

and scalable algorithm (a relaxation procedure) to reconstruct the

Gibbs energy + remove unfeasible reaction cycles.
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Problems can arise even when using at best estimates of chemical

potentials in physiological conditions.

Information on feasible Gibbs energy ranges: exploit the patterns of

reactions interconnections encoded in the stoichiometry to narrow

the experimental bounds.

Requesting thermodynamic consistency of the model is also useful for

estimating the metabolite concentration.

Find the landscape of Gibbs free energies compatible with a given

vector of reaction directions using all stoichiometric information via

heuristics inspired by perceptron learning.
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Scheme of a cellular metabolic network.

Ext and Int: exterior and the interior of the cell.

Reactions (resp. metabolites) are denoted by circles (resp. squares).

S1 and S2: fluxes supplying nutrients n1 and n2 to the environment.

T1, T2 and T3: membrane transport reactions by which metabolites

are taken in or expelled from the cell.

R: intracellular reaction.

Comp: cellular compartment.
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Cell metabolic network: set of interconnected chemical reactions

coupled with a set of transport processes.

Bacteria: membrane transport mechanisms by which nutrients are

brought into the cell and intracellular reactions by which they are

degraded and new biochemical species are produced.

Eukaryotes: also account for the transport of metabolites into and

out of each compartment, i.e. for the cell’s actual geometric structure.

“Flux analysis”:

class of constraint based approaches

in the study of biochemical reaction networks.

Calculation of the reaction flux configurations {ν}

compatible

with stoichiometric and thermodynamic constraints.

March 2014 KITP Santa Barbara Page 8



Metabolic Networks

N reactions, M chemical species

M ×N stoichiometric matrix Ξ (sparse matrix)

ξµi stoichiometric coefficient: species µ in reaction i

Convention. Products: ξµi > 0. Substrates: ξµi < 0

Reaction directionality (all in principle reversible, but under

physiological conditions some may occur in one direction only). We

treat physiologically reversible reactions as two separate processes.

Ξ includes external supply fluxes for the nutrients.

E.coli: N ≃ 1100, M ≃ 700. S.cerevisiæ: N ≃ 1500, M ≃ 900

ν ≥ 0 N -dimensional vector of reaction fluxes

Time evolution of c, metabolite concentrations:

ċ = Ξ ν
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Kinetics: as matter of principle one could start from the dependence

of fluxes from parameters like rate constants k, obtaining

ν = ν(c,k, . . .)

and solving the dynamical system for the concentrations: this is

impossible for large-scale networks.

Standard modeling routes: ċ = 0 (timescale separation between

chemical processes and genetic regulation).

Ξν = 0: Kirchhoff-type mass-balance conditions.

N > M ⇒ set of solutions has dimension N − rank(Ξ): equivalent

feasible flux states of the network. Uniform sampling is impossible.

Relevant configurations: maximize a objective function α · ν.

max
0≤ν≤νmax

(α · ν) subject to Ξν = 0
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Select νmax on experimental input.

This is Flux Balance Analysis, FBA.

The vector α contains the crucial biological assumptions, as much as

possible from experimental evidence.

One possibility is to maximize biomass: a combination of different

metabolites in precise stoichiometric proportions.

Other possibilities: maximize the total flux of all ATP-producing

reactions, or minimize glucose consumption (a proxy for efficient

nutrient usage) or the total flux of intracellular reactions (for

maximal enzymatic efficiency).

All these approaches are highly correlated.

Very interesting: extension to biologically complex situations. Gene

knock-outs that prevent the execution of certain reactions.
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The Von Neumann approach and producibility.

Link between the network’s structure and its productive capabilities.

A metabolite µ is producible from a given set of nutrients if

∃ ν ≥ 0 such that Ξν ≥ 0 & [Ξν]µ > 0

(where [Ξν]µ =
∑N

i=1 νiξ
µ
i ). At least one flux vector exists allowing

for a net production of µ irrespective of whether other metabolites

are being also produced.

Nutrient usage may never exceed its supply.

Concentrations of producible metabolites can increase in a stationary

flux state with the sole consumption of the nutrients, so that the cell

is allowed to employ them for purposes other than metabolic (e.g. to

form proteins, membranes, etc.).
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Possibility to produce a metabolite: limited by conservation laws

from the stoichiometry.

Stoichiometric matrix: separate B (input coefficients) from A

(output coefficients): A−B = Ξ.

Conserved pool G of metabolites:
∑

µ∈G

(aµi − bµi ) = 0 ∀i = 1, · · ·N.

Famili and Palsson, Biophys. J. 85 (2003) 16

Conserved moieties are abundant in real metabolic networks.
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Robustness of the cellular production profile emerging in given

nutrient conditions. Study:

V = {ν such that Ξν ≥ 0}

(

∑

i

νi = N

)

.

In this case we can apply Von Neumann approach (originally devised

to study economics), and even statistical sampling is feasible. A. De

Martino and M. Marsili, J. Stat. Mech. (2005) L09003.

Given a constant ρ > 0, a flux vector ν such that Aν ≥ ρ Bν

describes a network state in which every species is being produced at

a rate at least equal to ρ.

What is ρ⋆, the maximum value of ρ for which flux vectors satisfying

(A− ρ B) ν ≥ 0

exist?
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ρ⋆: optimal productive performance.

ρ⋆ > 1 optimal states expand. ρ⋆ < 1 optimal states contract.

Flux vectors {ν} satisfying the constraints at ρ⋆ are the optimal flux

states of the system.

When A and B are random matrices, statistical mechanics, replica

trick and the cavity approach can be applied.

n ≡ N/M . A critical value nc separates contracting from expanding

regimes.

Enhanced dilution increases ρ⋆ in the expanding phase.

Enhanced dilution decreases ρ⋆ in the contracting phase.

A single flux vector is optimal when ρ = ρ⋆.
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In real biological systems, where A and B are real stoichiometric

coefficients, the situation is radically different.

The existence of conserved metabolic pools, enforces the condition

ρ⋆ = 1 .

Here at ρ⋆ one finds a number of different solutions.
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The MinOver algorithm

W. Krauth and M. Mézard, “Learning algorithms with optimal stability in neural

networks” J. Phys. A: Math. Gen. 20 (1987) L745

Start by setting all fluxes equal to random values or to zero.

REPEAT: Calculate the M functions cµ =
∑

i=1,N (aµi − ρ bµi ) νi

and determine µ0 = arg (minµc
µ) i.e. the index of the metabolite

with the smallest value of c (if degenerate get one at random).

If cµ0 ≥ 0 (but not all c are zero) we have a solution ν for the fluxes

at growth rate ρ.

Else update the fluxes:

νi → ν′i = max (0, νi + aµ0

i − ρbµ0

i )

and repeat from REPEAT.
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Application to the bacterium E. coli. Very good reconstruction of its

metabolic network exists (J. L. Reed, T. D. Vo, C. H. Schilling and B. O.

Palsson, Genome Biology 4 (2003) R54).

Main findings: see next slides (I start from the end...).

Ranges of variability of the fluxes in specified extracellular conditions

agree well with the (limited) experimental data available.

Dynamically stiff variables (reactions with small ranges) correspond

to E.coli’s phenomenologically essential genes: genes that are both

necessary for the organism’s survival and highly conserved across

different bacterial species.

At least in some conditions metabolic networks may operate close to

their optimal productive capacity.
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Selection of the environment where the cell lives is an important step.

Select a set of external metabolites where uptake fluxes are applied.

Three distinct environmental conditions:

(i) isolated cell, without uptakes;

(ii) minimal environment, with uptakes on a restricted set of

metabolites;

(iii) rich environment, with uptakes on all external metabolites.

Calculate ρ⋆ applying MinOver at fixed ρ and then gradually

increasing it.
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ρ⋆ = 0.999± 0.001 independently of the environmental conditions:

the state of optimal growth has constant fluxes.

Flux distributions at ρ⋆ in a minimal environment.

On close to two decades: scaling form P (s) ∼ s−γ with exponent

close to −1 followed by a cutoff. Ok with experiments. The flux

histogram is very stable in different solutions.
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Comparison of reaction fluxes predicted by the Von Neumann scheme

with 17 fluxes measured in [Emmerling M et al., J. Bacteriol. 184 (2002) 152]

and analyzed in [Segrè D, Vitkup D, and Church GM Proc Natl Acad Sci USA 99

(2002) 15112]. The different reactions (in no specific order) are on the

horizontal axis, their corresponding fluxes (relative to the glucose

uptake) on the vertical axis. Red markers are for experimental values,

blue ones theoretical predictions. Data points are for 300 solutions.

Simplified medium, not coinciding with the experimental situation.
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ρ⋆ = 1. In each Von Neumann solution, as opposed to FBA, some

metabolites exist with a non-zero cµ.

metabolites
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cµ for different metabolites in 500 different solutions. White: cµ = 0.

Colored marks: net production of the metabolite in that solution.

Mass balance holds for most metabolites, but some are consistently

unbalanced while for some it depends on the solution. This may also

signal incompleteness of the stoichiometric data.
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To get further insight on flux states at ρ⋆ and on the shape of the

solution space we monitor the mean overlap between different

solutions.

Given two solutions α and β at fixed ρ, we define their overlap qαβ
as:

qαβ =
2

N

N
∑

i=1

siαsiβ
s2iα + s2iβ

=
1

N

N
∑

i=1

q
(i)
αβ .

qαβ = 1 when sα and sβ coincide, and becomes smaller when their

difference increase.

Technicalities: a flux is taken to be zero whenever its value is below a

threshold ǫ, to take into account the fact that there is a loss of

information about relative fluctuations between different solutions in

small fluxes (we take ǫ = 10−5). Also the overlap between null fluxes

must be defined by consistency to be equal to one.
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(a,b) Mean overlap between 500 different solutions in E. coli and in a

random metabolic network; the last point on the abscissa is ρ⋆.

(c,d) Overlap histogram P (q) at ρ⋆ in E.coli and in the random

network. Note the different scales of the y axes in the lower panels.
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Artificial metabolic networks: 〈qαβ〉 → 1 as ρ→ ρ⋆.

Overlap histogram: δ-peak at q = 1 (mass increases as ρ→ ρ⋆).

Solution at ρ⋆ is unique.

E. coli: the volume of solutions stops contracting when ρ reaches

roughly 0.8 from below. At ρ⋆ multiple solutions survive.

Histogram: only about the 30% of reactions have an overlap close to

1. In other terms roughly 30% of the variables are frozen (i.e. assume

the same value on all solutions of the constrained optimization

problem), while the remaining are free.

Expect that for purely structural reasons reaction chains are entirely

frozen when the first reaction of the chain is.

Confirmed by the map of frozen/free fluxes in E. coli’s central

metabolism, next slide.
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E. coli’s central metabolism. Nodes: metabolites. Arrow joining two

nodes: reaction converting one into the other. Red (green) links are

for frozen (free) reactions, with overlap larger (smaller) than 0.9.

March 2014 KITP Santa Barbara Page 26



Metabolic Networks

Biological significance of frozen fluxes?

Notion of essentiality: combines phenomenological relevance (a gene

is essential if knocking it out the cell dies) with evolutionary

retention (the presence of the gene in different species).

We correlate q
(i)
αβ with the essentiality of the corresponding genes

Gerdes et al., J. Bacteriol. 185 (2003) 5673: 55 essential genes of E. coli

involved in metabolism (also present in 80% of 32 different bacterial

genomes).

We have linked 52 of them to reactions in the reconstructed network.

Next figure: 43 of these genes correspond to reactions with overlap

larger than 0.8 (only 7 genes relate to reactions with an overlap

significantly smaller than 80%).

Frozen fluxes may carry an evolutionary significance.
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Essential genes (vertical axis) versus overlap of the corresponding

reactions in the reconstructed metabolic network of E. coli

(horizontal axis).
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Now thermodynamical consistency.

G = E − P V − T S

does not increase spontaneously in an open system at constant T , P .

Let ui = sign{νi} = ±1, νi flux of reaction i (+1 is for a forward

reaction, −1 for a backward one). Gibbs energy change ∆Gi induced

by the reaction must be such that ui∆Gi ≤ 0.

Sαi: stoichiometric coefficient of metabolite α in reaction i: Sαi > 0

product, Sαi < 0 substrate.
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µ = {µα}. µα Gibbs energy per mole of species α:

∆Gi =
(

ST
)

µα

Xi ≡ −ui

M
∑

α=1

Sαi µα ≥ 0 ∀i

We look for µ.
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For fixed ui solution space for µ is convex.

Relaxation methods: iterations where variables are updated and

violated inequalities get fixed.

MinOver (Krauth Mézard 1987 for perceptron learning) is also used

for computing fluxes in Von Neumann approach.

Start from trial probability distribution

P0 (µ) =
M
∏

α=0

P (µα)

Pα
0 uniform over a given µ range.

Pα
0 contains prior biochemical information (i.e. centered around

experimental value with width connected to experimental errors and

such to span a few orders of magnitude).
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The algorithm is based on the following steps:

1. Generate a chemical potential vector µ = {µα} from P0(µ).

2. Compute x = {xi} and i0 = arg mini xi (i.e., i0 is the index of

the least satisfied constraint).

3. If xi0 ≥ 0 then µ is a thermodynamically consistent chemical

potential vector for u; exit (or go to 1 to obtain a different

solution).

4. If xi0 < 0, update µ as

µ → µ− λui0Si0

(where λ > 0 is a constant and Sj is the j-th column of matrix

S), go to 2 and iterate.
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The −λui0Si0 drives the adjustment of chemical potentials: at every

iteration the least satisfied constraint gets improved.

If a solution exists, convergence to a solution is guaranteed ∀λ > 0

(and the time of convergence depends on λ).

We can prove it: suppose that a solution µ∗ exists

−ui(Si · µ
⋆) ≥ c ∀i ,

with c > 0 constant. We have that after ℓ steps

µ(ℓ) · µ⋆ = µ(ℓ− 1) · µ⋆ − λsi0(ℓ−1)(Si0(ℓ−1) · µ
⋆)

≥ µ(ℓ− 1) · µ⋆ + λc

≥ µ(0) · µ⋆ + ℓλc ,
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and

µ(ℓ) · µ(ℓ) ≤ µ(0) · µ(0) + ℓλ2A ,

with

A = max
i

∑

α

(Sα,i)
2 .

This implies

d(ℓ) ≡
µ(ℓ) · µ⋆

|µ(ℓ)||µ⋆|
≥

µ(0) · µ⋆ + ℓλc

|µ⋆|
√

|µ(0)|2 + ℓλ2A
.

By Cauchy-Schwarz d(ℓ) ≤ 1: imposing d(ℓc) = 1 one finds an upper

bound on the number of steps needed to converge.
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Starting from a random vector if a solution exists we find it. Starting

from different random vectors allows sampling the solutions (if there

are many).

Many random starts: obtain a set of solutions of correlated {µα}.

The reinforcement steps build up the correlations.

Nature of solution space: unbounded cone passing through the origin.

To obtain boundness one can use different approaches:

1. can clamp some µα keeping them fixed;

2. can assign a fixed range o variability to some or all µα :

µmin
α < µα < µmax

α ;

3. add global constraint (for example fix the potential for external

metabolites in uptakes).
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Important questions:

1. Minimal amount of a priori information needed to bound the

solution space?

Here: we look at solutions close to prior biochemical information.

Our approach works “better” than relaxation and penalty methods

even under noisy and inconsistent biochemical priors.
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Identify and remove loops: an extension of the algorithm

A generic assignment of reaction directions can be unfeasible, i.e.

such that −ui

∑M
α=1 Sαi µα ≥ 0 ∀i does not have any non-trivial

solution.

Farkas-Minkowski theorem: this happens if and only if there is at

least one unfeasible loop, i.e. it ∃ a set L of reactions for which

∃{ki > 0} constant such that

∑

i∈L

kiuiSα,i = 0 ∀α .

In this case MinOver does not converge: the least satisfied constraint

cycles along the loop. There is a problem in the network

reconstruction (work in progress in analyzing a statistical theory that

helps solving this problem: S. Colabrese, A. De Martino, D. De

Martino, E.M.).
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A simple way to correct an unfeasible set of reaction directions:

1. run MinOver for (large) number of iteration steps T . Keep track

of the last K unsatisfied constraints, with K large;

2. select the reactions that appear more frequently in this set and

search for a loop among these reactions;

3. if you find a loop, change the direction of one of its reactions.

All codes available from http://chimera.roma1.infn.it/SYSBIO/
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The red blood cell metabolic network

Flux configurations from MC sampling of FBA solutions (Price,

Schellenberger and Palsson 2004) and from Von Neumann (A. De

Martino, Granata, EM, Martelli, Van Kerrebroeck 2010).

They are similar:

in FBA all reactions are bidirectional, all others are forward;

in VN one reaction is bidirectional (as in FBA) and two (that are

bidirectional in FBA) are backward, all others are forward.

Both sets of solutions turn out to be thermodynamically feasible.

Concentrations are computed from (dilute solution approximation)

logCα =
µα − µ

(0)
α

RT

Water is clamped.
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On growth laws. See for example Scott et al., Science 330, 2010 (Hwa

group).

In bacteria cells under steady state exponential growth the rate of

cell proliferation and the level of gene expression are intimately

intertwined.

The existence of intrinsic constraints governing the allocation of

resources towards protein synthesis has been recently established.

Growth rate affects the expression of individual genes which in turn

affects the RNA over protein ratio r.

One needs to understand the cell allocation to ribosome synthesis

(where most of the RNA belongs: for example in E. coli close to

85%), i.e. the value of r at different growth rates.
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For exponentially growing E. coli cell the RNA/protein ratio r is

linearly correlated with the growth rate λ

r (λ) = r0 +
λ

kt

.

Valid for fast to moderately slow growth.

Universal: valid for other microbes.

Linear correlation is expected if the ribosomes are growth limiting;

translation at a constant rate.

kt is proportional to the rate of protein synthesis. Proportional to

the translational capacity of the organism.
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Scott et al., Science 2010
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One can gradually inhibit translation by exposing cells to

translation-inhibiting antibiotics.

A new correlation among r and λ emerges:

r = rmax −
λ

kn

(see figure).

Increase of r with increasing degree of translational inhibition, for a

given nutrient source.

Valid for all nutrient sources.

kn has a strong positive correlation with the growth rate of cells in

drug free medium: nutritional capacity.
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Scott et al., Science 2010 (see dashed line)
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Problems with FBA.

A major one: overflow metabolism.

Overflow metabolism is the preference of several unicellular species to

sustain high rate growth, even in presence of oxygen, by selecting

anaerobic pathways over aerobic ones (Crabtree effect in yeast).

E. coli undergoes a major metabolism switch upon increasing the

growth yield, passing from mainly aerobic to mainly anaerobic

energetics.

This cannot be explained by FBA without ad hoc constructions.

1. Regulatory scenario for the proteome organization

plus

2. Flux Balance (steady state and optimization)

leads to CAFBA, Constrained Allocation Flux Balance Analysis.
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Proteome is organized in sectors.

M , R, Q: different proteome sectors.

Mass fractions adjust with growth rate λ.

M : metabolic proteins;

R: ribosomal proteins;

Q: growth independent proteins.

φM , φR, φQ: mass fractions of different proteome sectors.

φM + φR + φQ = 1 .

Since φQ does not depend on λ

φM + φR = 1− φQ = constant .

In other terms:

φM (λ) + φR(λ) = K .
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Experimental evidence:

φR (λ) = φ0
R +

λ

kt

φR(λ) is found to vary linearly with λ. There is an offset.

kt: “translational efficiency”.

kt ≃ 5.9/h (in absence of translation limiting antibiotics).

φR ∼ 0.06.

Both do not depend much on environmental conditions.

A robust regulatory mechanism enforces this behavior.
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We assume that the proteome fraction has the form

φi = φ0
i + wi |νi| ,

where

νi is the flux of reaction i,

φ0
i is the mass fraction of protein i (catalyzing reaction i) present

when the reaction is not active (not important: it goes in the

constant),

and wi is a weight.

We consider the wi and the φ0
i of regulatory origin.

The absolute value of the fluxes takes care of negative fluxes in

reversible reactions.
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We divide the metabolic M sector in two sectors: transporters T and

enzymes E.

φT (λ) =
∑

i ∈ transport

wi |νi|

φE(λ) =
∑

i ∈ internal reactions

wi |νi|

This is very useful since in our model nutrient limitation is modeled

by an increase of the weight wi of the relative transporters. It will be

useful to change separately the weights of the two sectors.

So, we are introducing a proteome allocation constraint of the form

φT ({ν}) + φE ({ν}) + φR (λ) = K .

(all constant value have been included in K).
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Let Sµ,i be the stoichiometric matrix; li and ui respectively the lower

and the upper bound for the i-th flux; c a vector prescribing the

linear combination of fluxes we will optimize via the quantity c · ν

typically the biomass.

CAFBA is defined by the following constrained optimization

problem: find

{νopt} = max
{ν}

(c · ν) = max
{ν}

(λ) ,

under the constraint
∑

i Sµ,iνi = 0 (FBA constraint, steady state)

and li ≤ νi ≤ ui , ∀i, bounds for fluxes, and

φT ({ν}) + φE ({ν}) + φR (λ) = K .

(CAFBA constraint)
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We select external conditions as simple as possible: growth rate

maximization in glucose minimal medium.

Here φT ∝ glucose intake flux (this is the only nutrient that gets

transported), i.e.

φT wglc |νglc| .

For φE , the enzymatic sector, the simplest (and first) choice is to set

wi = wE ∀i ∈ internal reactions.

This is natural if we assume that this dependence has a regulatory

origin. For example several enzymes are co-regulated.

We fix wE by assuming that the maximum growth rate (achieved for

zero cost for transport, WT=wglz=0) equals a reference value

λmax = 0.9/h.
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Most striking feature: at λ ∼ 0.75/h production of acetate (absent in

FBA) starts, and it is present at larger growth rates.

Switch from anaerobial to aerobial metabolism.

TCA cycle is predominant at low growth rates.

At high growth rate a different pathway is activated, and acetate is

secreted.

The transport proteome fraction decreases with λ, basically linearly.

Maximum growth rate is for null transport rate since wglc = 0.

If nutrients are scarce the cell invests more of its resources in

enzymes favoring transport.

See coarse grained model, Molenaar et al, Molecular Systems Biology

5:323 (2009).
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Metabolic Networks

Right panel of the former figure: for our simple choice of constant

weights the optimal flux configurations do not always vary smoothly

with the growth rate.

What is actually measured in experiments are the total fluxes

concerning an ensemble of bacteria: one has to consider an average of

the fluxes.

We obtain such an average by averaging over CAFBA solutions with

randomly sampled weights wi for the E-sector.

We extract independently the logarithm of the weights from the same

uniform distribution, such that the weights span one order of

magnitude.

Now we get a smooth pattern with the same features than before.
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Metabolic Networks

Because of the CAFBA constraint to maximize the growth rate λ is

equivalent to minimize φT ({ν}) + φE ({ν}).

Let us consider the simple case where in the transport section we

only have the glucose intake flux.

We can fix λ and:

1. Minimize φT . Equivalent to standard FBA.

2. Minimize φE . Equivalent to FBA with a bound on total flux in

the E-enzymatic sector.

The first solution is the canonical FBA solution for a given glucose

flux νglc. It has maximum biomass yield, and no overflow

metabolism.

The second solution presents overflow metabolism.

CAFBA interpolates between the two solutions.
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