Correlation between surface structure and slippage

Marcus Müller
GEORG-AUGUST-UNIVERSITÄT
GÖTTINGEN

background:

- collective phenomena in membranes (fusion, spreading, lateral phase separation)
- directed self-assembly of block copolymer materials
- parameter-passing techniques and simulation techniques for polymers

MARIE curie SFB 937

Correlation between surface structure and slippage

outline:

- intro: from particle models to a continuum description What determines the static and dynamic behavior of droplets on surfaces?
- statics: wetting behavior, Young's equation and interface potential

Léonforte, Müller, JCP 135, 214703 (2011)
Tretyakov, Müller, Todorova, Thiele, JCP. 138, 064905 (2013)

- dynamics: hydrodynamic boundary conditions of hard, soft and structured surfaces

Servantie, Müller, PRL 101, 026101 (2008), Pastorino, Müller, JCP 140, 014901 (2014)
Tretyakov, Müller, Soft Matter 9, 3613 (2013)

- directed motion on asymmetric, vibrating substrates

Tretyakov, Müller, Soft Matter, submitted
thanks to Fabien Leonforte, Claudio Pastorino, Cem Servantie, and Nikita Tretyakov

KITP Santa Barbara, March 19, 2014

Controlling surface structure, one can tailor wettability and friction

molecular control by chemistry: even-odd effects of the surface tension of fluorinated self-assembled monolayers - packing and chain lengths dictates orientation of dipole moments

Barriet, Lee, Curr. Opin. Colloid
Interface Sci. 8236 (2003)
macroscopic control by topography: surface with overhangs ("nails") is amphiphobic, ie polar and non-polar liquids exhibit a large contact angle (Gibbs' criterion)

Grigoryev, Tokarev, Kornev, Luzinov,
Minko, JACS 134, 12916 (2012)

Controlling surface structure, one can tailor wettability and friction

molecular control by chemistry: even-odd effects of the surface tension of fluorinated self-assembled monolayers - packing and chain lengths dictates orientation of dipole moments
macroscopic control by topography: surface with overhangs ("nails") is amphiphobic, ie polar and non-polar liquids exhibit a large contact angle
role of modeling and computer simulation:
relate molecular structure to macroscopic behavior (wettability and friction)

- identify microscopic parameters (e.g., surface tension) that pass information about the molecular structure onto macroscopic phenomenological descriptions
- devise computational strategies for extracting these parameters from molecular models
- assess the validity of macroscopic descriptions on small scales reasons for breakdown: interplay of "macroscopic" length scales (e.g., droplet size, scale of topography) with microscopic length scales (e.g., interface width, slip length, or correlation length of thermal fluctuations)

What dictates the statics and dynamics of macroscopically large drops?

parameters that characterize the drop shape? volume, V , of drop and contact angle, Θ
$\Rightarrow W=\left(\gamma_{\mathrm{SV}}-\gamma_{\mathrm{SL}}\right) / \gamma=\cos \theta$
Young 1805
parameters that dictate the dissipation of drops driven by a body force on a "slippery surface' ? bulk viscosity, η, and slip length slip, δ

$$
\left.\Rightarrow \eta \frac{\partial v_{y}}{\partial x}\right|_{x_{\mathrm{b}}}=\left.\frac{\eta}{\delta_{\mathrm{b}}} v_{y}\right|_{x_{\mathrm{b}}}
$$

HBC: viscous vs friction stress
combine information from Couette flow and Poiseuille flow to determine x_{b} and δ_{b}
$\delta_{\mathrm{b}} \sim \frac{D_{q \|}^{*}}{S_{1}\left(q_{\|}\right) \epsilon_{s}^{2} \rho_{c}}$
Barrat, Bocquet 1999
x_{b} and δ_{b} are materials parameter that characterize the surface independent from the type and strength of the flow

What dictates the statics and dynamics of macroscopically large drops?

parameters that characterize the drop shape? volume, V , of drop and contact angle, Θ
$\longrightarrow W=\left(\gamma_{\mathrm{SV}}-\gamma_{\mathrm{SL}}\right) / \gamma=\cos \theta$
Young 1805
narameters that dictate the dissination of drons

Goal: parameter passing - use molecular simulations to compute parameters that encode the microscopic properties of a material in a continuum description (thin film equation or Navier-Stokes equation)

Which parameters?

- contact angle and interface potential
- slip length and position of the hydrodynamic boundary

How to efficiently compute these parameters?

$$
\delta_{\mathrm{b}} \sim \frac{D_{q \|}^{*}}{S_{1}\left(q_{\|}\right) \epsilon_{s}^{2} \rho_{c}}
$$

Barrat, Bocquet 1999
x_{b} and δ_{b} are materials parameter that characterize the surface independent from the type and strength of the flow

Coarse-grained polymer simulations

cylindrical (2D) drops to avoid line tension effects

$$
U_{\mathrm{LJ}}(r)=4 \epsilon\left[\left(\frac{\sigma}{r}\right)^{12}-\left(\frac{\sigma}{r}\right)^{6}\right] \quad U_{\mathrm{FENE}}= \begin{cases}-\frac{1}{2} k R_{0}^{2} \ln \left[1-\left(\frac{r}{R_{0}}\right)^{2}\right] & \text { for } r<R_{0} \\ \infty & \text { for } r \geq R_{0}\end{cases}
$$

relevant polymer properties:

1. connectivity along the chain
2. excluded volume
3. thermal interaction (fluid-fluid, fluid-wall)
model:
Lennard-Jones monomers ($\mathrm{N}=10, \mathrm{R}_{\mathrm{e}}=3.66 \sigma$)
FENE potential along bonds
2 layers FCC LJ solid methods:

MD simulations, DPD thermostat

Static behavior of droplets: calculation of tensions

What parameters characterize the macroscopic shape of a droplet?
volume, V , and contact angle, Θ

$$
W=\left(\gamma_{\mathrm{SV}}-\gamma_{\mathrm{SL}}\right) / \gamma=\cos \theta
$$

computational benefits of Young's equation (compared to measuring Θ):

- separate calculation of planar liquid-vapor and solid-liquid interface allows for small system sizes (compared to drops),
no interaction between interfaces and no curvature effects
- changes of γ_{sl} and γ_{sv} with respect to T or $\varepsilon_{\text {wall }}$ can be calculated by TDI
- accurate computational techniques available based on e.g., reweighting techniques in grandcanonical ensemble or anisotropy of pressure (virial)

Interface potential, $g(h)$

interface potential:
Interaction between solid-liquid and liquid-vapor interface per area as a function of their distance, $h 0.10$ $g(h)=-\frac{k_{\mathrm{B}} T}{A} \ln P(h)+\mathrm{const}$
in grandcanonical ($\mu \mathrm{VT}$) simulations
Müller, MacDowell 2000, MacDowell, Müller 2006
Grzelak, Errington 2008, 2010, Rane, Kumar, Errington 2011
provides information about contact angle,

$\gamma_{\mathrm{SV}}=\gamma_{\mathrm{SL}}+\gamma+g\left(h_{\text {min }}\right)$
$g\left(h_{\min }\right)=\gamma(\cos \Theta-1)$
line tension and deviations from cap-shaped droplet profile in the vicinity of the three-phase contact line
important for parameter-passing scheme from particle-based models to continuum description

$$
F[h]=\gamma_{\mathrm{SL}} L_{y} \int \mathrm{~d} x+L_{y} \int \mathrm{~d} x \sqrt{1+\left(\partial_{x} h\right)^{2}}[\gamma+g(h)]
$$

Measuring $g(h)$ in the canonical ensemble

virtual deformation that changes area, A , but not volume of the liquid
$\left.\frac{1}{A} \frac{\mathrm{~d} F(\lambda)}{\mathrm{d} \lambda}\right|_{\lambda=1}=\gamma_{\mathrm{SL}}+\gamma+g(h)-\frac{\mathrm{d} g(h)}{\mathrm{d} h} h \quad$ Legendre transform of interface potential
$\left.\frac{1}{A} \frac{\mathrm{~d} F(\lambda)}{\mathrm{d} \lambda}\right|_{\lambda=1}=\int \mathrm{d} z\left[p_{\mathrm{n}}(z)-p_{\mathrm{t}}(z)\right] \quad$ anisotropy of virial pressure

$$
+\frac{1}{A}\left\langle\sum_{s, i}\left[f_{z, i s}^{\mathrm{s}} z_{i s}-\frac{1}{2}\left(f_{x, i s}^{\mathrm{s}} x_{i}+f_{y, i s}^{\mathrm{s}} y_{i}\right)\right]-\sum_{s_{2}, i} f_{z, i s_{2}}^{\mathrm{s}} \Delta z\right\rangle
$$

contribution of non-deformed solid-liquid interactions

1) measure $\left.\frac{1}{A} \frac{\mathrm{~d} F(\lambda)}{\mathrm{d} \lambda}\right|_{\lambda=1}$ in $M D$ simulation as a function of film thickness h
2) fit result by series of exponential (appropriate for short-ranged, cut-off interactions)
3) invert Legendre transform

Results

good description of the average deviation from cap-shape but liquid layering
Tretyakov, Müller, Todorova, Thiele, JCP 138, 064905 (2013)

Droplets on deformable substrates

droplets on a polymer brush controlling the incompatibility between polymer liquid and brush, one independently tailors wettability and softness

- rich wetting behavior
- deformation at the three-phase contact line ridge Shanahan, Carré, Langmuir 10, 1647 (1994); Carré, Shanahan, Langmuir 11, 24 (1995)

$\mathcal{H}_{\mathrm{cap}}\left[z_{\mathrm{int}}(x, y)\right]=\frac{1}{2} \int \mathrm{~d}^{2}(x, y)\left(\gamma_{b}\left[\nabla z_{\mathrm{int}}\right]^{2}+\kappa_{b}\left(z_{\mathrm{int}}-\bar{z}_{\mathrm{int}}\right)^{2}\right)$

Léonforte, Müller, JCP 135, 214703 (2011)

Flow past polymer brush

- high grafting density: autophobicity, strong layering, density at substrate larger than bulk narrow brush-mel
- intermedia te gra wide brush free chains total densit grafting

Pastorino et al, JCP 124, 064902 (2006), Macromolecules 42, 401 (2009)

Velocity profiles under shear (Couette flow)

linear profile at center yields viscosity

- very high grafting densities:
finite apparent slip (small overlap between brush and melt)
Pastorino et al, Macro. 42, 401 (2009)
- intermediate (high) grafting density: no apparent slip boundary condition, reduced effective width
- small grafting density:
finite apparent slip
linear extrapolation of the velocity profile is insufficient at a soft surface
- \quad negative slip length δ (inside the fluid) incompatible with Green-Kubo relation
- where is the boundary, x_{b} ?
use two type of flows: Couette \& Poiseuille

Navier slip boundary condition

$$
\left.\left.\eta \frac{\partial v_{y}}{\partial x}\right|_{x_{b}}=\frac{\eta}{\delta_{\mathrm{b}}} v_{y} \right\rvert\,
$$

hydrodynamic boundary condition:
parameterize microscopic information obtained from MD simulation as boundary condition for NS equation
fit flow far away from surface by prediction of continuum hydrodynamics (Couette flow - linear velocity profile and Poiseuille flow - parabolic profile) and extrapolate these profiles to zero (x_{C} and x_{P})

Poiseuille and Couette flow (MD)

$$
\delta_{\mathrm{b}}=\sqrt{\left(x_{\mathrm{P}}-x_{\mathrm{C}}\right)\left(D-x_{\mathrm{C}}-x_{\mathrm{P}}\right)} \mathbf{X}_{\mathbf{P}} \mathbf{< X}_{\mathbf{C}} \quad x_{b}=x_{\mathrm{C}}+\delta_{b}
$$

Poiseuille and Couette flow (MD)

Schematic, two-layer model

$$
x_{\mathrm{C}}=-\left(\frac{\eta}{\eta_{s}}-1\right) \Delta \quad x_{P}=\frac{D}{2} \pm \sqrt{\frac{D^{2}}{4}+\left(\frac{\eta}{\eta_{s}}-1\right) \Delta(D-\Delta)}
$$

$$
\delta_{\mathrm{b}}=\Delta \sqrt{\frac{\eta}{\eta_{s}}\left(\frac{\eta}{\eta_{s}}-1\right)}
$$

$$
\begin{aligned}
& v_{\mid x=0}=0 \\
& v_{\mid x=\Delta^{-}}=v_{\mid x=\Delta^{+}} \\
& \left.\left.\eta_{s} \frac{\partial v}{\partial x}\right|_{x=\Delta^{-}}=\eta \frac{\partial v}{\partial x} \right\rvert\, x=\Delta^{+} \\
& v=\dot{\gamma} \frac{\eta}{\eta_{s}} x \\
& v=\frac{f}{2 \eta_{s}} x(D-x) \\
& v=\dot{\gamma}\left(x-x_{\mathrm{C}}\right) \\
& v=\frac{f}{2 \eta}\left(x-x_{\mathrm{P}}\right)\left(D-x_{\mathrm{P}}-x\right)
\end{aligned}
$$

Schematic, two-layer model

$$
\begin{aligned}
& \text { visc. layer } \\
& \begin{aligned}
v_{\mid x=0} & =0 \\
v_{\mid x=\Delta^{-}} & =v_{\mid x=\Delta^{+}}
\end{aligned} \\
& \eta_{s} \frac{\partial v}{\partial x \mid x=\Delta^{-}}=\eta \frac{\partial v}{\partial x \mid x=\Delta^{+}} \\
& v=\dot{\gamma} \frac{\eta}{\eta_{s}} x \\
& v=\frac{f}{2 \eta_{s}} x(D-x) \\
& v=\dot{\gamma}\left(x-x_{\mathrm{C}}\right) \\
& v=\frac{f}{2 \eta}\left(x-x_{\mathrm{P}}\right)\left(D-x_{\mathrm{P}}-x\right) \\
& x_{\mathrm{C}}=-\left(\frac{\eta}{\eta_{s}}-1\right) \Delta \quad x_{P}=\frac{D}{2} \pm \sqrt{\frac{D^{2}}{4}+\left(\frac{\eta}{\eta_{s}}-1\right) \Delta(D-\Delta)} \\
& \delta_{\mathrm{b}}=\Delta \sqrt{\frac{\eta}{\eta_{s}}\left(\frac{\eta}{\eta_{s}}-1\right)} \quad \text { does not exist ! }
\end{aligned}
$$

Velocity profiles (SCMF)
 Poiseuille and Couette flow

Velocity profiles (SCMF)

 inversion of flow direction inside the brush
b)

Velocity profiles (dynamic SCMF simulations)

 inversion of flow direction inside the brush

Microscopic flow at the surface

back to flow past polymer brushes: mixed brush of long irreversibly grafted and short end-physisorbed chains in a explicit bad solvent

Is the flow inside the brush similar to the one in a porous medium?
Milner, Macromolecules 24, 3704 (1991)

Gerashchenko, Steinberg, 2006, Delgado-Buscaliono 2006,
Winkler, 2006

Microscopic flow at the surface

back to flow past polymer brushes: mixed brush of long irreversibly grafted and short end-physisorbed chains in a explicit bad solvent

Is the flow inside the brush similar to the one in a porous medium?
Milner, Macromolecules 24, 3704 (1991)

\Rightarrow collective tumbling motion of the long grafted chains results in an inversion of the direction of the nearsurface flow
$v_{i n v}=\alpha R_{e}^{*} \gamma$ with $\alpha=10^{-5}$
Pastorino, Müller, JCP 140, 014901 (2014)

Microscopic flow at the surface

back to flow past polymer brushes: mixed brush of long irreversibly grafted and short end-physisorbed chains in a explicit bad solvent

Is the flow inside the brush similar to the one in a porous medium?
Milner, Macromolecules 24, 3704 (1991)

\Rightarrow collective tumbling motion of the long grafted chains results in an inversion of the direction of the nearsurface flow $v_{\text {inv }}=\alpha R_{e}^{*} \gamma$ with $\alpha=10^{-5}$ Pastorino, Müller, JCP 140, 014901 (2014)

Microscopic flow at the surface

back to flow past polymer brushes: mixed brush of long irreversibly grafted and short end-physisorbed chains in a explicit bad solvent

Is the flow inside the brush similar to the one in a porous medium?
Milner, Macromolecules 24, 3704 (1991)

\square collective tumbling motion of the long grafted chains results in an inversion of the direction of the nearsurface flow
$v_{i n v}=\alpha R_{e} \dot{\gamma}$ with $\alpha=10^{-5}$
Pastorino, Müller, JCP 140, 014901 (2014)

Topographically structured substrates

tailor wettability and surface flow by topographical structure of substrate
system: 2D grooves
macroscopic description:
Cassie state
liquid
Wenzel state
liquid

macroscopic expectation:
Cottin-Bizonne, Barrat, Bocquet, Charlaix,
Cassie state gives rise to lower friction,
Nat. Mater. 2, 237 (2003)
only the liquid in contact with the solid gives rise to friction

Topographically structured substrates

minimum free energy path of filling: most probable path of filling the groove

with A. Giacomello and S. Melloni

Microscopically structured substrates

crossover between macroscopically structured substrates (Wenzel and Cassie states) and intrinsic surface roughness

\longrightarrow no sharp transition between Cassie and Wenzel state but rather gradual crossover
liquid-vapor interface exhibits very large vertical fluctuations

Questions:

- Where is the position x_{b} of the hydrodynamic boundary condition?
- How does friction change due to topographical structure?

Where is the hydrodynamic boundary position?

How does friction change due to topo. structure?

Directed motion on asymmetric, vibrating substrates

asymmetric substrate topology

+ energy input by vertical vibration
directed droplet motion

Questions:

- What is the driving mechanism?
- What is the character of motion: rolling vs sliding?
- What are the energy dissipation mechanisms?
(effective) contact angle depends on vibration period, τ

Contact area driving

Tretyakov, Müller, Soft Matter submitted

Contact area driving

contact area driving leads to a surface flow in -x direction (left) mechanism is effective for small vibration periods but is negligible for $\tau_{\text {per }}>46 \tau$ for larger $\tau_{\text {per }}$ the directed motion is driven by contact line hysteresis
this simulation set-up is also used to obtain the friction coefficient, $\lambda=\eta / \delta$, which is independent from the direction (see dissipation mechanisms)

Tretyakov, Müller, Soft Matter submitted
velocity: dependence on τ and N

Tretyakov, Müller, Soft Matter submitted

Character of motion

time-averaged velocity fields of flow inside the droplets
fine corrugation: sliding motion
rough corrugation: rolling motion, direction of rolling is opposite to that of a rigid cylinder because the driving is localized at substrate
\longrightarrow both flow patterns give rise to rather small viscous dissipation

Dissipation mechanisms

	small period	large period
input power	large	small
$P_{\mathrm{in}}=\frac{1}{\tau_{\mathrm{per}}}\left\langle\int_{0}^{\tau_{\mathrm{per}}} v_{z}^{\mathrm{s}}(t) \mathbf{F}^{\mathrm{s}}(t) \cdot \mathbf{n}_{z} \mathrm{~d} t\right\rangle$		
viscous dissipation ~V	constant (in absolute value)	constant (increasing fraction of input power, up to 80\%)
$T \Sigma_{\mathrm{V}}=\frac{1}{2} \eta \int_{V}\left(\frac{\partial v_{k}}{\partial x_{i}}+\frac{\partial v_{i}}{\partial x_{k}}-\frac{2}{3} \delta_{i k} \frac{\partial v_{l}}{\partial x_{l}}\right)^{2} d V$.		
friction at substrate $\sim \mathrm{A}$	constant	constant (up to 15\% of input power)
$T \Sigma_{\mathrm{CA}}=\frac{\lambda_{\text {av }}}{\tau_{\text {per }}}\left\langle\int_{0}^{\tau_{\text {per }}} L_{y} \int\left(\left.v(x, t)\right\|_{z_{b}}\right)^{2} \mathrm{~d} x \mathrm{~d} t\right\rangle$		
sound waves \sim A	$\sim 5 \%$ of input power	~5\% of input power
$T \Sigma_{\mathrm{SW}}=\zeta \int_{V}(\operatorname{div} \mathbf{v})^{2} d V$		
contact line and thermostat	large	small (even relative to input power)

Summary and conclusion

- static properties: surface tension and interface potential measurement of the anisotropy of the pressure in the canonical ensemble yields the Legendre transform of the interface potential using the measured interface potential continuum theory (ie interface Hamiltonian) can describe deviations from cap-shapes drop profile at the three-phase contact line (except for liquid-like layering effects)
simulations can provide input for effective interface Hamiltonians
- dynamic properties: friction/slip length and hydrodynamic boundary position two parameters - slip length and interface position - describe hydrodynamic boundary condition
Navier-slip condition may need generalization (layer model, gradient terms)
microscopic flow at surface may differ from hydrodynamic prediction
- flow inversion inside a brush
- crossover between macroscopic topography and roughness
- dissipation mechanisms (friction, sound waves, contact-line contribution)
thanks to Fabien Leonforte, Claudio Pastorino, Cem Servantie, and Nikita Tretyakov

KITP Santa Barbara, March 19, 2014

