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Figure 14: Snapshots illustrating the deciding role of interaction range in the determination of the
pathway chosen and the corresponding orientation of the resulting SLB. Shown are rupture at the
side of the vesicle’s top at short potential range (top, receding-top mechanism) and poration in the
vesicles bottom at long potential range (bottom, parachute mechanism). The respective ranges of
the potentials used are indicated by the dashed black lines. Grey circles represent lipid head groups,
and red and green lines represent lipid tails from the inner and outer monolayer, respectively.
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background: 

•  collective phenomena in membranes  
(fusion, spreading, lateral phase separation) 

•  directed self-assembly of block  
copolymer materials 

•  parameter-passing techniques and  
simulation techniques for polymers  
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outline: 

•   intro: from particle models to a continuum description  
            What determines the static and dynamic behavior of droplets on surfaces? 

•   statics: wetting behavior, Young’s equation and interface potential 

 

•   dynamics: hydrodynamic boundary conditions of hard, soft and structured surfaces 

 

•   directed motion on asymmetric, vibrating substrates 
 

                                                      thanks to Fabien Leonforte, Claudio Pastorino,  
                                                                  Cem Servantie, and Nikita Tretyakov 
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Controlling surface structure,  
one can tailor wettability and friction 

 
molecular control by chemistry:    
even-odd effects of the surface tension  
of fluorinated self-assembled monolayers  
– packing and chain lengths dictates 
orientation of dipole moments 

Grigoryev, Tokarev, Kornev, Luzinov,  
Minko, JACS 134, 12916 (2012) 

Barriet, Lee, Curr. Opin. Colloid  
Interface Sci. 8 236 (2003) 

 
macroscopic control by topography: 
surface with overhangs (“nails”) is 
amphiphobic, ie polar and non-polar  
liquids exhibit a large contact angle 
(Gibbs’ criterion)  



Controlling surface structure,  
one can tailor wettability and friction 

 
molecular control by chemistry:    
even-odd effects of the surface tension  
of fluorinated self-assembled monolayers  
– packing and chain lengths dictates 
orientation of dipole moments 

 
macroscopic control by topography: 
surface with overhangs (“nails”) is 
amphiphobic, ie polar and non-polar  
liquids exhibit a large contact angle  

role of modeling and computer simulation: 
relate molecular structure to macroscopic behavior (wettability and friction) 
 
•  identify microscopic parameters (e.g., surface tension) that pass  
      information about the molecular structure onto macroscopic  
      phenomenological descriptions   
•  devise computational strategies for extracting these parameters  
      from molecular models 
•  assess the validity of macroscopic descriptions on small scales 
      reasons for breakdown: interplay of “macroscopic” length scales (e.g., droplet 
      size, scale of topography) with microscopic length scales (e.g., interface width, 
      slip length, or correlation length of thermal fluctuations) 



What dictates the statics and dynamics of 
macroscopically large drops? 

parameters that characterize the drop shape? 
volume, V, of drop and contact angle, Θ	


	


 
 
parameters that dictate the dissipation of drops 
driven by a body force on a “slippery surface’’ ? 
bulk viscosity, η, and slip length slip, δ 	



  
 
 
 
 
combine information from Couette flow and  
Poiseuille flow to determine      and  
                                    
    
 

HBC:  viscous vs friction stress      Navier 1823 

Young 1805 

Barrat, Bocquet 1999 

     and     are materials parameter that 
characterize the surface independent  
from the type  and strength of the flow     

partial wetting 

complete w. 
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        Goal: parameter passing – use molecular simulations to compute parameters  
            that encode the microscopic properties of a material in a continuum description  
            (thin film equation or Navier-Stokes equation) 
 

Which parameters? 
•   contact angle and interface potential 
•   slip length and position of the hydrodynamic boundary      

How to efficiently compute these parameters?       



model: 
Lennard-Jones monomers (N=10,Re=3.66σ) 
FENE potential along bonds 

2 layers  FCC LJ solid 

relevant polymer properties: 
1.  connectivity along the chain 
2.  excluded volume 
3.  thermal interaction  

(fluid-fluid, fluid-wall) methods: 
MD simulations, DPD thermostat 

cylindrical (2D) drops 
to avoid line tension 
effects 

064905-2 Tretyakov et al. J. Chem. Phys. 138, 064905 (2013)

potential as the film. However, as discussed in Sec. III, the
measurement of the chemical potential in a canonical ensem-
ble is difficult and requires additional simulations. Moreover,
despite of truncated potentials, they relate the disjoining pres-
sure with solely long-range van der Waals dispersion forces
and provide therefore comparison to Hamaker theory. The
short-range forces stay outside the scope of their research.

A planar liquid film bounded by a solid and vapor is stud-
ied by Han36 using grandcanonical MD simulations with a
truncated and shifted Lennard-Jones interaction. The disjoin-
ing pressure is extracted in a similar way as in Ref. 35 and
again is associated with only long-range dispersion forces.

Note that parameter passing from MD simulations to con-
tinuum hydrodynamics is also frequently done in the con-
text of liquid flow close to solid substrates.4, 37–41 However,
as these works do either not involve free interfaces39, 41 or do
not extract the disjoining pressure,4, 38, 40 we do here not dis-
cuss them further.

Our article is structured as follows. In Sec. II we present
the particle-based and continuum approaches. Then, Sec. III
details how we pass the parameters from the particle-
based model into the continuum description. The subsequent
Sec. IV presents the dependence of the equilibrium contact
angle on droplet size for various interaction energies between
the liquid and the substrate. In passing, we describe several
ways to define the equilibrium contact angle and discuss their
relation to the macroscopic Young-Laplace law. Section V
concludes and gives an outlook beyond the case of equilib-
rium droplets.

II. MODELS

A. Molecular dynamics (MD)

Here, the mesoscopic discrete stochastic description is
provided by molecular dynamics simulations of a widely used
coarse-grained polymer model,42 i.e., a polymer chain is not
represented by each and every individual atom but it is mod-
eled as a flexible, linear string of small conglomerates of
atoms. These conglomerates are called “beads.” The length
of all polymer chains is fixed to Np = 10 monomers11, 43 in
all simulations. The potentials used in MD are represented in
Fig. 1

All bonded and non-bonded beads have unit mass, m = 1,
and interact via truncated and shifted Lennard-Jones (LJ) po-

FIG. 1. Snapshot from MD simulation of a cylindrical drop with an illus-
tration of Young’s equation (left). The enlargement close to the substrate
(right) sketches the pairwise bead potentials. Coarse-grained beads of poly-
mer chains (blue) interact with each other and with the substrate modeled by
two layers of face-centered-orthorhombic lattice (lila).

tentials

U (r) = ULJ(r) − ULJ(rc) (1)

with

ULJ(r) = 4ε

[(
σ

r

)12

−
(

σ

r

)6]

(2)

if their distance is smaller than the cutoff distance rc = 2
× 21/6σ . ULJ(rc) is the LJ potential evaluated at the cutoff
distance. All LJ parameters are set to unity, ε = 1 and σ = 1,
i.e., we express all energies and lengths in units of ε and σ ,
respectively. The reduced time unit τ is set by a combination
of the LJ parameters as τ = σ

√
m
ε

.
The individual beads are connected into chains employ-

ing a finite extensible nonlinear elastic (FENE) potential
given by44, 45

UFENE =





−1

2
kR2

0 ln

[

1 −
(

r

R0

)2]

for r < R0

∞ for r ≥ R0

,

(3)
where R0 = 1.5σ and k = 30ε/σ 2.

To control the wettability of the polymeric liquid on the
substrate we account for the interaction of the beads with the
solid substrate. The substrate is modeled by a fixed array of
atoms as in Ref. 11 and not by an ideally smooth and homo-
geneous wall.15, 43 Specifically, the substrate is represented by
two layers of a face-centered-orthorhombic lattice of atoms
with a number density of ρs = 2.67σ−3. The lengths of lattice
vectors are ax = az =

√
3a and ay = a, where a = 3

√
0.5σ .

We also employ a truncated and shifted LJ interaction be-
tween the beads of the liquid and the individual constituents
of the substrate

U s(r) = U s
LJ(r) − U s

LJ(rc) (4)

with the length scale σs = 0.75σ . The strength of interaction
εs is varied. By changing εs from 0.2ε to ε, one tunes the wet-
tability of the system from non-wetting (polymer droplet with
a contact angle of θE = 163◦) to complete wetting (polymer
film with θE = 0o).

All simulations are carried out in a computational domain
that corresponds to a three-dimensional box. Periodic bound-
ary conditions are used in the x- and y-directions, whereas the
range in the z-direction is limited by a repulsive ideal wall that
is positioned far above the polymer liquid. The domain side
lengths, Lx and Ly, are chosen in such a way that one may
study polymer films, Lx = Ly), and two-dimensional drops
(i.e., ridges in 3d), Ly ' Lx. These ridges span the simula-
tion box in y direction and have the cylindrical form whose
cross-section is well visible in Fig. 1. Ly is limited by the
Plateau-Rayleigh instability that results in the instability of
liquid ridges above a critical length. However, as this instabil-
ity is normally subcritical,46 in a MD simulation Ly has to be
smaller than a critical ridge length Lnl that is smaller than the
one resulting from the linear stability analysis of a ridge.

The radius of a 2d drop (3d ridge) scales as
√

N (in com-
parison to N1/3 for a spherical 3d drop), allowing us to study
larger droplets.11 Moreover, the length of the three-phase
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potential as the film. However, as discussed in Sec. III, the
measurement of the chemical potential in a canonical ensem-
ble is difficult and requires additional simulations. Moreover,
despite of truncated potentials, they relate the disjoining pres-
sure with solely long-range van der Waals dispersion forces
and provide therefore comparison to Hamaker theory. The
short-range forces stay outside the scope of their research.

A planar liquid film bounded by a solid and vapor is stud-
ied by Han36 using grandcanonical MD simulations with a
truncated and shifted Lennard-Jones interaction. The disjoin-
ing pressure is extracted in a similar way as in Ref. 35 and
again is associated with only long-range dispersion forces.

Note that parameter passing from MD simulations to con-
tinuum hydrodynamics is also frequently done in the con-
text of liquid flow close to solid substrates.4, 37–41 However,
as these works do either not involve free interfaces39, 41 or do
not extract the disjoining pressure,4, 38, 40 we do here not dis-
cuss them further.

Our article is structured as follows. In Sec. II we present
the particle-based and continuum approaches. Then, Sec. III
details how we pass the parameters from the particle-
based model into the continuum description. The subsequent
Sec. IV presents the dependence of the equilibrium contact
angle on droplet size for various interaction energies between
the liquid and the substrate. In passing, we describe several
ways to define the equilibrium contact angle and discuss their
relation to the macroscopic Young-Laplace law. Section V
concludes and gives an outlook beyond the case of equilib-
rium droplets.

II. MODELS

A. Molecular dynamics (MD)

Here, the mesoscopic discrete stochastic description is
provided by molecular dynamics simulations of a widely used
coarse-grained polymer model,42 i.e., a polymer chain is not
represented by each and every individual atom but it is mod-
eled as a flexible, linear string of small conglomerates of
atoms. These conglomerates are called “beads.” The length
of all polymer chains is fixed to Np = 10 monomers11, 43 in
all simulations. The potentials used in MD are represented in
Fig. 1

All bonded and non-bonded beads have unit mass, m = 1,
and interact via truncated and shifted Lennard-Jones (LJ) po-

FIG. 1. Snapshot from MD simulation of a cylindrical drop with an illus-
tration of Young’s equation (left). The enlargement close to the substrate
(right) sketches the pairwise bead potentials. Coarse-grained beads of poly-
mer chains (blue) interact with each other and with the substrate modeled by
two layers of face-centered-orthorhombic lattice (lila).

tentials

U (r) = ULJ(r) − ULJ(rc) (1)

with

ULJ(r) = 4ε

[(
σ

r

)12

−
(

σ

r

)6]

(2)

if their distance is smaller than the cutoff distance rc = 2
× 21/6σ . ULJ(rc) is the LJ potential evaluated at the cutoff
distance. All LJ parameters are set to unity, ε = 1 and σ = 1,
i.e., we express all energies and lengths in units of ε and σ ,
respectively. The reduced time unit τ is set by a combination
of the LJ parameters as τ = σ

√
m
ε

.
The individual beads are connected into chains employ-

ing a finite extensible nonlinear elastic (FENE) potential
given by44, 45

UFENE =





−1

2
kR2

0 ln

[

1 −
(

r

R0

)2]

for r < R0

∞ for r ≥ R0

,

(3)
where R0 = 1.5σ and k = 30ε/σ 2.

To control the wettability of the polymeric liquid on the
substrate we account for the interaction of the beads with the
solid substrate. The substrate is modeled by a fixed array of
atoms as in Ref. 11 and not by an ideally smooth and homo-
geneous wall.15, 43 Specifically, the substrate is represented by
two layers of a face-centered-orthorhombic lattice of atoms
with a number density of ρs = 2.67σ−3. The lengths of lattice
vectors are ax = az =

√
3a and ay = a, where a = 3

√
0.5σ .

We also employ a truncated and shifted LJ interaction be-
tween the beads of the liquid and the individual constituents
of the substrate

U s(r) = U s
LJ(r) − U s

LJ(rc) (4)

with the length scale σs = 0.75σ . The strength of interaction
εs is varied. By changing εs from 0.2ε to ε, one tunes the wet-
tability of the system from non-wetting (polymer droplet with
a contact angle of θE = 163◦) to complete wetting (polymer
film with θE = 0o).

All simulations are carried out in a computational domain
that corresponds to a three-dimensional box. Periodic bound-
ary conditions are used in the x- and y-directions, whereas the
range in the z-direction is limited by a repulsive ideal wall that
is positioned far above the polymer liquid. The domain side
lengths, Lx and Ly, are chosen in such a way that one may
study polymer films, Lx = Ly), and two-dimensional drops
(i.e., ridges in 3d), Ly ' Lx. These ridges span the simula-
tion box in y direction and have the cylindrical form whose
cross-section is well visible in Fig. 1. Ly is limited by the
Plateau-Rayleigh instability that results in the instability of
liquid ridges above a critical length. However, as this instabil-
ity is normally subcritical,46 in a MD simulation Ly has to be
smaller than a critical ridge length Lnl that is smaller than the
one resulting from the linear stability analysis of a ridge.

The radius of a 2d drop (3d ridge) scales as
√

N (in com-
parison to N1/3 for a spherical 3d drop), allowing us to study
larger droplets.11 Moreover, the length of the three-phase
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FIG. 2. (a) Shown are selected half-profiles of droplets at volumes as given in the legend and (b) the bifurcation diagram presenting the drop height in
dependence of the drop volume. Calculations are performed with (i) the full curvature, i.e., Eq. (17) with (18), and (ii) the long-wave curvature, i.e., Eq. (17)
with (19). Cases I and II refer to usage of only γ or the full γ + g(h) as prefactor of curvature, respectively. The profiles in panel (a) are obtained with case I
for full curvature. The volume is controlled through appropriately adapting the Lagrange multiplier λ at fixed domain size L = 4000. The employed disjoining
pressure and interface tensions are extracted from MD simulations at εs = 0.81ε (equivalent to an equilibrium contact angle of θE = 23.57◦, for details see
below Sec. IV).

The equilibrium shape of the droplet is obtained by
minimizing this free energy functional subject to the con-
straint of fixed droplet volume

Vdrop = Ly

∫
dx h(x) = const (16)

yielding the condition

π (x) = − 1
Ly

δF

δh(x)
= λ, (17)

where λ is a Lagrange multiplier constraining the droplet vol-
ume. Using Eq. (13) we obtain

π (x) = −
√

1 + (∂xh)2[∂hg] + ∂x

(
∂xh√

1 + (∂xh)2
[γ + g(h)]

)

= ∂xxh[γ + g(h)]
[1 + (∂xh)2]3/2

− ∂hg√
1 + (∂xh)2

. (18)

In the limit of small contact angles, |∂xh| # 1, this equation
adopts the form

π (x) = ∂xxh[γ + g(h)] − ∂hg. (19)

The pressure (18) consists of two contributions: (i) the curva-
ture pressure, where κfull = ∂xxh

[1+(∂xh)2]3/2 is the curvature and
γ + g(h) is the effective tension of the interface a dis-
tance h away from the solid substrate and (ii) the Der-
jaguin (or disjoining) pressure )(h) = −∂hg(h) that models
wettability.28, 29 The dimensionless expression g(h)/γ dictates
the shape of a drop in the continuum model and it is this
function that we will extract from the particle-based model in
Sec. III.

A spatially non-uniform pressure, π (x), gives rise to a
flow of liquid inside the film. Using the Navier–Stokes equa-
tion and employing the long-wave approximation,7, 55, 56 one
obtains

∂th = −∂x* = −∂x{Q(h)∂xπ (x)}. (20)

Here Q(h) = h3/3η is the mobility, η is the dynamic viscosity
of the liquid. Note, that * is a flux that is written as the product
of a mobility and a pressure gradient. Equation (20) with (19)
is sometimes called a thin-film or lubrication model.

The equation describing stationary solutions may ei-
ther be obtained by directly minimizing the functional F[h]
according to Eq. (17) or, alternatively, one sets ∂ th = 0
in Eq. (20) and integrates twice taking into account that
* = 0 in the steady state. Here we use numerical continua-
tion techniques57 to solve the resulting ordinary differential
equation as a boundary value problem on a domain of size L
with boundary conditions such that the center of the resulting
drop solution is positioned on the right boundary (x = 0) and
on the left boundary (x = −L) the profile approaches a precur-
sor film. The volume is controlled by the integral condition,
Eq. (16). Figure 2(a) presents typical drop profiles for various
volumes whereas Fig. 2(b) gives the maximal drop height as
a function of drop volume. Note, that there exists a minimal
droplet volume Vsn given by the saddle-node bifurcation in
Fig. 2(b). If one decreases the volume below Vsn, the droplet
collapses, i.e., it changes discontinuously into a flat film. The
transition is hysteretic (first order) as the primary bifurcation
at Vc is subcritical. The situation is different for freely evap-
orating droplets when the chemical potential is controlled in-
stead of volume. For a more detailed comparison of the two
cases see Ref. 7.

III. PARAMETER PASSING BETWEEN
PARTICLE-BASED MODEL AND CONTINUUM
DESCRIPTION

The particle-based model is defined in terms of pairwise
interactions between beads, while the information that dic-
tates the behavior of the continuum description is the liquid-
vapor tension, γ and the interface potential, g(h). The latter
quantifies the free-energy cost of locating the liquid-vapor in-
terface a distance h away from the solid substrate. Several
strategies have been proposed to measure the interface po-
tential in computer simulation of particle-based models: (i)
The interaction between the interface and the substrate can be
obtained in the grandcanonical ensemble, where the chemi-
cal potential µ controls the fluctuating thickness of the wet-
ting layer of the liquid on the substrate. The probability, P(h),
of observing a wetting layer of thickness h is related to the
interface potential via g(h) = −kBTln P(h) + const,16, 30, 32, 33
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contact line, 2Ly, is independent of the 2d droplet size. Thus,
there is no direct effect of the line tension on the shape of the
droplet.

The temperature of the system is controlled by a dissi-
pative particle dynamics (DPD) thermostat.47, 48 In DPD, the
total force on a given monomer is given by

Ftot =
∑

j !=i

(
Fij + FD

ij + FR
ij

)
, (5)

where the conservative force Fij is derived from the potential
between monomer i and monomer j, FD

ij is a dissipative force
and FR

ij is a random force. The dissipative and random forces
act on pairs of particles and are of the form

FD
ij = −γDPD ωD(rij )(eij · vij)eij, (6)

FR
ij = ζ ωR(rij )θij eij, (7)

where rij = |ri − rj|, and the unit vector eij = rij/rij points
from the jth to the ith particle. In order to obey the fluctuation-
dissipation theorem, the damping coefficient, γDPD, is con-
nected to the amplitude of the noise, ζ , via the fluctuation-
dissipation theorem ζ 2 = 2kBT γDPD and the weight functions
are defined as

ω2
R(rij ) = ωD(rij ) =

{(
1 − rij

rc

)2
for r < rc

0 for r ≥ rc

. (8)

We fix γDPD = 0.5 in all our simulations. The term θ ij in
Eq. (7) is a random noise term such that θ ij = θ ji and its first
and second moments are

〈θij 〉 = 0, (9)

〈θij (t)θkl(t ′)〉 = (δikδj l + δilδjk)δ(t − t ′). (10)

We use uniformly distributed random numbers49 with the first
and second moments dictated by the relations above.

Since the dissipative and random forces satisfy Newton’s
third law, they locally conserve momentum, i.e., they pre-
serve the hydrodynamics of the flow (in contrast to the dis-
sipative macroscopic behavior in Brownian dynamics). Us-
ing this DPD thermostat, we maintain the constant tempera-
ture, kBT = 1.2ε. The equations of motion are integrated with
the velocity Verlet algorithm50 with a time step 't = 0.005τ .
We performed some simulations on graphics processing units
(GPUs) using the HOOMD software.51–53

The MD simulations are used to determine parameters
that are passed on to the continuum model. Before the pa-
rameter passing is described in Sec. III, we introduce in the
following section the continuum model.

B. Continuum model (CM)

We employ a highly coarse-grained description to char-
acterize the free-energy of a droplet on a planar substrate in
terms of the position of the solid-liquid and liquid-vapor in-
terfaces. Generally, the free energy takes the translationally
and rotationally invariant form

F = γSL

∫

SL
dS + γ

∫

LV
dS +

∫

LV
dS

∫

SL
dS ′ g̃(|r − r′|),

(11)

where the integrals extend over the solid-liquid (SL) and
liquid-vapor (LV) interfaces.54 In Eq. (11), γ SL and γ are the
solid-liquid and liquid-vapor interface tensions, respectively.
The last term of Eq. (11) describes the effective interaction
between the interfaces, and r and r′ are points on the liquid-
vapor and solid-liquid interface, respectively. In the follow-
ing, we restrict our attention to 2d droplets on a planar sub-
strate (cf. Fig. 1), choose the x-coordinate along the planar
solid substrate and denote by z = h(x) the local distance be-
tween a point r ≡ (x, y, z = h(x)) of the liquid-vapor inter-
face and the planar substrate (Monge representation). The in-
teraction of a point on the liquid-vapor interface with the solid
is obtained by integrating over the substrate area

g(h) =
∫

SL
dS ′ g̃(|r − r′|), (12)

which for a homogeneous substrate only depends on the dis-
tance, h, due to symmetry. g(h) is the effective integrated in-
teraction between a point of the liquid-vapor interface with
the homogeneous, planar substrate, and it is termed interface
potential. In this special case, the free energy functional (11)
takes the form

F [h] = γSLLy

∫
dx + Ly

∫
dx

√
1 + (∂xh)2 [γ + g(h)],

(13)

where Ly denotes the system dimension parallel to the cylin-
der axis. In the limit that the equilibrium contact angle is
small, one can adopt a long-wave approximation (or small-
gradient expansion)

F [h] ≈ γSLLy

∫
dx + Ly

∫
dx

[

1 + 1
2

(∂xh)2 + · · ·
]

× [γ + g(h)]. (14)

It is important to note that, away from the droplet, there is a
thin film of thickness hmin with a flat liquid-vapor interface
(dewetted surface). hmin corresponds to the minimum of the
interface potential. Equation (14) yields for this dewetted part
of the surface

F [hmin] = Ly

∫

dew
surf

dx [γSL + γ + g(hmin)]

≡ Ly

∫

dew
surf

dx γSV . (15)

Here, γSV = γSL + γ + g(hmin) is the solid-vapor interface
tension. We emphasize that it is not a solid-vacuum surface
free energy per unit area, F0, that is half of the work needed
to cut the bonds of a solid of a unit cross section into two
equal pieces in vacuum. Moreover, as long as the solid is not
altered by the contact with the liquid or vapor, its free en-
ergy per unit area remains constant, F0 = const, and serves as
the reference point for solid-liquid and liquid-vapor interface
tensions. In our model of the solid we do not consider inter-
actions between its constituents. Therefore, the work needed
to cut the solid is zero and the reference value of the surface
free energy per unit area is F0 = 0.
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where the choice of the constant ensures the boundary con-
dition g(h → ∞) = 0. While being elegant, this compu-
tational technique is limited to simple models because the
grandcanonical ensemble requires the insertion and deletion
of polymers and concomitant Monte-Carlo moves are only ef-
ficient for short polymers, low densities or in the vicinity of
the liquid-vapor critical point. (ii) A negative curvature of the
interface potential at a thickness h signals the spontaneous
instability of a wetting layer. From the characteristic length
scale of this spinodal dewetting pattern one can deduce infor-
mation about d2g(h)/dh2.58, 59 (iii) Here we use the pressure
tensor. This is a general technique that is not limited to short
polymers or low densities. It does not require the implemen-
tation of particle insertion/deletion Monte-Carlo moves and
can be straightforwardly implemented in standard molecular
dynamics program packages.

A. Virial pressure for a liquid film on a solid substrate

We study a supported polymer film as illustrated in Fig. 3
in the canonical ensemble. By virtue of the low vapor pressure
of the polymer liquid, one can neglect evaporation effects.
The flat liquid-vapor interface allows us to divide the system
into thin parallel slabs (separated by the horizontal gray lines
in Fig. 3), whose normal vector n is perpendicular to the sub-
strate. All relevant quantities can then be averaged over each
slab, resulting in fields that depend on the z-coordinate only.

In order to obtain the tension of the liquid-vapor and
solid-liquid interfaces, γ and γSL, as well as the interface
potential, g(h), we consider a virtual change of the geome-
try of the simulation box such that the total volume V re-
mains unaltered. Using the scaling parameter λ, we relate the
new linear dimensions, L′

x, L
′
y, L

′
z of the simulation box to

the original ones via L′
x =

√
λLx, L′

y =
√

λLy, L′
z = 1

λ
Lz.

This scaling is the analog to the spreading of a droplet on a
solid substrate. Thereby, only the liquid phase is subjected to
this virtual change of the geometry but not the solid support.

The value λ < 1 corresponds to a lateral squeezing of
the liquid film on top of a solid substrate and a concomi-
tant increase of the film thickness h′ = 1

λ
h, where we have

assumed that the liquid is incompressible. In the continuum
model such a transformation gives rise to the following in-

FIG. 3. Sketch of the slab geometry used to calculate the liquid-vapor inter-
face tension γ . The pressure tensor components pn(z) and pt(z) are calculated
in every slab k and then their difference is integrated across the interface.

FIG. 4. A liquid (blue) in unscaled and scaled simulation boxes (left and
right, respectively). Lila circles represent two layers of substrate atoms. The
origin of the z axis is at the top layer of the substrate and for the x axis it
is in the middle of the box. The scaling of the liquid phase is an analog to a
spreading of the liquid on a supporting substrate. The entire substrate (shaded
area) remains unscaled upon this virtual change of the geometry, preserving
the distance #z between two atomic layers. y axis is not shown for simplicity.

finitesimal change of the canonical free energy60

dF (λ)
dλ

∣∣∣∣
λ=1

= [γSL + γ + g(h)]
dL′

xL
′
y

dλ

∣∣∣∣
λ=1

+ dg(h)
dh

dh′

dλ

∣∣∣∣
λ=1

LxLy (21)

=
[
γSL + γ + g(h) − dg(h)

dh
h

]
LxLy, (22)

where, contrary to the related works in the grandcanonical
ensemble,35, 36 we use the property of a canonical one and
keep the number of particles in the liquid constant, i.e., the
volume hLxLy = h′L′

xL
′
y of the film is constant and

dL′
xL

′
y

L′
xL

′
y

+ dh′

h′ = 0. (23)

The scaling affects the beads of the polymeric liquid only,
i.e., the lateral coordinates x and y are scaled by the factor

√
λ

and the normal component z is scaled by 1/λ. Upon scaling
the liquid, the solid surface remains unaltered as indicated by
shaded areas in Fig. 4. Therefore, the distance #z between
two atomic layers and the coordinates of substrate particles
are not changed. The origin of the coordinate system in x and
y directions is taken in the middle of the simulation box, while
in z direction it is at the first layer of the substrate atoms.

In order to compute the change of the free energy, we
consider the canonical partition function

Z = 1
n!λ3n

T

∫ n∏

i=1

d3ri

× exp

[

− β
∑

i<j

U (ri − rj) − β
∑

s,i

U s(ri − rs)

]

, (24)

where n is the number of particles in the system, β = 1
kBT

and λT is the thermal de-Broglie wavelength. U denotes the
bonded and non-bonded interactions between the polymer
beads i and j, and U s are the interactions between the poly-
mer beads i and the substrate particles s.

This separation of potentials allows us to express the par-
tition function, Z(λ), of the scaled system through the scaling
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FIG. 8. Panels (a)–(d) give the interface potential g(h) at εs = 0.75ε, εs = 0.80ε, εs = 0.81ε, and εs = 0.82ε, respectively. They are obtained by fitting the MD
results for the tension γfilm(h) − γ − γSL of films of various small thicknesses (black symbols with error bars) by the expression g(h) + h#(h) (dashed black
line) obtained employing the first four terms of the short-range part of the interface potential gsr(h). The resulting interface potential g(h) is given as solid red
line. Note that the minimal value of gmin is always reached at vanishingly small thicknesses h ≈ 0σ , as there is no precursor film in our MD model.

transition (εs = 0.75ε to 0.82ε). Different numbers of poly-
mer chains are used to create cylindrical 2d droplets (3d
ridges) of varying volumes and hence heights. Data are sam-
pled with a frequency of 4000 MD steps. This time inter-
val between two samples corresponds to the Rouse relaxation
time for a similar polymer liquid τR = 25.6 ± 5 τ .11 For small
droplets (up to 600 chains) the sampling lasted 2 × 106 steps,
whereas for bigger ones (up to 9600 chains) this interval was
increased up to 107 steps, because large fluctuations of the
droplet shape occur. As a result, every density profile is ob-
tained by averaging over 500 (small drops) to 2500 (large
drops) snapshots. To extract the droplet shape and measure
the contact angle, we use a set of density profiles obtained in

10 independent runs. In total, all large droplets are simulated
over 108 steps.

The resulting cylindrical droplet snapshots are cut into
slices along the invariant y-direction. In every slice the two-
dimensional (x, z) density map is created with respect to the
center-of-mass of the droplet cut. An average over these maps
results in the average number density profile in the (x, z) plane.
A two-dimensional drop profile is extracted by localizing the
solid-liquid and liquid-vapor interfaces by the crossing cri-
terion for the density as ρ int = (ρ liq + ρvap)/2. Examples of
profiles are presented in Fig. 9. The resulting profiles are then
compared to the ones extracted from the employed continuum
models, which are also presented in Fig. 9.
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FIG. 9. Profiles of two-dimensional droplets obtained by cutting cylindrical droplets obtained in MD simulations [solid noisy line (black)] for the case
εs = 0.82ε for two values of hmax 4.046σ and 12.181σ . The corresponding spherical cap fit is given as solid smooth line (red). The MD drops are com-
pared with results of the continuum model Eq. (17) with the full curvature [Eq. (18)] and in long-wave approximation [Eq. (19)] that are given as dashed (green)
and dotted (blue) lines, respectively. The inset shows a zoom into the three-phase contact line region of the smaller droplet.
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FIG. 8. Panels (a)–(d) give the interface potential g(h) at εs = 0.75ε, εs = 0.80ε, εs = 0.81ε, and εs = 0.82ε, respectively. They are obtained by fitting the MD
results for the tension γfilm(h) − γ − γSL of films of various small thicknesses (black symbols with error bars) by the expression g(h) + h#(h) (dashed black
line) obtained employing the first four terms of the short-range part of the interface potential gsr(h). The resulting interface potential g(h) is given as solid red
line. Note that the minimal value of gmin is always reached at vanishingly small thicknesses h ≈ 0σ , as there is no precursor film in our MD model.

transition (εs = 0.75ε to 0.82ε). Different numbers of poly-
mer chains are used to create cylindrical 2d droplets (3d
ridges) of varying volumes and hence heights. Data are sam-
pled with a frequency of 4000 MD steps. This time inter-
val between two samples corresponds to the Rouse relaxation
time for a similar polymer liquid τR = 25.6 ± 5 τ .11 For small
droplets (up to 600 chains) the sampling lasted 2 × 106 steps,
whereas for bigger ones (up to 9600 chains) this interval was
increased up to 107 steps, because large fluctuations of the
droplet shape occur. As a result, every density profile is ob-
tained by averaging over 500 (small drops) to 2500 (large
drops) snapshots. To extract the droplet shape and measure
the contact angle, we use a set of density profiles obtained in

10 independent runs. In total, all large droplets are simulated
over 108 steps.

The resulting cylindrical droplet snapshots are cut into
slices along the invariant y-direction. In every slice the two-
dimensional (x, z) density map is created with respect to the
center-of-mass of the droplet cut. An average over these maps
results in the average number density profile in the (x, z) plane.
A two-dimensional drop profile is extracted by localizing the
solid-liquid and liquid-vapor interfaces by the crossing cri-
terion for the density as ρ int = (ρ liq + ρvap)/2. Examples of
profiles are presented in Fig. 9. The resulting profiles are then
compared to the ones extracted from the employed continuum
models, which are also presented in Fig. 9.
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FIG. 9. Profiles of two-dimensional droplets obtained by cutting cylindrical droplets obtained in MD simulations [solid noisy line (black)] for the case
εs = 0.82ε for two values of hmax 4.046σ and 12.181σ . The corresponding spherical cap fit is given as solid smooth line (red). The MD drops are com-
pared with results of the continuum model Eq. (17) with the full curvature [Eq. (18)] and in long-wave approximation [Eq. (19)] that are given as dashed (green)
and dotted (blue) lines, respectively. The inset shows a zoom into the three-phase contact line region of the smaller droplet.
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2D cylindrical drops: 
no line-tension effect 



Droplets on deformable substrates  

Léonforte, Müller, JCP 135, 214703 (2011) 

droplets on a polymer brush  
controlling the incompatibility between polymer 
liquid and brush, one independently tailors   
wettability and softness  
 
•  rich wetting behavior 
•  deformation at the three-phase contact line 

ridge Shanahan, Carré, Langmuir 10, 1647 (1994);  
Carré, Shanahan, Langmuir 11, 24 (1995) 
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deviations are the rather short chain lengths and the finite
compressibility of the polymer liquid in the simulations, as
well as the strong stretching assumption invoked in the ana-
lytical calculation.

III. RESULTS

When a liquid is in contact with a solid surface, the bal-
ance of surface and interface tensions dictates the equilibrium
properties of the liquid. Balancing the tensions parallel to the
surface at the three-phase contact between the solid, the liq-
uid, and its vapor, one obtains Young’s equation13 γ LVcos θY

+ γ LS = γ VS, where θY is the equilibrium contact angle, and
γLV, γLS, and γVS are the liquid-vapor, liquid-surface, and
vapor-surface surface tensions, respectively. If the surface is
soft, then the forces that act at the three-phase contact line
will also deform the surface and lift up the three-phase con-
tact line.15, 17–19, 26

In our simulations, making the molecules of the brush
and the polymer liquid slightly incompatible, we can indepen-
dently control the contact angle and the deformability of the
polymer brush. The brush is the softer, the higher the graft-
ing density ρg is. Therefore, quite low grafting densities are
used in the following. The different wetting properties are ex-
plored as a function of εbd: a value εbd/ε = 1 leads to complete
wetting, i.e., a thick polymer film spreads on the brush, while
smaller values of εbd give rise to polymer droplets with a fi-
nite contact angle. We will refer to εbd as the compatibility
parameter.

A. Wetting of a cylindrical droplet

Both, in experiments54, 70 and in computer
simulations,55–61 the determination of the apparent con-
tact angle remains a delicate task. Commonly, for flat
surfaces, an apparent, local contact angle can be graphically
extracted at the contact line either, from (i) the value of the
angle between an extrapolated tangent plane to the droplet’s
surface and the plane of the flat surface, or (ii) by fitting
a circle to the shape of the droplet (giving its height) and
measuring the angle between the tangent of the obtained
spherical cap and the surface at their intersection. Since we
deal with deformable surfaces, the task is even more delicate,
and we have opted for carefully estimating the apparent
contact angle from the density contour plots, such as the ones
depicted in Fig. 5. This method of determining the contact
angle at equilibrium θ e is illustrated in the inset of this figure,
and additionally, briefly compared with the method (ii) in the
inset (a) of Fig. 6 for two droplet sizes and as a function of the
surface compatibility. It appears that for the largest droplet,
the difference between these two methods is smaller than
for the smaller droplet size. Moreover, it increases when the
deformation of the surface at the ridge is more pronounced,
i.e., when the compatibility increases. This effect is mainly
due to the error of the spherical cap approximation method at
the intersection with the surface.

In order to obtain an accurate estimate of the contact an-
gle, the static properties of the brush/droplet systems were
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unperturbed brush

FIG. 5. Density contour plot of a polymer drop (N = 10) wetting a brush
(N = 40) for various compatibility parameters εbd = 0.3ε (black) to εbd
= 0.8ε (orange) between the brush and the droplet. The reduced grafting
density of the polymer brush is ρ%

g = 13.1 and the droplet contains M = 3832
polymers. The dashed line represents the average free surface position of the
unperturbed brush. The lifting-up of the contact line and the formation of a
ridge is visible. (Inset) Sketch of the procedure used to extract the static wet-
ting contact angle at equilibrium, θ e, and the strength of the lifting-up, hr,
here for a compatibility εbd = 0.6ε.

evaluated by collecting 103 snapshots over simulation runs of
500τ . In Fig. 5, the density contours are plotted for a liquid
droplet of M = 3832 polymers with N = 10 beads per chain.
The drop is in contact with a brush surface of grafting density
ρ%

g = 13.1, and contours are plotted for various compatibili-
ties 0.3 ≤ εbd/ε ≤ 0.8.

As expected, it appears in Fig. 5 that the droplet de-
forms its shape when the compatibility with the surface in-
creases, leading to (i) a contact angle variation, and (ii) to the
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FIG. 6. Equilibrium contact angle, θ e, between the brush and the droplet
as a function of compatibility, εbd/ε. Main panel: Contact angle for M
= 1916 polymers of length N = 10 and the three lowest brush grafting den-
sities ρ%

g = ρgR
2
e . The contact angle θ e slightly increases with ρ%

g . (Insets)
(b) Contact angle for a fixed ρ%

g = 9.5 and increasing the number of poly-
mer chains in the droplet. The contact angle, θ e, slightly decreases with the
increase of ρ%

g at fixed εbd/ε. (a) Difference in the value of the local contact
angles obtained using the procedure defined in the inset of Fig. 5, and the
spherical cap approximation method discussed in the text (p. 14). Results are
plotted for two droplet sizes and grafting density as defined in the inset (b),
and as a function of the compatibility. The difference fluctuates around zero
for the largest droplet, and it increases when the surface deforms more at the
ridge.
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Flow past polymer brush 

•  high grafting density: 
 autophobicity, strong layering, 
 density at substrate larger than bulk 
 narrow brush-melt interface 

 

•  intermediate grafting density: 
 wide brush melt interface,  
 free chains reach up to substrate 
 total density profile independent of 
grafting 

 

•  small grafting density: 
 no separation between substrate and  
 brush-melt interface 

Pastorino et al, JCP 124, 064902 (2006), Macromolecules 42, 401 (2009)  



Velocity profiles under shear (Couette flow) 
linear profile at center yields viscosity 
•  very high grafting densities:   

 finite apparent slip  (small overlap  
        between brush and melt) 

 Pastorino et al, Macro. 42, 401 (2009)  
•  intermediate (high) grafting density: 

 no apparent slip boundary condition, 
 reduced effective width 

•  small grafting density:  
 finite apparent slip 

 
linear extrapolation of the velocity profile 
is insufficient  at a soft surface 
•  negative slip length δ (inside the fluid) 

incompatible with Green-Kubo relation 
•  where is the boundary, xb? 

use two type of flows: Couette & Poiseuille Pastorino et al, JCP 124, 064902 (2006)  



Navier slip boundary condition 

fit flow far away from surface by prediction of continuum hydrodynamics  
(Couette flow – linear velocity profile and Poiseuille flow – parabolic profile)  
and extrapolate these profiles to zero (xC and xP) 
 
             

and 

hydrodynamic boundary condition: 
parameterize microscopic information obtained from 
MD simulation as boundary condition for NS equation  
 
             



Poiseuille and Couette flow (MD) 

xP<xC    



Poiseuille and Couette flow (MD) 

xP<xC    

MD simulations: 
Poiseuille and Couette flow cannot simultaneously  
be described by the same xb and δb 
Navier slip condition fails ! 



Schematic, two-layer model 

brush 

Servantie, Müller, PRL 101, 026101(2008) 



Schematic, two-layer model 

does not exist ! 



Velocity profiles (SCMF) 
Poiseuille and Couette flow 



Velocity profiles (SCMF) 
inversion of flow direction inside the brush 



Velocity profiles (dynamic SCMF simulations) 
inversion of flow direction inside the brush 



Microscopic flow at the surface 
back to flow past polymer brushes: 
mixed brush of long irreversibly 
grafted and short end-physisorbed 
chains in a explicit bad solvent 
 
Is the flow inside the brush similar to 
the one in a porous medium? 
Milner, Macromolecules 24, 3704 (1991) 
 
 
 
 
 
 
 
          

0 5 10 15 20
z( )

0

0.2

0.4

0.6

0.8

(
-3

)

.  = 0.04 -1

.  = 0.59 -1

0 0.4 0.8 1.2 1.6 2 2.4 2.8
z/Re

z

x
y

0
5

10
15

20
z(

)
0

0.2

0.4

0.6

0.8

( -3)

. = 0.04
-1

. = 0.59
-1

0
0.4

0.8
1.2

1.6
2

2.4
2.8

z/R
e

z

x y

x (σ) 

x/Re 

. 

? 
static tilt vs cyclic motion 

Gerashchenko, Steinberg, 2006,   
Delgado-Buscaliono 2006,  
Winkler, 2006 



Microscopic flow at the surface 
back to flow past polymer brushes: 
mixed brush of long irreversibly 
grafted and short end-physisorbed 
chains in a explicit bad solvent 
 
Is the flow inside the brush similar to 
the one in a porous medium? 
Milner, Macromolecules 24, 3704 (1991) 
 
 
 
 
 
 
 
         collective tumbling motion of  
the long grafted chains results in an 
inversion of the direction of the near-
surface flow 
vinv=αReγ  with α=10-5 

 Pastorino, Müller, JCP 140, 014901 (2014) 
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Microscopic flow at the surface 
back to flow past polymer brushes: 
mixed brush of long irreversibly 
grafted and short end-physisorbed 
chains in a explicit bad solvent 
 
Is the flow inside the brush similar to 
the one in a porous medium? 
Milner, Macromolecules 24, 3704 (1991) 
 
 
 
 
 
 
 
         collective tumbling motion of  
the long grafted chains results in an 
inversion of the direction of the near-
surface flow 
vinv=αReγ  with α=10-5 

 Pastorino, Müller, JCP 140, 014901 (2014) 
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014901-3 C. Pastorino and M. Müller J. Chem. Phys. 140, 014901 (2014)

primary brush. This gives rise to the usual parabolic velocity
profile.

III. RESULTS

Fig. 1 presents the density profiles of all the species for
the lowest and highest shear rates considered in this work.
The height of the primary brush decreases only very slightly
as we increase γ̇ by about two orders of magnitude. A well-
developed brush-solvent interface between the primary brush
and the liquid solvent is formed with solvent particles re-
maining outside of the brush layer. The secondary brush is
completely immersed in the primary one; only the largest fluc-
tuations of its free ends get close to the brush-solvent inter-
face as highlighted in the inset of Fig. 1. We also note that
a small amount of solvent is trapped at the grafting surface,
where one observes liquid-like layering effects (packing). The
overall time-averaged structure perpendicular to the grafting
surface and the position and width of the brush-solvent in-
terface, in particular, are almost independent of the shear
rate.

In the following, we measure velocity and length scales
in terms of the Weissenberg number, Wi ≡ γ̇

R2
e

3π2D
, and the

end-to-end distance Re of the equivalent bulk polymer melt
whose number density corresponds to that of the center of the
primary brush, ρbulk

b1 = 0.82σ−3. In this way, length and time
are scaled with the typical spatial extent and relaxation time,
τ ∗ = R2

e
3π2D

, of a bulk polymer melt with the same molecular
architecture and thermodynamic conditions as the primary
brush layer. τ* is the relaxation time of the longest Rouse
mode of a polymer chain and D is the self diffusion coefficient
of a chain in a melt.23 We performed separate MD simulation
for this bulk melt system with periodic boundary conditions
in the three spatial directions and we obtained the values
Re = 7.06σ , D = 1.61 × 10−3σ 2/τ and τ* = 1043τ , re-
spectively. From this values we can also estimate a stretching
factor for the primary brush. We obtain a brush thickness
hbrush % 10σ (see Fig. 1) and therefore the stretching factor
S = hbrush/Re % 1.4.

Fig. 2 shows the velocity profile for the three species.
From the linear portion of the velocity profile of the solvent,
we extract the shear rate γ̇ . The solvent velocity reaches the
surface velocity, vw, in the vicinity of the brush-solvent inter-
face. The time-averaged velocity of every bead of the immo-
bile grafted primary brush coincides with vw. Nevertheless,
there is a correlation between the fluctuating z-position of a
primary brush bead and its lateral velocity that arises from the
cyclic tumbling motion of the grafted macromolecules. The
inset presents the velocity profiles in the frame that moves
with the velocity of the surface at z = 0. If a bead of the pri-
mary brush fluctuates away from the grafting surface to larger
values of z, it is exposed to the greater solvent velocity at the
brush-solvent interface, and it is dragged along with the flow.
Therefore, there is a positive velocity (along the solvent flow)
for the external part of the primary brush in contact with the
solvent, z/Re % 1.3. Since the overall velocity of a bead must
average to zero, the bead tends to move in the opposite direc-
tion when it is closer to the grafting surface. Therefore, the
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FIG. 2. Velocity profiles of both brushes (red and green) and the liquid sol-
vent (black) for a shear rate of γ̇ = 0.59τ−1 or Wi = 615.46. z/Re = 2.83σ
corresponds to the center of the channel. Data points, at which the local den-
sity is smaller than 1% of the bulk density, are omitted for clarity. Linear
Couette flow is observed at the center of the slit-like channel. The (average)
velocity of the brush beads agrees with that of the surface, vw, but the outmost
beads of the primary brush are convected by the flow. Inset: Magnification of
the velocity profiles v′ = vw − v for both brushes, close to the surface. The
origin is set to wall velocity (v′ = 0) and the liquid flows in the positive y-axis
direction. The collective cyclic motion of the primary brush (red) gives rise
to a backflow inside the brush, which convects the secondary brush (green)
against the direction of the solvent flow.

velocity of the primary brush beads is negative (against the
solvent flow) in the interior of the brush.

In Fig. 3 we show the density profiles and mean velocity
of end beads of the primary brush. The origin indicates the
position of the grafted bead of the polymer chains. The pro-
files were obtained by averaging over all the grafted chains of
both layers subjected to Poiseuille flow driven by an external
body force fx = 0.08ε/σ . A maximum of the density of the
end-bead is observed around (x, z) = (17.5σ , 9σ ) indicating
the average tilting of the brush molecules. Additionally, in the
outer part of the brush, the cyclic movement of the end-bead
is clearly observed from the end-bead velocity field. Its shape
and extension towards the interior of the brush determines the
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FIG. 3. Primary brush end-bead density (color plot) and velocity profiles.
The cyclic dynamics and its spatial extension is clearly observed. The profiles
were extracted from a Poiseuille flow simulation of body force fx = 0.08ε/σ .
The axes are in units of σ . The vector plot is normalized with the maximum
velocity set to one. The lower, left corner corresponds to the grafting point.



Microscopic flow at the surface 
back to flow past polymer brushes: 
mixed brush of long irreversibly 
grafted and short end-physisorbed 
chains in a explicit bad solvent 
 
Is the flow inside the brush similar to 
the one in a porous medium? 
Milner, Macromolecules 24, 3704 (1991) 
 
 
 
 
 
 
 
         collective tumbling motion of the 
long grafted chains results in an 
inversion of the direction of the near-
surface flow 
vinv=αReγ  with α=10-5 

 Pastorino, Müller, JCP 140, 014901 (2014) 
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Topographically structured substrates 
tailor wettability and surface flow by topographical structure of substrate 
 
system: 2D grooves 
 
 
 
 
 
 
 

 
 
 

Wenzel state 
macroscopic description: 
Cassie state 
 
 
 
 
 
 
 
 
 
 
macroscopic expectation: 
Cassie state gives rise to lower friction,  
only the liquid in contact with the solid gives rise to friction 

Cottin-Bizonne, Barrat, Bocquet, Charlaix, 
Nat. Mater. 2, 237 (2003) 



Topographically structured substrates 

 with A. Giacomello and S. Melloni 

Wenzel state Cassie state 

minimum free energy path of filling: 
most probable path of filling the groove  



Microscopically structured substrates 
crossover between macroscopically structured  
substrates (Wenzel and Cassie states) 
and intrinsic surface roughness 
 
 
 
 
 
 
     no sharp transition between Cassie 
and Wenzel state but rather gradual 
crossover 
 
liquid-vapor interface exhibits very large 
vertical fluctuations      
 
 

 
 
  Tretyakov, Müller, Soft Matter 9, 3613 (2013) 
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rough corrugation Questions: 
•  Where is the position xb of the  

hydrodynamic boundary condition? 
•  How does friction change due to  

topographical structure? 



Where is the hydrodynamic boundary position? 
         xb is above the grooves 
 
position of the hydrodynamic boundary 
coincides with the distance where the 
oscillating perpendicular velocity 
component has decayed 
 
larger periodicity of corrugation results 
in larger decay length and higher 
hydrodynamic boundary position  

 Tretyakov, Müller, Soft Matter 9, 3613 (2013) 
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How does friction change due to topo. structure? 
         macroscopic prediction for the 
Cassie state λ=φλflat is not appropriate 
but the friction does not strongly 
depend on topography 
 
Cassie state           = reduced friction 
intrinsic roughness = increased friction 
 
data compatible with  
λ=φλflat  + (nedge/A) λedge 
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Directed motion on asymmetric, vibrating 
substrates 

   asymmetric substrate topology 
+ energy input by vertical vibration 
 
 
directed droplet motion 
 
Questions: 
•  What is the driving mechanism? 
•  What is the character of motion: 

rolling vs sliding? 
•  What are the energy dissipation 

mechanisms? 

(effective) contact angle depends on 
vibration period, τ	



 
 
 

 Tretyakov, Müller, Soft Matter submitted 
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(a) (b)

FIG. 1. (a) A cylindrical liquid drop on an asymmetrically structured substrate. Side view. (b) The
geometries of asymmetrically structured substrates. Two substrates with grooves of different size are
studied: roughly corrugated, R (top) and finely corrugated, F (bottom). The dimensions of the former
one are d1 = 4.81σ and h1 = 2.78σ. The latter one is twice as large, d2 = 9.62σ and h2 = 5.56σ. The
angle of corrugation is 30° in both cases.
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FIG. 2. (a) Profiles of the drops of various size on the F-type substrate at the period of substrate
vibration τper = 41τ . (b) Profiles of drops comprised of N = 200 000 beads on the F-type substrate.
Different line types represent profiles at various periods of substrate oscillation.



Contact area driving 

 Tretyakov, Müller, Soft Matter submitted 



Contact area driving 

 Tretyakov, Müller, Soft Matter submitted 
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contact area driving leads to a surface flow in –x direction (left) 
mechanism is effective for small vibration periods but is negligible for τper>46τ	


for larger τper the directed motion is driven by contact line hysteresis 
 
this simulation set-up is also used to obtain the friction coefficient, λ=η/δ,  
which is independent from the direction (see dissipation mechanisms) 

 
 
 

fine corrugation 



velocity: dependence on τ and N 

 Tretyakov, Müller, Soft Matter submitted 
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Substrate τper = 15τ τper = 63τ

F-type

R-type

FIG. 12. Velocity fields of moving droplets of N = 200 000 beads at the F-type substrate (top row) and
the R-type substrate (bottom row). The left column stands for vibration period of τper = 15τ , the right
one for the period of τper = 63τ . All velocity field are shown in a LAB system (from the point of view of
an observer). The difference in the flow patterns may be explained by the impact of the substrate onto
the liquid by vibration (see the main text for details).

Character of motion 

 Tretyakov, Müller, Soft Matter submitted 
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time-averaged velocity fields of  
flow inside the droplets 
 
fine corrugation: sliding motion 
 
 
 
 
 
rough corrugation: rolling motion, 
     direction of rolling is opposite to that of a rigid 
     cylinder because the driving is localized at 
     substrate 
 
          both flow patterns give rise to rather 
          small viscous dissipation  



Dissipation mechanisms 

 Tretyakov, Müller, Soft Matter submitted 

small period large period 

input power 
 
 
 

large small 

viscous dissipation       ~V constant 
(in absolute 
value) 

constant 
(increasing fraction of 
input power, up to 80%) 

friction at substrate       ~A 
 

constant constant 
(up to 15% of  
input power) 

sound waves                  ~A ~5% of input 
power 

~5% of input power 

contact line and thermostat large small 
(even relative  
to input power) 
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hydrodynamic velocity profile without thermal fluctuations to compute the viscous dissipation
TΣV and dissipation due to damping of the sound waves, TΣSW).
The power, Pin, imparted by the vibrating substrate onto the the system, however, is computed

microscopically from the instantaneous fluctuating force between the solid and the liquid. A
priori it is not obvious that all this input power will contributes to the driving of the droplet –
a portion of this microscopic input power may be directly dissipated into heat and removed by
the thermostat. Therefore we expect an additional dissipation term, TΣF, accounting for this
direct conversion of vibration into microscopic thermal fluctuations. We expect this term to be
particularly relevant at short vibration periods, where τper starts to become comparable to the
characteristic time scales of the liquid, τ .
Thus, the balance between input power and dissipation during the motion of the droplet is:

Pin =

3D
︷ ︸︸ ︷

TΣV+TΣSW + TΣCA + TΣF
︸ ︷︷ ︸

2D

+

1D
︷ ︸︸ ︷

TΣCL . (4)

It is important to note that all dissipation terms of Eq. (4) are characterized by their spatial
dimension: Viscous dissipation, TΣV, occur in the 3-dimensional volume of the droplet that
scales like R2Ly with R denoting the droplet radius. Sound-wave, frictional, and fluctuation
dissipation, TΣSW, TΣCA and TΣF, take place at the vicinity of the solid-liquid interface. They
are associated with a 2-dimensional area that scales like ∼ RLy. CL dissipation, TΣCL, involves
the 1-dimensional contact lines of length ∼ 2Ly.
In the following subsections we study the input power and individual dissipation mechanisms

of Eq. (4) in turn.

B. Input power

The power input can be expressed in terms of the instantaneous deterministic force [43] exerted
by the ASVS onto a droplet, Fs(t), and the velocity of the substrate:

Pin =
1

τper

〈
∫ τper

0

vsz(t)F
s(t) · nz dt

〉

. (5)

The velocity of the substrate, vsz(t) ∼ 1
τper

, decreases with the period of oscillations, which is

confirmed in Fig. 10 for both types of substrates. Moreover, Pin is proportional to the CA
because the force in Eq. (5) scales like the number of liquid-solid interactions. The CA increases
very slightly with the period giving rise to small deviations from the 1/τper-dependency.
In the insets of Fig. 10, we present the input power per projected contact areaAdrop. This ratio,

Pin/Adrop is almost independent from the droplet radius R at large τper but slightly decreases
with R at smaller periods. This observation might be partially rationalized by an additional
contribution in the narrow area in the vicinity of the fluctuating contact line, which becomes
relatively more important for small droplets. We propose a relation of the form

Pin = pspec(Adrop +∆xLy), (6)

where ∆x is the effective width of the fluctuating CL region. Since the CL fluctuations are
more prominent at small τper than at larger periods, ∆x decreases with τper in agreement with
the size-dependence of Pin/Adrop presented in the insets of Fig. 10. Comparing F-type and
R-type substrates we note that the size-dependence of Pin/Adrop at small τper is larger on the
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R-type substrate. This finding is in accord with macroscopic considerations suggesting that the
magnitude of CL fluctuations is related to the corrugation. This implies large ∆x for the R-type
substrate.
Additionally we note that Pin/Adrop is larger for the F-type substrate than for the R-type

substrate. This observation is rooted in the microscopic corrugation of the substrate. Whereas
macroscopic considerations suggest that the actual area of contact between liquid and solid is
independent from the length scale of the corrugation, we observe that there are no significant
vapor pockets on the F-type substrate but that these cavities exist on the R-type substrate.
Thus the actual contact area and thereby also the number of liquid-solid interactions and Fs of
Eq. (5) is larger on the finely corrugated F-type substrate than on the R-type one.

C. Viscous dissipation

The viscous dissipation in the droplet with hydrodynamic velocity field, u, is defined as [44]

TΣV =
1

2
η

∫

V

(
∂vk
∂xi

+
∂vi
∂xk

−
2

3
δik

∂vl
∂xl

)2

dV. (7)

where V is the volume, over which the viscous dissipation occur and the Einstein summation
convention is implied. The shear viscosity of the liquid is η = 5.32± 0.09

√
mε/σ2 is defined from

the shear stress autocorrelation function [29].
Eq. (7) is valid for a liquid bulk and is defined at a macroscopic level (i.e., using a velocity

field without fluctuations). In order to evaluate the integral in Eq. (7), we use the ensemble
averages of the velocity field in a droplet at various phases during the substrate vibration. As a
compromise between available data storage, speed of analysis and its accuracy we use the same
four phases of harmonic oscillations, as before in Sec. III. The velocity fields are then discretized
to a regular grid and Eq. (7) is evaluated by finite differences. The grid size is chosen as to
minimize statistical errors and effects of thermal fluctuations. Grid spacings vary between 2σ
and 8σ yielding similar results. We note that vibrations give rise to small density variations and
therefore ∂vl/∂xl #= 0.
Fig. (11) presents the results of Eq. (7) on both substrate types. The viscous dissipation

TΣV is larger for larger droplets at given τper because (i) the volume in which the liquid flow
dissipates is larger and (ii), at small τper, the larger droplets additionally move faster resulting in
larger shear forces inside the liquid. This is also one of the reasons why the viscous dissipation
is larger for the faster moving droplets on the F-type substrate than for the R-type substrate.
Additionally, the flow pattern inside the droplet differs between F-type and R-type substrates.
Averaging the velocity fields over 40τper, we obtain an averaged macroscopic velocity field in

Fig. 12 for both substrate types and two values of τper = 15τ and 63τ . The former corresponds
to the regime where both CA and CLs drive the droplet, while in the later regime only the
stick-slip motion of the CLs is active. The data refer to the largest droplet size, N = 200 000,
but the behavior of the smaller droplets is qualitatively similar.
The scale of the substrate corrugation has a pronounced influence on the time-average flow

field. On the roughly corrugated substrate, the droplets roll. As we increase τper the droplets
move slower, giving rise to an overall smaller scale of the velocity, but the rolling character of
the fluid flow persists. We also note that the clockwise direction of rotation is opposite to the
one that the rigid cylinder would have rolling to the left because the driving force is localized at
the substrate.
On the finely corrugated substrate, however, the fluid is mainly sliding at small τper, whereas

at larger τper a more complex average flow pattern is evident. The difference between the flow
patterns on the structured substrates under investigation may be explained by the impact of
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the substrate onto the liquid. While there are hardly any vapor pockets and the edges of the
grooves are separated by 4.81σ for the F-type substrate, this distance increases to 9.62σ for the
R-type one. Therefore, in the former case the impact of a substrate vibrations is more uniformly
distributed over the contact area, while in the latter case there is rather a collection of a separated
impact points (the positions of the edges) giving rise to an additional rotation.
The insets of Fig. 11 present the relative contribution of the viscous dissipation TΣV with

respect to the power input, i.e., the ratio TΣV/Pin, as a function of the period of vibrations. At
small τper viscous dissipation is only a small fraction of the total energy input but it becomes
increasingly important at larger τper.

D. Dissipation by sound waves

For most purposes the LJ polymer liquid may be considered to a very good approximation
as incompressible. However, taking into account harmonically vibrating substrate, the small
compressibility allows for the propagation of sound waves. To confirm their existence we have
carried out extremely long simulations to obtain ensemble-averaged density profiles at 40 different
phases of the periodic substrate vibrations. A movie is provided in the online supplementary
material.
In Fig. 13 we display the propagating sound waves in the biggest droplet with N = 200 000

beads at the shortest period τper = 15σ. A sequence shows the phases π/2, π, 3π/2 and 2π,
from (a) to (d), respectively. The amplitude of the compression reaches the value 0.025σ−3 at
its maximum, i.e., the ratio to the bulk density is only of the order 3%.
These sound waves carry energy from the vibrating substrate into the fluid and dissipate it

upon propagation in a viscous media. To estimate the concomitant dissipation rate we employ
relation [44]:

TΣSW = ζ

∫

V

(

divv
)2

dV, (8)

where ζ = 6.6 ± 0.2
√
mε/σ2 is the second (or bulk) viscosity of the liquid, which we obtained

from the autocorrelation function of the diagonal stress tensor components.
To estimate the energy dissipation due to damping of a sound wave we employ the same

strategy as for the viscous dissipation. The simulation box is divided into cells by a regular
grid. The ensemble-averaged velocity field in each cell is obtained at four phases of the periodic
vibration, and its divergence is computed via a finite difference scheme.
The dissipation due to the damping of sound waves in the liquid is presented in Fig. 14. Despite

their small amplitude, sound waves might contribute to the dissipation as much as half of the
viscous dissipation in the same droplet for the droplet sizes studied and their contribution to the
total dissipation can be as large as 15% (cf. insets in Fig. 14). The magnitude of the dissipation
rate decreases with the period of vibration τper because also the compression amplitude is reduced.
For droplets of various size it is also expected that the larger the contact area of the droplet,
the bigger the front of the sound wave and the higher the amount of energy that is carried and
dissipated by the sound wave.
We observe that in a wide range of periods, τper, the relative amount of the dissipation due to

the damping of sound waves, TΣSW/Pin, is constant for a drop of a fixed size. That is especially
noticeable in the Fig. 14 for droplets of size N = 20 000 and 50 000 beads (symbols connected by
dotted and dashed lines, respectively) and periods up to ≈ 70τ .
Another prominent observation is that the drop of the same size looses more energy due

to the sound wave damping at the finely corrugated substrate than at the roughly corrugated
one. Assuming that most compression occurs in the vicinity of the top-most edge of the groove
(because of the vapor pockets of the R-type substrate), the total energy accumulated by the
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sound wave can be represented as a function of the number of edges (or grooves) in contact
with the droplet. As this number for the F-type substrate is a factor of 2 larger than for the
R-type substrate, the sound wave energies differ by the same amount, what is to a great extent
confirmed by the main panels of Fig. 14.

E. Friction dissipation

Since the corrugated substrate does not impose a stick boundary condition, the fluid flows
past the substrate and the concomitant friction dissipates energy, TΣCA. Microscopically, the
dissipated energy can be computed by the product of the friction force between liquid and
substrate and the velocity of the liquid with respect to the substrate. The friction force, in turn,
is proportional to the velocity.
Rather than using the microscopic velocity at the corrugated substrate, we express the friction

by the macroscopic hydrodynamic velocity. To his end, we compute the friction force by balancing
the friction stress with the viscous stress of the fluid flowing past the corrugated substrate. This
balance is expressed by the Navier hydrodynamic boundary condition [45, 46]

λvx|zb = η
∂vx

∂z

∣
∣
∣
∣
zb

(9)

Using both Couette and Poiseuille type of flow in a film geometry [47, 48], in which both confining
surfaces are asymmetrically structured, we have simultaneously determined the position zb of
the hydrodynamic boundary and the friction coefficient λ. Care has to be exerted to assert
the pressure inside the channel equals the liquid-vapor phase coexistence pressure [26]. The
corresponding friction coefficients for a liquid driven into negative and positive directions of
the x-axis, λ− and λ+, are summarized in the Table II for two types of the substrate under
consideration. The friction coefficients for both types of substrates are rather similar.
Within linear response, the friction of the fluid flowing to the left or flowing to the right is

equal, and this condition is indeed obeyed by our simulation results within the statistical error.
Additionally we note that employing equilibrium MD simulations in conjunction with a Green-
Kubo-like formula [49], one would also determine a single friction coefficient without specifying

the direction of the flow. For the following we use the average friction coefficients λav ≡ λ++λ
−

2 .
Employing this friction coefficient we can relate the hydrodynamic velocity profile to the

friction force.

Ffric(t) = λavLy

∫

v(x, t)|zb dx. (10)

where v(x, t)|zb is the horizontal fluid velocity at the hydrodynamic boundary that depends on
the position x and time t. The integral over the contact area is again discretized via a collocation
grid. Using this strategy, we estimate the dissipation TΣCA due to friction at the CA according
to

TΣCA =
λav

τper

〈∫ τper

0

Ly

∫
(

v(x, t)|zb
)2

dxdt
〉

. (11)

As before the ensemble-averaged values of v(x, t)|zb are obtained for four phases φ = π/2, π,
3π/2 and 2π of the periodic substrate vibrations and these values are employed to estimate the
time integral in Eq. (11).
The so determined friction dissipation is plotted in Fig. 15 for droplets of various sizes and

both types of substrates. TΣCA exhibits a shallow maximum as a function of τper. This is a
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MD simulation of polymer droplets on superhydrophobic substrates

•   static properties: surface tension and interface potential 
   measurement of the anisotropy of the pressure in the canonical ensemble 
   yields the Legendre transform of the interface potential 
   using the measured interface potential continuum theory (ie interface  
   Hamiltonian) can describe deviations from cap-shapes drop profile at the  
   three-phase contact line (except for liquid-like layering effects) 
   simulations can provide input for effective interface Hamiltonians 

•   dynamic properties: friction/slip length and hydrodynamic boundary position 
    two parameters – slip length and interface position – describe hydrodynamic 
    boundary condition 
    Navier-slip condition may need generalization (layer model, gradient terms) 
    microscopic flow at surface may differ from hydrodynamic prediction 

•  flow inversion inside a brush 
•  crossover between macroscopic topography and roughness 
•  dissipation mechanisms (friction, sound waves, contact-line contribution)   
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