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Traditional drug development

Time: 10 years

Cost: $1 Billion/drug



3

Traditional drug development

Reasons for drug failure: poor translation 

between test platforms and humans 

Time: 10 years

Cost: $1 Billion/drug
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The quest for a better in-vitro model of 

human disease and drug response

Organ-on-a-chip

• 3-D microfluidic cell culture chip from human cells

• simulates characteristic mechanics and physiological 

responses of entire organs

 “human” platform for drug testing and disease models

Example: lung-blood barrier function

Duh et al. 2010, Science, “Reconstituting Organ-Level Lung Functions on a Chip”
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Organ-on-a-chip design

Structure and motion of 

building blocks (cells, matrix)

Emergent functions

Quantitative metrics 

of organ fitness

Biology

Identify relevant

structure-function 

relationships

Engineering

Design, build and test 

structure-function 

relationships
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Organ-on-a-chip design

Structure and motion of 

building blocks (cells, matrix)

Emergent functions

Quantitative metrics 

of organ fitness

Biology

Identify relevant

structure-function 

relationships

Engineering

Design, build and test 

structure-function 

relationships

Example lung chip

Metrics of fitness are

• Structural integrity

• Absorption air  blood
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2 case studies

Muscle-powered fluid transport

…relevant to cardiovascular system

Cilia-powered fluid transport

… relevant to respiratory 

organs, brain, Fallopian tube

with

Eva Kanso (USC)

Margaret McFall-Ngai (UW Madison)

Edward Ruby (UW Madison)

John Dabiri (Caltech) 

Scott Fraser (USC)

with

John Dabiri (Caltech)

Kit Parker (Harvard)

Donald Ingber (Harvard) 
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Case study: human heart 

Heart Function
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Case study: human heart 

Microstructure

Kinematics

+

Body-fluid interaction

Tissue geometry

+

Heart Function
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A simplified heart: jellyfish
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A simplified heart: jellyfish

Microstructure

Kinematics

+

Body-fluid interaction

Tissue geometry

+

Jellyfish Function
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Measuring jellyfish fitness

Muscle fiber 

alignment

Contraction 

kinematics
Bell geometry

Fluid transport

Jellyfish function

• Feeding flux

• Propulsion

+ +
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100µm

Muscle fibers 

(F-actin, green)

Anisotropic muscle layout

Muscle fiber alignment
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Anisotropic muscle layout

Muscle fiber alignment

40µm

Stamp

Micropattern
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Jellyfish

Engineered

Muscle fiber alignment
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Bell kinematics



17

Muscle-elastomer composite

Bell kinematics
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Muscle-silicone

Bell kinematics
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Body geometry

Feitl, 2009; Nawroth, 2010



20

Body geometry

Feitl, 2009; Nawroth, 2010
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Real and artificial jellyfish propulsion

Optimal design Suboptimal designControl: Jellyfish
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Quantifying feeding and propulsion currents
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Control: Flow field in jellyfish
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Flow field in optimal Medusoid



26Nawroth JC et al. (2012) “A tissue-engineered jellyfish with biomimetic propulsion”

Fitness metrics
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Heart-on-a-chip: further reduction

Ref: A. Agarwal et al,  2013 

Microstructure

Tissue contractile stress
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Case study: ciliated epithelium

e.g., respiratory epithelium 
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Case study: ciliated epithelium

e.g., respiratory epithelium 
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Cilia-powered fluid transport

Ciliated epithelium (Paramecium)

10um

Bulk flow profile
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Cilia-powered fluid transport

Ciliated epithelium (Paramecium)

10um

• Particle capture & clearance

• Transport of fluids, solutes 

and cells
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Structure-function relationships of ciliated surfaces

Cilia fitness

Selective bacterial

recruitment
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Metachronal wave

Surface geometry

Fluid transport

and mixing

+

+

Cilia fitness

Selective bacterial

recruitment

Ciliary structure and 

kinematics

?

?

Structure-function relationships of ciliated surfaces
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Internal ciliated organ captures 1 µm bacteria species (Vibrio 

fischeri) from huge microbial background (0.5%), and wide 

range of particle sizes

A master of selective bacterial recruitment: 

The Hawaiian bobtail squid

Retention efficiency in typical ciliary filter feeders

Jorgensen, 1994
Largest dimension  in µm

106

105

104

103

102

#/ml

Reynolds et al., 2010

Particle size distribution 

in coastal waters
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The squid ciliated organ



36

The light organ is subject low Reynolds number flow

Eye

Light organ

1mm
100 µm

Re 0.004
UD


 Re 0.2

UD


 

Ciliary flow of isolated light organLight organ in mantle flow

Horns
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Mucus aggregation 

The mucociliary trap
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The mucociliary trap: 

not such a good trap? 
Red: cilia

Green: Vibrio fischeri

50µm

U

L

R

Capture rate similar to predicted encounter 

rate of passive cylinder in flow 

 No obvious increase in capture rate 

compared to chance

Encounter model for passive 

cylinder in flow

(Humphries, PNAS, 2009)

107 particles/ml
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The mucociliary trap - not for everyone:

Evidence for size-biased capture

1µm (blue), 2µm (green), 

4µm (orange); 

107particles/ml each

100µm

Red: cilia
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Cilia-generated flow field

1 µm particles 100 µm
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Particle path lines

Cilia-generated flow field
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Ratio advected particles:captured particles ≈ 50:1

Particle tracking

Cilia-generated hydrodynamic sieve
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In vivo capture

50um

Appendages

4um

1um
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In vivo capture

4um

1um
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Current work: 

Identifying structure-function relationships…

Ciliary structure and 

kinematics
Metachronal wave Surface geometry

Fluid transport

and mixing

Cilia fitness

Capture and aggregation of bacteria (-sized particles)  

+ +
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Current work: 

Identifying structure-function relationships…

…using a variety of methods and approaches


