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Overview of models

• Metastatic tumor entropy
• Markov chain/random walk models of metastatic progression
• CFD models of procoagulant CTCs in bloodstream
• Low-dimensional deformation models of CTC intravasation
• Cell trafficking model based on evolutionary game theory



-John Niederhuber M.D. 2006-2010
- Harold Varmus M.D. 2010-



Collaborators

Scripps PS-OC: `Mathematics and Physics of Cancer Metastasis’
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The `particles’ in the bloodstream
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RBCs: 4-5 million / ml

Platelets: 150-400 million / ml

WBCs: 4,500-10,000 / ml

neutrophils:   2,500-8,000 / ml
lymphocytes: 1,000-4,000 / ml
monocytes:   100-700 / ml
eosinophils:   50-500 / ml
basophils:      25-100 / ml

Phoenix Philms

CTCs: 2-200 / ml
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HD-CTC on a slide (Kuhn Lab TSRI)
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1. Stochastic models for intravasation and subsequent CTC circulation

2. Metastatic progression via Markov chain/Monte Carlo

1/28/2014
8

~3 Million Cells per slide

3-30 CTCs per slide



Circulating tumor cells (CTCs) 

Peter Kuhn Lab
The Scripps Research Institute

Lung CTC cluster

Prostate CTCs



1. Metastatic entropy

Question: What is the best metric to use to
compare the complexity of different cancers? 



Metastatic signature of 4 cancer types
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Lung Breast

Prostate Colon
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Metastatic entropy

Two main `drivers’ of metastatic  complexity

1. Number of metastatic sites `N’
• Larger N increases complexity

2. Probabilistic distribution to those sites
• More even distribution (flatter) increases complexity
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Metastatic entropy

% metastatic tumors to site `i’



Metastatic entropy
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All cancers 

0 < EN = 2.714 < log 30 = 3.4

Initial state: Primary tumor, no mets Hypothetical state: Worst case scenario



Tumor entropy
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Breast
N = 28 states

Lung

N = 27 states

Prostate

N = 21 states



Tumor entropy
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Primary N Entropy

Skin 30 2.9945

Breast 27 2.7798

Kidney 27 2.7554

Lung 27 2.7453

All 30 2.7136

Stomach 28 2.6099

Uterine 24 2.5709

Pancreatic 26 2.5540

Colorectal 28 2.4686

Cervical 26 2.3696

Ovarian 21 2.3275

Bladder 22 2.2301

Prostate 21 2.0960



2. Markov chain/random walk
models of metastatic progression

Question: What is the dynamical system that
drives metastatic progression from a state of 
low-entropy to a high-entropy state? 



Primary Tumor

Trapped CTCs
Metastatic

Tumor

Metastatic
Tumor



Google’s Markov model

Main features:
• Nodes are web pages
• Nodes are linked by directed edges
• Edges have weights (transition probabilites)
• Nodal weights are obtained from edge 
weights

Google uses the internet model to:
• Perform simulated internet searches:

• Individual searches with random walks
• `Ensemble’ searches with Monte

Carlo simulations
• Run tests under different scenarios
• Calculate `average’ number of steps from 

node i to node j
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Lung cancer

Similar uses for our model:
• Perform simulated cancer progression:

o Individual progression with random walks
o `Ensemble’ progression with Monte Carlo 

simulations 

• Run tests under different scenarios
• Calculate `average’ number of steps from 

node i to node j (mean first-passage times)

Our Cancer Progression Model 
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Main features:
• Nodes are potential tumor sites
• Nodes are linked by directed edges
• Need to construct the edge weights
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Random walkers on an anatomical network



Markov Chain Basics

• States: Lung, Breast, Liver, Adrenal, LN, ….Deceased
• Initial state:                       (1,0,0,0,….)
• Steady-state: (0.18, 0.12, ….)

is the state-vector with 50 entries reflecting 
possible metastatic tumor locations

• A is the transition matrix governing the transition

probabilities from site to site



How to compute (estimate) the entries of
the transition matrix A?

• Need the transition probabilities from site to site:
• Reconstruct from steady-state info (autopsy data sets)
• Direct empirical calculation (longitudinal data sets)



The Lung Cancer Network
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• 913 edges
• Lung: 27 outgoing edges
• Lung: 49 incoming edges

# Name # Name

1 Adrenal 26 Omentum

2 Anus 27 Ovaris

3 Appendix 28 Pancreas

4 Bile Duct 29 Penis

5 Bladder 30 Pericardium

6 Bone 31 Peritoneum

7 Brain 32 Pharynx

8 Branchial Cyst 33 Pleura

9 Breast 34 Prostate

10 Cervix 35 Rectum

11 Colon 36 Retroperitoneum

12 Diaphragm 37 Salivary

13 Duodenum 38 Skeletal Muscle

14 Esophagus 39 Skin

15 Eye 40 Small Intestine

16 Gallbladder 41 Spleen

17 Heart 42 Stomach

18 Kidney 43 Testes

19 Large Intestine 44 Thyroid

20 Larynx 45 Tongue

21 Lip 46 Tonsil

22 Liver 47 Unknown

23 Lung 48 Uteris

24 Lymph Nodes (reg) 49 Vagina

25 Lymph Nodes (dist) 50 Vulva
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k = 0k = 1k = 2k = 10k > 25k = 5

Convergence: Lung cancer 

Initial state

Steady-state
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Prostate

Network diagrams for 4 cancer types

• Network inter-connectedness
highlights the systemic nature
of the disease

• Network density reflects
relative complexity
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Multi-directional pathway diagram: Lung



Lung  Bone  Liver  Deceased

Lung  Adrenal  Deceased

Lung  Adrenal  Bone  Deceased

Etc.

The metastatic pathways

Constructing metastatic pathways

The probability distribution
of

Lung cancer



Spreaders & Sponges

Question:  Which metastatic sites would make
the best `targets’ for therapy ?
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Spreader:

Metastatic site as spreader or sponge 
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The spreaders and sponges

Reduced order models

Spreaders
Sponges



Breast  BoneLung  Adrenal Prostate  Bone Colon  Liver

Spreader diagrams

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22
0

5

10

15

20

25

Lung to Adrenal Transition Probability

B
in

 N
u
m

b
e
r

0.132 +/- 0.002 0.248 +/- 0.027

0.06 0.08 0.1 0.12 0.14 0.16
0

5

10

15

20

25

30

35

40

Breast to Bone Transition Probability

B
in

 N
u
m

b
e
r

0.111 +/- 0.014 0.215 +/- 0.019



Targeting the spreaders

Question:  What would be the response 
if we could therapeutically 
target the spreaders?

Spreader  Absorbing state



34

Entropy decrease, mfpt increase

Entropy decrease
2.5035  2.4664

Entropy decrease
2.6921  2.6489 Entropy decrease

2.5241  2.4842

Entropy decrease
2.8404  2.8157



3. CFD models of procoagulant
CTCs in the bloodstream

• Cancer patients have a higher than 
average incidence of blood clot formation 
leading to stroke.

• CTCs express TF that triggers a complex 
chain of chemical reactions leading 
to thrombosis.



Experiment of fibrin formation
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Coagulation process of fibrin formation by SW480 cell
(McCarty Lab, OHSU)

Cell is ~12 um

60x real time

DIC microscopy



Mathematical infrastructure

Blood flow 
velocity field

where  c0 is a velocity scaling coefficient

Particles that follow 
concentration gradients

Concentration fields of thrombin 
associated with each CTC

Diffusion constants associated 

with coagulation factors

Boundary conditions
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Navier-Stokes equations

Deformable cell

Blood vessel wall

Blood vessel wall

Cell boundary

Concentration field + particlesvelocity of 

cell boundary



Blood parameters in venous system
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• whole blood: density = 1060 kg/m^3 at 37C
dynamic viscosity = 3*10^-3 Pa s at 37C

• venules: flow rate: v = 0.03-0.1 cm/s
diameter: d = 7-50 um

Diffusion coefficients for coagulation factors



CFD model of flow in channel

Inflow 
(flow profile set 
up by pressure 

gradient)

Outflow

Viscous boundary conditions 
along vessel wallsConcentration field of 

thrombin on surface of CTC

Single CTC

Lower boundary layer region

Breast cancer cell imaged from Kuhn Lab

DIC image

Upper boundary layer region



Simulation of CTC under flow
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Max velocity = 0.026 cm/s

Blood velocity field Thrombin concentration field

Diffusion coefficient = 1e-7 cm^2/s



Simulation of CTC under flow
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Complete mesh consists of 
2552 domain elements and 

183 boundary elements

Adaptive mesh generationThrombin field and velocity vectors



CFD model of branching venules

Inflow 
(flow profile set 
up by pressure 

gradient)

Outflow

Viscous boundary conditions 
along vessel wallsConcentration field of 

thrombin on surface of CTC

Single CTC, 10um in diameter

CTC cluster

Angle is 30 degress

SW480 colon adenocarcinoma cells
DIC image



Simulation of CTC cluster under flow
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Max velocity = 0.08 cm/s

Blood velocity field Thrombin concentration field

Diffusion coefficient = 3e-7 cm^2/s



Simulation of CTC cluster under flow
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Particle tracking for thrombin field Adaptive mesh generation

Complete mesh consists of 
5696 domain elements and 

334 boundary elements

1500 particles in simulation



Patient sample to computational simulation

(a) DIC image of lung cancer cluster. (b) Outline of cluster is obtained using 

Cell Profiler. Center of cluster is marked 

by white dot.

(c) Shape of cluster is generated in 

computational domain (COMSOL).  

(d) Cluster is placed in a branching 

venule, with the cluster centered 

vertically in the middle of the venule.



Blood velocity field Mesh generation

Maximum velocity ~0.008 cm^2/s

Upon reaching the “fork in the vessel”, the 

cluster begins to deform and significantly 

obstructs the blood flow.

Complete mesh consists of 

4872 domain elements and 346 

boundary elements.



Concentration field of thrombin

Diffusion coefficient = 1e-7 cm^2/s



Particles are tracking velocity field with 

concentration field shown

The particles clearly display the parabolic flow profile of the blood, and show 

that blood flow in the lower branch is slightly faster than in the upper branch.

1000 particles are 

released at t = 0 s



Particles are tracking concentration field

The particles show that early in the simulation, the thrombin field closely resembles the shape of the 

cluster, whereas later in the simulation, the thrombin field is dictated by the blood vessel geometry.

5000 particles are 

released four times at 

t = 0, 0.15, 0.3, 0.45 s



4. Building low-dimensional deformation 
models of CTCs using `Active Shape 
Algorithms’

• Bridging the gap between experiment 
and computations



MDA-MB-231 breast cancer cell in flow
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(McCarty Lab OHSU)



Low-d deformation model of cancer cell release
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(McCarty Lab OHSU)



Low-d deformation model of cancer cell release
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• Active shape modeling gives principal modes of deformation
• Used to `train’ parameters in an `empirical constitutive equation’ 

for a low-dimensional model
• The model is then used in a stochastic Stokes flow simulation of 

cell release  



5. Cell-trafficking models based on 
evolutionary game theory 

• Building a dynamical system on the anatomical 
network that tracks the evolutionary 
properties of different cell populations



22 anatomical sites for prostate cancer

Liver

• 22 cell types
• Preoncogenic/Postoncogenic cancer Boolean (True or False)
• Each anatomical site has indigenous cell type 
• Prostate is initially populated with cancerous & healthy cells 

Prostate

Circulation

Skin

Sm Intestine
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Stomach
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Thyroid
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Bladder

Bone

Diaphragm
Gallbladder

Heart

Kidney

Lg Intestine

Liver

Lung

LN (reg)

LN (dist)

Pancreas

Peritoneum

Pleura



Cell Attributes

Location 1,…23 (including circulation)
Type 1,…22
Cell ID 1,…,n
Preonc/Postonc Boolean: true/false

Birth time
Death time
Circulation time
Parent Cell
Previous Locations [1,23,2,23]

Primary Tumor Site: 1 
[Primary tumor cancer cells]

Birth Rate μ(1)

Death Rate β(1)

Mutation Rate γ(1)

Circulation Rate λ(1)

Secondary Sites: i = 2,…,22 
[Healthy cells]

Birth Rate μ(i)

Death Rate β(i)

Mutation Rate γ(i)

Circulation Rate λ(i)

23rd location is circulation



Entering Circulation

• Probability of entering entering site i



Dynamics in Circulation

• Holds many cell types at each time step
• Cell death can occur, but not birth
• No mutations
• No replicator equations

Circulation

Other colors indicate 
healthy cells from various 

anatomical sites

• Entering Circulation

• Exiting Circulation
• Based on Markov transition 

probabilities

Preoncogenic Prostate Cell
Postoncogenic Prostate Cell

Healthy Prostate Cell
Liver Cell



Circulation

• Prostate

• Each anatomical site has indigenous cell 
type 

Healthy Prostate Cell

Postoncogenic Prostate Cell

Liver Cell

Prostate

Circulation

Skin
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Testes
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Diaphragm
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Heart
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Pancreas

Peritoneum

Pleura

Circulation



Replicator Equations

• Large cell population of n types, 

proportions given by the state vector, 

whose components sum to 1:

• Fitness landscape of cell type 

i given by:

• Average fitness of the cell population:

• Replicator equation describing cell 

population dynamics: 

• Q is the mutation matrix

• Controls all mutation rates from type i to 

j.

• Each row must sum to 1. 

Ex: Q allows 

no mutations.

A = payoff matrix

Ex:



Neutral Payoff Matrix

Preoncogenic

Postoncogenic
Adrenal

Bone
Liver
Prostate (Healthy)



Sample Monte Carlo simulation 

Parameter Values • Remove from circulation: 1.5

• Mutation: 1.5 • Birth/Death: 0

• Circulation: 1.0 • Cancerous Birth: 0

Adrenal Bone Circulation

Circulation and mutation in sponges and spreaders 
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Questions?


