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Motility

• Directed force-free motion

• Flocking

• Gradient-sensing

• Signalling

• Clumping

• Patterns

Can inanimate matter imitate this?
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The Catalytic Colloid

Figure : The eletrokinetic swimmer (Paxton et al 2005), the chemically
powered nanodimers (Kapral et al. 2007) and The Dffusiophoretic Swimmer
(Golestanian et al. 2005).
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The Plan of the talk

• Self-Diffusiophoresis

• Chemotaxis in an external gradient

• Single Particle motion in external reactant field

• Collective behaviour
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Phoresis

• Extended object moves when placed in external gradient of
‘something’ that interacts with its surface.

• ‘Something’ can be

• Electric potential - Electrophoresis
• Chemical Species - Diffusiophoresis

• Force free motion

• Screening layer

• Colloids - Re = 0 → Stokes Regime.

• Colloid coated with catalysts and placed in substrate bath

• localised product gradients → self phoretic propulsion
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Phoresis

Figure : Screening length, separation of ‘outer’ and ‘inner’ region; Anderson
1986.

, 6/31



Swimmer in a uniform substrate field

colloid coated in a pattern - σ(θ) - produces diffusion field p

catalysts

substrate product
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Thin boundary layer + MB distribution of p

Momentum balance
∂Π
∂z + pb

∂φ
∂z = 0

η ∂2vx
∂z2 − ∂Π

∂x = 0

p(z) = pbe
φ/kBT

φ - interaction potential

Slip velocity

vs(r) = µ(I− k̂k̂) · ∇pb

Mobility

µ = kBT
η

∫∞

0
z [e

(− φ

kBT
) − 1]dz

Anderson et al. 1989
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Swimmer in a uniform substrate field

p

�
�
�✒

n̂

Keh et al. 1976

product diffuses ∂tp = Dp∇2p

Dp
∂p
∂r |a = κσ(n̂)

Use p to get

V = 1
4π

∫

vs(r)dΩ

ω = 3
16πR

∫

r̂ × vs(r)dΩ

V, ω obtained using

Force and Torque balance
∫

Σα
n̂ · τd2r,

∫

Σα
r × τd2r

Reciprocity theorem -

for solutions v1, v2 to Stokes eq. for b.c. u1 |Σα
= V +Ω× R

u2 |Σα
= vs , u1,2 |r→∞= 0.

Golestanian et al. 2005
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Colloid in an External Reactant Gradient

s

Κ

Let the substrate concentration vary spatially - s(r)

in a linear gradient - chemotaxis?

in a localised substrate profile - scattering / trapping?

Need rate κ to vary with s - typically Michaelis-Menten reaction kinetics.

✲Yes
❄
No

κ(s) = κ1κ2s
κ2+κ1s
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Calculation Details

s and p both diffuse ∂tp − Dp∇2p = 0, ∂ts − Ds∇2s = 0,

with B.Cs.

−Ds k̂ · ∇s = −κ1sPsσ(θ, φ), −Dp k̂ · ∇p = κ2Ppσ(θ, φ), κ2Pp ≡ κ(s)

Dp

Ds
> 1

Dp

Ds
= 1

Dp

Ds
< 1

−k̂ · ∇p|a = −κ1(sb −
Dp

Ds
p)σ

s = (sb −
Dp

Ds
p)

Non linear dependence
on colloid size

Limit not
well defined

−k̂ · ∇p|a = κ1sbσ
s = sb

Swimmer sensitive
to gradients of s

−k̂ · ∇p|a = κ2σ

s = (sb −
Dp

Ds
p)

Swimmer insensitive
to gradients of s.

κ1s0/κ2 < 1 κ1s0/κ2 = 1 κ1s0/κ2 > 1
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Details contd..

• Uniform substrate gradient along ẑ

• Symmetry axis along (θn, φn = 0).

• µp, σ expressed in spherical harmonics µpℓ, σℓ in the body fixed
frame of swimmer

• Assume steady state ∂tp = 0

• ω is now a function of θn through the B.C.
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Swimmer in a linear gradient

substrate product

Gradient

❅
❅

❅■

,
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θn

❅
❅

❅■ Chemotactic Alignment

❅
❅

❅❘

Anti

ωsp = ω0
2
15πs1 (5µ1σ0 + 2µ2σ1 − µ1σ2) sin θn

ω0 = kBTα2σ0/τηD8R
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Conditions for chemotaxis

• Single catalytic site insufficient; a finite coat of catalysts required.

• We can design the swimmer to be chemotactic or antichemotactic
by suitable coating.

• If σ, µp contain odd or even harmonics alone - no propulsion - result
holds for spheroids too.

• A sphere with uniform mobility does not chemotax.
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Shape Dependence of ω
Uniform spheroidal caps of catalytic and mobility patterns as
σ(θ) ∝ Θ(θ − α1) and µp ∝ 1 + Θ(θ − α2)

Figure : Angular velocities of collioids of various shapes (a) sphere (b) oblate
(c) prolate as a function of α1 at fixed values of α2.
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Linear Velocity in a gradient

V = Vp + Vs , with

Vp = − κ1s0

15Dp

(5σ1µp0 + 2σ2µp1 − σ1µp2)n̂

−κ1s1R

10Dp

(σ0µp2 −
2

9
σ1µp1 − 2σ2µp0 +

1

35
σ2µp2)n̂n̂ · ĝ

−κ1s1R

30Dp

(10σ0µp0 + σ0µp2 + 2σ1µp1 − 2σ2µp0 +
29

35
σ2µp2)ĝ,

Vs = −s1(µs0 +
µs2

10
)ĝ − µs2s1

10
nn · ĝ. (1)
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Typical trajectories

role of 

(ii) polar run-and-tumble

role of 

role of 

role of 

(iv) phoretic response

net drift
at all times

accumulation
in slow regions

(iii) apolar run-and-tumble

(i) chemotaxis

alignment

net drift beyond 
rotational diffusion time

Figure : In each panel, three consecutive snapshots (with equal time intervals)
are sketched together with typical connecting trajectories.
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Collective behaviour

Consider a distribution ρ(r, t) of swimmers

S and P consumed and produced on surface of catalytic colloids resulting
in fields s(r, t) and p(r, t).

Each swimmer responds to s through motility and chemotactic
mechanisms.

The response of a swimmer to p is like that to any externally imposed
solute gradient.

Hydrodynamic interactions ignored in this calculation.
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Single Particle Dynamics
Langevin equations for the αth swimmer

drα
dt

= V0(s)n̂α − α0∇s − α1n̂αn̂α · ∇s + β0∇p + β1n̂αn̂α · ∇p

+
√
2Dfr (t),

dnα
dt

= Φ0(n̂α ×∇s)× n̂α +Ω0(n̂α ×∇p)× n̂α

+
√

2Dr n̂α × fn(t), (2)

where

Φ0 > 0 & Ω0 > 0 → chemotactic response to ∇s and ∇p

α0 > 0 & β0 > 0 → attractive contributions to interactions due to s and
p respectively

�✒ Self Propulsion

❅❘
Response to gradients

�✠

❅❘ �✠
chemotactic response to gradients
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S and P consumed and generated at a rate

Q(r, t) = κ(s)
∑

α

∫

|Xα|=R

δ(r − rα − Xα)σ(Xα · n̂α), (3)

Xα = enzyme site on swimmer

Figure : Schematic for the calculation of Q.
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Develop Q to leading orders in ∇

Defining
∑

α δ(r − rα) = ρ(r),
∑

α n̂αδ(r − rα) = n(r) to get

Pe
Dp

Ds

∂s

∂t
−∇2s = −K (s)(ρ− ǫ∇ · n),

Pe
∂p

∂t
−∇2p =

Ds

Dp

K (s)(ρ− ǫ∇ · n).

Péclet number Pe ≡ Rv/Dp, K (s) = κ(s)NR2/Ds , N = 4πR2σ0 total

enzymatic sites on swimmer and ǫ = σ1/3σ0.
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Let Pe = 0; linearise about ρ0, s0

sq = − K (s0)

q2 + ξ−2
s

(ρq − ǫΘq)

pq =
K (s0)Ds/Dp

(q2 + ξs
−2)

(ρq − ǫΘq) (4)

ξs = [ρ0K
′(s0)]

−1/2 is nondimensional interaction range

ξs 6= 0 in linear part of MM

Here s eaten at lower rate than in the saturated part - long range nature
suppressed

Call the ξs finite limit, the unsaturated case and ξs → ∞, the saturated.
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Equations of Motion

• Starting from the Langevin eq. EOM for the density ρ and n

constructed.

• Closure used: ∂tQ = 0, Q slaved to n and higher moments
neglected

• S and P fields produced by inhomogeneities in ρ and divergence of n
mediate interactions between swimmers.

• The linearized dynamics in the isotropic phase closes in terms ρ and
nLq = q̂q̂ · n.

• Coarse-grained equations presented in saturated limit and for
wavenumbers q ≪ ξ−1

s in unsaturated case.
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Contrast to Flocking models

• Long ranged interactions.

• Interactions do not promote a global parallel alignment of n.

• General tendency to form asters.

• A very different set of non-linearities from Toner-Tu.
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Unsaturated

In the unsaturated case ξs < ∞, for wavenumbers q ≪ ξ−1
s , coarse

grained equations read

[∂t + 2Dr − (D +
v2
1 s

2
0

30Dr

)∇2 + (ǫρ0ξ
2
sA− v2

1 s
2
0

90Dr

)∇∇·]nL

+
(v1s0 − ρ0ξ

2
sA)

3ρ0
∇ρ = 0,

[∂t − (D − ρ0ξ
2
sB)∇2]ρ−1

0 δρ+ (v1s0 − ǫρ0ξ
2
sB∇2)∇ · nL = 0,

(5)

where we define

A = Nκ(s0)

[

Ω0

Dp

− Φ0

Ds

+
V0(s0)

2Ds

d lnκ

ds
|s0
]

,

B = Nκ(s0)

[

1

Dp

(β0 +
β1

3
) +

1

Ds

(α0 +
α1

3
)

]

, (6)
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Stability analysis

• In the overdamped limit, the unstable mode

−iω = −D ′q2 ≡ −(D +
v2
1 s

2
0

6Dr

− ρ0ξ
2
sB − v1s0ρ0ξ

2
sA

6Dr

)q2, (7)

goes unstable with growth rate ∼ q2 at small q.

• Competition with stabilizing effects at larger q will lead to a
modulated growth morphology with a length scale ∼ |D ′|1/2.

• Other mode, controlled by Dr , remains stable for q → 0, i.e.,
interactions do not promote flocking.
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Stability Analysis

On the stable side, the steady-state static small-q structure factor

Sρ ∝ 1

(D ′ + γq2)
, (8)

where

γ = 2ξ2sDr [ρ0ξ
2
sB +

ρ0ξ
2
sAv1s0

6Dr

+
1

3
ǫρ0ξ

2
sB(v1s0 − ρ0ξ

2
sA)

+(D − ǫρ0ξ
2
sA)(D +

2v2
1 s

2
0

45Dr

− ρ0ξ
2
sB)

+D ′(ρ0ξ
2
sB + ǫρ0ξ

2
sA− 2D)]. (9)

For γ > 0, as D ′ → 0+, Sρ displays fluctuations with a correlation length
√

γ/D ′ that diverges as D ′ → 0 → Clumping.
With γ < 0, the system has a tendency towards patterning with a
characteristic length scale ∼ |γ|−1/2, implying a competition between the
chemotactic (A) and phoretic (B) response to gradients.
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Phase Diagram - Unsaturated

UNSTABLE

D′ < 0

ρ0ξ
2

s
B/Ds

ǫρ0ξ
2

s
A/Ds

µp0

µp1

γ < 0

γ < 0

γ > 0

✲

✻

D′ > 0
STABLE

clumping fluctuations

patterning fluctuations

Figure : The phase diagram in the reaction-limited regime of abundant fuel
shows a variety of possible states in the parameter space spanned by the
effective rotational diffusivity Dr and effective interactions G . Possible
experimental paths are shown as the two dashed lines. These could be explored
in sequences of experiments on particles designed with suitable mobility coats.
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Saturated

Define

E(r) = −∇
∫

r′
ρ(r′)/|r − r′|, (10)

The coarse grained equations are

[∂t − (D +
v2
0

30Dr

)∇2]nL +
v0

3ρ0
∇ρ+

A

3
E

−[
v2
0

90Dr

− 2ǫNκ2v0ρ0
135Dr

(
β1

Dp

+
α1

Ds

)]∇∇ · nL

+[
2ǫ2A2ρ20
15Dr

n2L −
ǫA

3
ρ0 + 2Dr ]nL = 0, (11)

(∂t − D∇2)ρ+ ρ0(v0 + ǫρ0B)∇ · nL − ρ0B∇ · E = 0, (12)
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Saturated - Stability Analysis

In the overdamped limit, i.e. for sufficiently large Dr , the relaxation rates
of the eigenmodes are

−iω =







G
2D′

r
− [2D + v0(v0+ǫρ0B)

3D′

r
]q2,

−2D ′
r+O(q2),

where ,Deff = D +
v0v

′
0

6D ′
r

. (13)

where

• D ′
r = Dr − ǫρ0A/6 represents a modified rotational diffusion.

• G = 2ρ0BDr +
1
3ρ0Av0 is an effective control parameter for the

nature of interaction between the swimmers.
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Saturated - Phase Diagram

µp0, ǫρ0A/Dr

ρ0B/Dr

Plasma
Spontaneous

OSCILLATIONS

Hydrodynamic
Jeans

Dissipative
Jeans

Asters

+

Clumps

Patterns

Asters

+

Patterns

↑gravitational
↓electrolyte

µp1
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Summary

• We have studied the dynamics of the catalytic colloid in a reactant
gradient and catergorised the different gradent seeking mechanisms.

• In particular we have shown that the chemotaxis can be controlled
by changing mobility, catalytic coat and shape of the colloid.

• We have obtained the coarse grained equations for the density and
polar order parameter of the colloids interacting via long ranged
dffusion fields.

• The interplay of chemotaxis and phoresis leads to clumping and
patterning at low reactant concentration; at high concentration, the
slow decay of diffusing reactants and products yields analogues of
electrostatic and gravitational phenomena Debye screening,
microphase separation, plasma oscillations and gravitational collapse.
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