Collective behaviour of chemotactic colloids: Clusters, Asters and Oscillations

Suropriya Saha², Ramin Golestanian³, Sriram Ramaswamy^{1,2}

¹ TIFR Centre for Interdisciplinary Sciences, Hyderabad

² Physics, IISc, Bangalore

³ Theory Physics, Oxford

April 21, 2014

Motility

- Directed force-free motion
- Flocking
- Gradient-sensing
- Signalling
- Clumping
- Patterns

Can inanimate matter imitate this?

The Catalytic Colloid

Figure : The eletrokinetic swimmer (Paxton et al 2005), the chemically powered nanodimers (Kapral et al. 2007) and The Dffusiophoretic Swimmer (Golestanian et al. 2005).

The Plan of the talk

- Self-Diffusiophoresis
- Chemotaxis in an external gradient
- Single Particle motion in external reactant field
- Collective behaviour

Phoresis

- Extended object moves when placed in external gradient of 'something' that interacts with its surface.
- 'Something' can be
 - Electric potential Electrophoresis
 - Chemical Species Diffusiophoresis
- Force free motion
- Screening layer
- Colloids $Re = 0 \rightarrow$ Stokes Regime.
- · Colloid coated with catalysts and placed in substrate bath
- localised product gradients \rightarrow self phoretic propulsion

Phoresis

VIEW FROM OUTER REGION

Figure 1 Electrophoresis of a charged particle. κ^{-1} is the Debye screening length of the solution, defined by (4), τ^i is the "slip velocity," which is given by (6) with ζ (taken to be negative here) equal to the electrostatic potential at y = 0. E^* is the electric field at the outer edge of the double layer (S^*).

Figure : Screening length, separation of 'outer' and 'inner' region; Anderson 1986.

Swimmer in a uniform substrate field

colloid coated in a pattern - $\sigma(\theta)$ - produces diffusion field p

Swimmer in a uniform substrate field

Golestanian et al. 2005

product diffuses $\partial_t p = D_p \nabla^2 p$ $D_p \frac{\partial p}{\partial r}|_a = \kappa \sigma(\hat{\mathbf{n}})$

Use p to get

$$\mathbf{V} = \frac{1}{4\pi} \int \mathbf{v}_{s}(\mathbf{r}) d\Omega$$
$$\omega = \frac{3}{16\pi R} \int \hat{\mathbf{r}} \times \mathbf{v}_{s}(\mathbf{r}) d\Omega$$

 $\mathbf{V}, \boldsymbol{\omega}$ obtained using

Force and Torque balance
$$\int_{\Sigma_{\alpha}} \mathbf{\hat{n}} \cdot \tau d^2 \mathbf{r}$$
, $\int_{\Sigma_{\alpha}} \mathbf{r} imes \tau d^2 \mathbf{r}$

Reciprocity theorem -

for solutions \mathbf{v}_1 , \mathbf{v}_2 to Stokes eq. for b.c. $\mathbf{u}_1 \mid_{\boldsymbol{\Sigma}_{\alpha}} = \mathbf{V} + \Omega \times \mathbf{R}$

 $\mathbf{u}_2\mid_{\boldsymbol{\Sigma}_{\alpha}}=\mathbf{v}_s,\ \mathbf{u}_{1,2}\mid_{r\to\infty}=0.$

Keh et al. 1976

Colloid in an External Reactant Gradient

Let the substrate concentration vary spatially - $s(\mathbf{r})$

in a linear gradient - chemotaxis?

in a localised substrate profile - scattering / trapping?

Need rate κ to vary with *s* - typically Michaelis-Menten reaction kinetics.

Calculation Details

s and p both diffuse $\partial_t p - D_p \nabla^2 p = 0$, $\partial_t s - D_s \nabla^2 s = 0$,

with B.Cs.

$$-D_{s}\hat{\mathbf{k}}\cdot\nabla s = -\kappa_{1}sP_{s}\sigma(\theta,\phi), \ -D_{p}\hat{\mathbf{k}}\cdot\nabla p = \kappa_{2}P_{p}\sigma(\theta,\phi), \ \ \kappa_{2}P_{p} \equiv \kappa(s)$$

$$\begin{array}{c} \frac{D_{p}}{D_{s}} > 1 \\ \frac{D_{p}}{D_{s}} > 1 \\ \frac{D_{p}}{D_{s}} = 1 \\ \frac{D_{p}}{D_{s}} < 1 \end{array} \begin{array}{c} -\hat{\mathbf{k}} \cdot \nabla p|_{a} = -\kappa_{1}(s_{b} - \frac{D_{p}}{D_{s}}p)\sigma \\ s = (s_{b} - \frac{D_{p}}{D_{s}}p) \\ \text{Non linear dependence} \\ \text{on colloid size} \end{array} \begin{array}{c} \text{Limit not} \\ \text{well defined} \\ \text{well defined} \\ \frac{-\hat{\mathbf{k}} \cdot \nabla p|_{a} = \kappa_{1}s_{b}\sigma \\ s = s_{b} \\ \text{Swimmer sensitive} \\ \text{to gradients of } s \end{array} \begin{array}{c} -\hat{\mathbf{k}} \cdot \nabla p|_{a} = \kappa_{2}\sigma \\ s = (s_{b} - \frac{D_{p}}{D_{s}}p) \\ \text{Swimmer insensitive} \\ \text{to gradients of } s \\ \frac{\kappa_{1}s_{0}/\kappa_{2} < 1 \\ \kappa_{1}s_{0}/\kappa_{2} = 1 \end{array} \begin{array}{c} \kappa_{1}s_{0}/\kappa_{2} > 1 \end{array}$$

Details contd..

• Uniform substrate gradient along $\boldsymbol{\hat{z}}$

- Symmetry axis along $(\theta_n, \phi_n = 0)$.
- $\mu_{\it p},\,\sigma$ expressed in spherical harmonics $\mu_{\it p\ell},\,\sigma_\ell$ in the body fixed frame of swimmer
- Assume steady state $\partial_t p = 0$
- ω is now a function of θ_n through the B.C.

Swimmer in a linear gradient

Conditions for chemotaxis

- Single catalytic site insufficient; a finite coat of catalysts required.
- We can design the swimmer to be chemotactic or antichemotactic by suitable coating.
- If σ , μ_p contain odd or even harmonics alone no propulsion result holds for spheroids too.
- A sphere with uniform mobility does not chemotax.

Shape Dependence of ω

Uniform spheroidal caps of catalytic and mobility patterns as $\sigma(\theta) \propto \Theta(\theta - \alpha_1)$ and $\mu_p \propto 1 + \Theta(\theta - \alpha_2)$

Figure : Angular velocities of collioids of various shapes (a) sphere (b) oblate (c) prolate as a function of α_1 at fixed values of α_2 .

Linear Velocity in a gradient

$$\begin{aligned} \mathbf{V} &= \mathbf{V}_{p} + \mathbf{V}_{s}, \text{ with} \\ \mathbf{V}_{p} &= -\frac{\kappa_{1}s_{0}}{15D_{p}} (5\sigma_{1}\mu_{p0} + 2\sigma_{2}\mu_{p1} - \sigma_{1}\mu_{p2}) \hat{\mathbf{n}} \\ &- \frac{\kappa_{1}s_{1}R}{10D_{p}} (\sigma_{0}\mu_{p2} - \frac{2}{9}\sigma_{1}\mu_{p1} - 2\sigma_{2}\mu_{p0} + \frac{1}{35}\sigma_{2}\mu_{p2}) \hat{\mathbf{n}} \hat{\mathbf{n}} \cdot \hat{\mathbf{g}} \\ &- \frac{\kappa_{1}s_{1}R}{30D_{p}} (10\sigma_{0}\mu_{p0} + \sigma_{0}\mu_{p2} + 2\sigma_{1}\mu_{p1} - 2\sigma_{2}\mu_{p0} + \frac{29}{35}\sigma_{2}\mu_{p2}) \hat{\mathbf{g}}, \\ \mathbf{V}_{s} &= -s_{1}(\mu_{s0} + \frac{\mu_{s2}}{10}) \hat{\mathbf{g}} - \frac{\mu_{s2}s_{1}}{10} \mathbf{nn} \cdot \hat{\mathbf{g}}. \end{aligned}$$
(1)

Typical trajectories

Figure : In each panel, three consecutive snapshots (with equal time intervals) are sketched together with typical connecting trajectories.

Collective behaviour

Consider a distribution $\rho(\mathbf{r}, t)$ of swimmers

S and P consumed and produced on surface of catalytic colloids resulting in fields $s(\mathbf{r}, t)$ and $p(\mathbf{r}, t)$.

Each swimmer responds to \boldsymbol{s} through motility and chemotactic mechanisms.

The response of a swimmer to p is like that to any externally imposed solute gradient.

Hydrodynamic interactions ignored in this calculation.

Single Particle Dynamics

Langevin equations for the
$$\alpha$$
th swimmer

$$\frac{d\mathbf{r}_{\alpha}}{dt} = V_{0}(s)\hat{\mathbf{n}}_{\alpha} - \alpha_{0}\nabla s - \alpha_{1}\hat{\mathbf{n}}_{\alpha}\hat{\mathbf{n}}_{\alpha} \cdot \nabla s + \beta_{0}\nabla p + \beta_{1}\hat{\mathbf{n}}_{\alpha}\hat{\mathbf{n}}_{\alpha} \cdot \nabla p$$
Response to gradients

$$+\sqrt{2D}\mathbf{f}_{r}(t),$$

$$\frac{d\mathbf{n}_{\alpha}}{dt} = \Phi_{0}(\hat{\mathbf{n}}_{\alpha} \times \nabla s) \times \hat{\mathbf{n}}_{\alpha} + \Omega_{0}(\hat{\mathbf{n}}_{\alpha} \times \nabla p) \times \hat{\mathbf{n}}_{\alpha}$$
chemotactic response to gradients

$$+\sqrt{2D_{r}}\hat{\mathbf{n}}_{\alpha} \times \mathbf{f}_{n}(t),$$
(2)

where

 $\Phi_0 > 0 \& \Omega_0 > 0 \rightarrow$ chemotactic response to ∇s and ∇p

 $\alpha_0>0$ & $\beta_0>0$ → attractive contributions to interactions due to s and p respectively

S and P consumed and generated at a rate

$$Q(\mathbf{r},t) = \kappa(\mathbf{s}) \sum_{\alpha} \int_{|\mathbf{X}_{\alpha}| = R} \delta(\mathbf{r} - \mathbf{r}_{\alpha} - \mathbf{X}_{\alpha}) \sigma(\mathbf{X}_{\alpha} \cdot \hat{\mathbf{n}}_{\alpha}),$$
(3)

 $\mathbf{X}_{lpha}=$ enzyme site on swimmer

Figure : Schematic for the calculation of Q.

Develop Q to leading orders in ∇

Defining $\sum_{\alpha} \delta(\mathbf{r} - \mathbf{r}_{\alpha}) = \rho(\mathbf{r})$, $\sum_{\alpha} \hat{\mathbf{n}}_{\alpha} \delta(\mathbf{r} - \mathbf{r}_{\alpha}) = \mathbf{n}(\mathbf{r})$ to get

$$\operatorname{Pe} \frac{D_{\rho}}{D_{s}} \frac{\partial s}{\partial t} - \nabla^{2} s = -\mathcal{K}(s)(\rho - \epsilon \nabla \cdot \mathbf{n}), \\ \operatorname{Pe} \frac{\partial \rho}{\partial t} - \nabla^{2} \rho = \frac{D_{s}}{D_{\rho}} \mathcal{K}(s)(\rho - \epsilon \nabla \cdot \mathbf{n}).$$

Péclet number $Pe \equiv Rv/D_p$, $K(s) = \kappa(s)NR^2/D_s$, $N = 4\pi R^2\sigma_0$ total enzymatic sites on swimmer and $\epsilon = \sigma_1/3\sigma_0$.

Let Pe = 0; linearise about ρ_0 , s_0

$$s_{\mathbf{q}} = -\frac{K(s_{0})}{q^{2} + \xi_{s}^{-2}} (\rho_{\mathbf{q}} - \epsilon \Theta_{\mathbf{q}})$$

$$p_{\mathbf{q}} = \frac{K(s_{0})D_{s}/D_{p}}{(q^{2} + \xi_{s}^{-2})} (\rho_{\mathbf{q}} - \epsilon \Theta_{\mathbf{q}})$$
(4)

 $\xi_s = [\rho_0 K'(s_0)]^{-1/2}$ is nondimensional interaction range

 $\xi_s \neq 0$ in linear part of MM

Here s eaten at lower rate than in the saturated part - long range nature suppressed

Call the ξ_s finite limit, the unsaturated case and $\xi_s \to \infty$, the saturated.

Equations of Motion

- Starting from the Langevin eq. EOM for the density ρ and ${\bf n}$ constructed.
- Closure used: $\partial_t \mathbf{Q} = 0$, \mathbf{Q} slaved to \mathbf{n} and higher moments neglected
- S and P fields produced by inhomogeneities in ρ and divergence of **n** mediate interactions between swimmers.
- The linearized dynamics in the isotropic phase closes in terms ρ and $\mathbf{n}_{L\mathbf{q}} = \hat{\mathbf{q}}\hat{\mathbf{q}} \cdot \mathbf{n}$.
- Coarse-grained equations presented in saturated limit and for wavenumbers $q \ll \xi_s^{-1}$ in unsaturated case.

Contrast to Flocking models

- Long ranged interactions.
- Interactions do not promote a global parallel alignment of **n**.
- General tendency to form asters.
- A very different set of non-linearities from Toner-Tu.

Unsaturated

In the unsaturated case $\xi_s < \infty,$ for wavenumbers $q \ll \xi_s^{-1},$ coarse grained equations read

$$\begin{aligned} [\partial_t + 2D_r - (D + \frac{v_1^2 s_0^2}{30D_r})\nabla^2 + (\epsilon \rho_0 \xi_s^2 A - \frac{v_1^2 s_0^2}{90D_r})\nabla\nabla\cdot]\mathbf{n}_L \\ + \frac{(v_1 s_0 - \rho_0 \xi_s^2 A)}{3\rho_0}\nabla\rho = 0, \\ [\partial_t - (D - \rho_0 \xi_s^2 B)\nabla^2]\rho_0^{-1}\delta\rho + (v_1 s_0 - \epsilon \rho_0 \xi_s^2 B\nabla^2)\nabla\cdot\mathbf{n}_L = 0, \end{aligned}$$
(5)

where we define

$$A = N\kappa(s_0) \left[\frac{\Omega_0}{D_p} - \frac{\Phi_0}{D_s} + \frac{V_0(s_0)}{2D_s} \frac{d\ln\kappa}{ds}|_{s_0} \right],$$

$$B = N\kappa(s_0) \left[\frac{1}{D_p} (\beta_0 + \frac{\beta_1}{3}) + \frac{1}{D_s} (\alpha_0 + \frac{\alpha_1}{3}) \right],$$
(6)

Stability analysis

• In the overdamped limit, the unstable mode

$$-i\omega = -D'q^2 \equiv -(D + \frac{v_1^2 s_0^2}{6D_r} - \rho_0 \xi_s^2 B - \frac{v_1 s_0 \rho_0 \xi_s^2 A}{6D_r})q^2, \quad (7)$$

goes unstable with growth rate $\sim q^2$ at small q.

- Competition with stabilizing effects at larger q will lead to a modulated growth morphology with a length scale $\sim |D'|^{1/2}$.
- Other mode, controlled by D_r, remains stable for q → 0, i.e., interactions do not promote flocking.

Stability Analysis

On the stable side, the steady-state static small-q structure factor

$$S_{
ho} \propto rac{1}{(D' + \gamma q^2)},$$
 (8)

where

$$\gamma = 2\xi_s^2 D_r [\rho_0 \xi_s^2 B + \frac{\rho_0 \xi_s^2 A v_1 s_0}{6D_r} + \frac{1}{3} \epsilon \rho_0 \xi_s^2 B (v_1 s_0 - \rho_0 \xi_s^2 A) + (D - \epsilon \rho_0 \xi_s^2 A) (D + \frac{2v_1^2 s_0^2}{45D_r} - \rho_0 \xi_s^2 B) + D' (\rho_0 \xi_s^2 B + \epsilon \rho_0 \xi_s^2 A - 2D)].$$
(9)

For $\gamma>0$, as $D'\to 0^+,~S_\rho$ displays fluctuations with a correlation length $\sqrt{\gamma/D'}$ that diverges as $D'\to 0\to$ Clumping. With $\gamma<0$, the system has a tendency towards patterning with a characteristic length scale $\sim |\gamma|^{-1/2}$, implying a competition between the chemotactic (A) and phoretic (B) response to gradients.

Phase Diagram - Unsaturated

Figure : The phase diagram in the reaction-limited regime of abundant fuel shows a variety of possible states in the parameter space spanned by the effective rotational diffusivity D_r and effective interactions G. Possible experimental paths are shown as the two dashed lines. These could be explored in sequences of experiments on particles designed with suitable mobility coats.

Saturated

Define

$$\mathbf{E}(\mathbf{r}) = -\nabla \int_{\mathbf{r}'} \rho(\mathbf{r}') / |\mathbf{r} - \mathbf{r}'|, \qquad (10)$$

The coarse grained equations are

$$\begin{aligned} [\partial_{t} - (D + \frac{v_{0}^{2}}{30D_{r}})\nabla^{2}]\mathbf{n}_{L} + \frac{v_{0}}{3\rho_{0}}\nabla\rho + \frac{A}{3}\mathbf{E} \\ - [\frac{v_{0}^{2}}{90D_{r}} - \frac{2\epsilon N\kappa_{2}v_{0}\rho_{0}}{135D_{r}}(\frac{\beta_{1}}{D_{p}} + \frac{\alpha_{1}}{D_{s}})]\nabla\nabla\cdot\mathbf{n}_{L} \\ + [\frac{2\epsilon^{2}A^{2}\rho_{0}^{2}}{15D_{r}}n_{L}^{2} - \frac{\epsilon A}{3}\rho_{0} + 2D_{r}]\mathbf{n}_{L} = 0, \end{aligned} (11) \\ (\partial_{t} - D\nabla^{2})\rho + \rho_{0}(v_{0} + \epsilon\rho_{0}B)\nabla\cdot\mathbf{n}_{L} - \rho_{0}B\nabla\cdot\mathbf{E} = 0, \end{aligned}$$

Saturated - Stability Analysis

In the overdamped limit, i.e. for sufficiently large D_r , the relaxation rates of the eigenmodes are

$$-i\omega = \begin{cases} \frac{G}{2D'_{r}} - [2D + \frac{v_{0}(v_{0} + \epsilon\rho_{0}B)}{3D'_{r}}]q^{2}, \\ -2D'_{r} + O(q^{2}), \end{cases}$$
where , $D_{eff} = D + \frac{v_{0}v'_{0}}{6D'_{r}}.$ (13)

where

- $D'_r = D_r \epsilon \rho_0 A/6$ represents a modified rotational diffusion.
- $G = 2\rho_0 BD_r + \frac{1}{3}\rho_0 Av_0$ is an effective control parameter for the nature of interaction between the swimmers.

Saturated - Phase Diagram

Summary

- We have studied the dynamics of the catalytic colloid in a reactant gradient and catergorised the different gradent seeking mechanisms.
- In particular we have shown that the chemotaxis can be controlled by changing mobility, catalytic coat and shape of the colloid.
- We have obtained the coarse grained equations for the density and polar order parameter of the colloids interacting via long ranged dffusion fields.
- The interplay of chemotaxis and phoresis leads to clumping and patterning at low reactant concentration; at high concentration, the slow decay of diffusing reactants and products yields analogues of electrostatic and gravitational phenomena Debye screening, microphase separation, plasma oscillations and gravitational collapse.