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Motility

Directed force-free motion

Flocking

Gradient-sensing

Signalling

Clumping
Patterns

Can inanimate matter imitate this?
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The Catalytic Colloid

B A
A 5] A
L]
e} o]
W N4
H,0, i 2H" + 2 + H,0, o\ 2\
<= B B B
He — FIG. | {coloronline).  Catalytic () and noncatalyiic (V) dimer
spheres and the collision events that occur on interaction of the A
2H +2e°+0, 2H,0 and B specics with cach spherc
[
o
- -
R
&
® ]
&
ko T
\'.
.‘ [ ]
ENZYMATIC SITE
® N

Figure : The eletrokinetic swimmer (Paxton et al 2005), the chemically
powered nanodimers (Kapral et al. 2007) and The Dffusiophoretic Swimmer
(Golestanian et al. 2005).
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The Plan of the talk

Self-Diffusiophoresis

Chemotaxis in an external gradient

Single Particle motion in external reactant field

Collective behaviour
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Phoresis

e Extended object moves when placed in external gradient of
‘something’ that interacts with its surface.

e ‘Something’ can be

e Electric potential - Electrophoresis
e Chemical Species - Diffusiophoresis

e Force free motion

e Screening layer

e Colloids - Re = 0 — Stokes Regime.

e Colloid coated with catalysts and placed in substrate bath

e localised product gradients — self phoretic propulsion
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Phoresis
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Figure I Electrophoresis of 4 charged particle. x ™' is the Debye screening length of the
solution, defined by (4). v* is the “slip velocity,” which is given by (6) with { (taken to be
negative here) equal to the electrostatic potential at y = 0. £* is the electric field at the
outer edge of the double layer (S*).

Figure : Screening length, separation of ‘outer’ and ‘inner’ region; Anderson
1986.

6/31



Swimmer in a uniform substrate field

colloid coated in a pattern - o(6) - produces diffusion field p

p a substrate  product

catalysts

.

Thin boundary layer + MB distribution of p

Y

|
Momentum balance Slip velocity
% + Pb% = i vs(r) = p(l — kk) - Vpy
n2y% — 21— Mobility
_ o
p(z) = ppe?/*oT W= % I° z[e( mT) 1]dz

¢ - interaction potential Anderson et al. 1989
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Swimmer in a uniform substrate field

Golestanian et al. 2005
product diffuses d;p = D,V?p

) ~
D, %], = ro(h)

Use p to get
V==L [v(r)dQ

w = qep | P x vs(r)dQ

V, w obtained using
Force and Torque balance f): fi - 7d°r, fz r x 7d%r
Reciprocity theorem -

for solutions vy, v, to Stokes eq. for b.c. u; |5, =V + Q2 xR

Uz [5,= Vs, U12 |r500= 0.
Keh et al. 1976
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Colloid in an External Reactant Gradient

Let the substrate concentration vary spatially - s(r)

in a linear gradient - chemotaxis?

in a localised substrate profile - scattering / trapping?

Need rate x to vary with s - typically Michaelis-Menten reaction kinetics
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Calculation Details

s and p both diffuse 9;p — D,V?p =0, d;s — DsV?s =0,
with B.Cs.

~

—D.k-Vs = —r15Psa(0,$), —Dok - Vp = kaPoo (0, ¢), k2Pp = r(s)

= D
—k-Vplo = —ri(sp — [TZP)U
D Non linear dependence well defined
Dy _ 1 on colloid size
Ds —k- Vpla = kispo —k - Vpls = koo
D
Dy _q s=-sp s=(sv — P)
Ds Swimmer sensitive Swimmer insensitive
to gradients of s to gradients of s.

Iilso/liz <1 Iilso//iz =1 Iilso/:‘i2 >1
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Details contd..

Uniform substrate gradient along 2z
e Symmetry axis along (0, ¢, = 0).

o Lp, o expressed in spherical harmonics ppe, ¢ in the body fixed
frame of swimmer

e Assume steady state 0;p =0

e w is now a function of 6, through the B.C.
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Swimmer in a linear gradient

substrate  product

Gradient e — wo%W& (5p100 + 2pp01 — p107)sinb,

\ wo = kg Ta2oy/TnD8R
On

T~

Anti
Chemotactic Alignment
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Conditions for chemotaxis

Single catalytic site insufficient; a finite coat of catalysts required.

We can design the swimmer to be chemotactic or antichemotactic
by suitable coating.

If o, pp contain odd or even harmonics alone - no propulsion - result
holds for spheroids too.

e A sphere with uniform mobility does not chemotax.
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Shape Dependence of w

Uniform spheroidal caps of catalytic and mobility patterns as
() x ©(8 — 1) and pp x 14+ O(0 — a2)

00

@

Figure : Angular velocities of collioids of various shapes (a) sphere (b) oblate
(c) prolate as a function of a4 at fixed values of ao.
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Linear Velocity in a gradient

V=V, +v5, with

V, = 15D (501up0 + 202 /1p1 — O1/1p2)R0

K151R 2
— 10D, (oottp2 — gOLkeL ~ 2021p0 +

£02Mp2)ﬁﬁ g
K1s1R

-2 (1000 ppo + Tofip2 + 201 4p1 — 20244p0 +
30D,

29 R
%0’2/11[72 )ga

Vs - *51(,”50 +

Hs2\ .  Hs251 A
_ . 6. 1
10) o & (1)
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Typical trajectories

(i) chemotaxis gbolar run-and-tumble

alignment S e . accumulation

in slow regions

4

net drift beyond net drift
rotational diffusion time: at all times

Figure : In each panel, three consecutive snapshots (with equal time intervals)
are sketched together with typical connecting trajectories.
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Collective behaviour

Consider a distribution p(r, t) of swimmers

S and P consumed and produced on surface of catalytic colloids resulting
in fields s(r, t) and p(r, t).

Each swimmer responds to s through motility and chemotactic
mechanisms.

The response of a swimmer to p is like that to any externally imposed
solute gradient.

Hydrodynamic interactions ignored in this calculation.
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Single Particle Dynamics

Langevin equations for the ath swimmer
/ Selt Propulsion

dro
é — Vo(s)ha — a{\VS — fghy, - Vs J;/’fOVp ¥ Gifigiy - Vp
Response to gradients

+Vv2Df,(t),
d
;: = ®o(fa X Vs) X fig + 0o(Ra x Vp) X Aq

chemotactic response to gradients
+v2D fi, x f,,(t), (2)
where

®o >0 & )y > 0 — chemotactic response to Vs and Vp

ag >0 & Jy > 0 — attractive contributions to interactions due to s and
p respectively
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S and P consumed and generated at a rate
Q1) = 5(5) Y / 5E =t — X))o (Xer - i),
— JIXa|=R

Xs = enzyme site on swimmer

(0,0) X

Figure : Schematic for the calculation of Q.
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Develop @ to leading orders in V

Defining >~ d(r —ro) = p(r), >°, Ao 0(r — ry) = n(r) to get

- 2 — — — .
Pe D. 0t Vs K(s)(p — €V - n),
op 2 _ D
Pea —-Vp = D, K(s)(p — €V - n).

Péclet number Pe = Rv/D,, K(s) = x(s)NR?/Ds, N = 47R?0, total
enzymatic sites on swimmer and € = o1/300.
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Let Pe = 0; linearise about pg, so

K
Sq = —quzs)z(/’q—ﬁeq)
K(s0)Ds/ D,
Pq = (qjo_i_Tg)(Pq_eeq) (4)

& = [poK'(s0)]"*/? is nondimensional interaction range

&s # 0 in linear part of MM

Here s eaten at lower rate than in the saturated part - long range nature
suppressed

Call the &; finite limit, the unsaturated case and , the
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Equations of Motion

e Starting from the Langevin eq. EOM for the density p and n
constructed.

e Closure used: 9;Q = 0, Q slaved to n and higher moments
neglected

e S and P fields produced by inhomogeneities in p and divergence of n
mediate interactions between swimmers.

e The linearized dynamics in the isotropic phase closes in terms p and
N = élﬁ LLE

e Coarse-grained equations presented in saturated limit and for
wavenumbers g < ¢! in unsaturated case.
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Contrast to Flocking models

Long ranged interactions.

Interactions do not promote a global parallel alignment of n.

General tendency to form asters.

A very different set of non-linearities from Toner-Tu.
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Unsaturated

In the unsaturated case & < oo, for wavenumbers g < &1, coarse
grained equations read

[0c + 2D, — (D + 20192 | (epo2A — 297 In
t r 30D, Poss” T 90D, L
2
— peC2A
+(V150 pogs )Vp:07
3po

[0r — (D — po€2B)V?]py tp + (viso — epo€2BV?)V -np = 0,

where we define

QO q)o V()(So) dink
A=N 20 To Yoi%0)
”(50){0,, D. " 2D, ds I
B1

B = NK(SQ) |:;p(,30 + ?) + Dis(ao =+ Oél):l ) (6)
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Stability analysis

e In the overdamped limit, the unstable mode

v2s2 V1S 2A
55 e MISSe ()

—iw=-D'¢g>?=—(D
iw q (D+ 6D,

goes unstable with growth rate ~ g2 at small g.

o Competition with stabilizing effects at larger g will lead to a
modulated growth morphology with a length scale ~ |D’|*/2,

e Other mode, controlled by D,, remains stable for g — 0, i.e.,
interactions do not promote flocking.
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Stability Analysis

On the stable side, the steady-state static small-g structure factor

1

S —_— 8
P DT Aa) ®)
where
2Avisy 1
1= 22D p02B + AN 4 2 2B (viso — o)
2v2s2
+(D — epo€2A)(D + 451D(,) — po&2B)
+D'(po€2B + epo2A — 2D)]. (9)

For v >0, as D’ — 0%, S, displays fluctuations with a correlation length
\/7v/D’ that diverges as D’ — 0 — Clumping.

With v < 0, the system has a tendency towards patterning with a
characteristic length scale ~ |y|71/2, implying a competition between the
chemotactic (A) and phoretic (B) response to gradients.
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Phase Diagram - Unsaturated
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Figure : The phase diagram in the reaction-limited regime of abundant fuel
shows a variety of possible states in the parameter space spanned by the
effective rotational diffusivity D, and effective interactions G. Possible
experimental paths are shown as the two dashed lines. These could be explored

in sequences of experiments on particles designed with suitable mobility coats.
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Saturated

Define

€)=~V [ o)/l

The coarse grained equations are

V2

2 Vo A
30D) ]nL+3 Vp+3E
2 1

v5 2eN ko vopo b o

o5, ~ 1350, (b, + D, VY -n
2¢2A%0% 6A

(0c — DV?)p + po(vo + €poB)V - np — poBV - E = 0,

[0: — (D +

(10)
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Saturated - Stability Analysis

In the overdamped limit, i.e. for sufficiently large D,, the relaxation rates
of the eigenmodes are

?

257 — [2D + 2legsmBllg2
—2D;+0(q?),
VoV

where , Desr = D + 6D;.

where
o D/ =D, —eppA/6 represents a modified rotational diffusion.

o G =2pyBD, + %poAvo is an effective control parameter for the
nature of interaction between the swimmers.
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Saturated - Phase Diagram
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Summary

e We have studied the dynamics of the catalytic colloid in a reactant
gradient and catergorised the different gradent seeking mechanisms.

e In particular we have shown that the chemotaxis can be controlled
by changing mobility, catalytic coat and shape of the colloid.

e We have obtained the coarse grained equations for the density and
polar order parameter of the colloids interacting via long ranged
dffusion fields.

e The interplay of chemotaxis and phoresis leads to clumping and
patterning at low reactant concentration; at high concentration, the
slow decay of diffusing reactants and products yields analogues of
electrostatic and gravitational phenomena Debye screening,
microphase separation, plasma oscillations and gravitational collapse.
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