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Work in progress:

Flow and phase separation of active spinners

Jonathan Selinger

Liquid Crystal Institute

Chemical Physics Interdisciplinary Program

Kent State University

I. Flow: Inspired by experiments of Yuka Tabe

(Work with former graduate student Lena Lopatina, 

now at Los Alamos National Laboratory)

II. Phase separation: Inspired by simulations of 

Sharon Glotzer
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Experiment: Driven flow in 

chiral liquid-crystal films

Experiments by Yuka Tabe (Waseda Univ.) and Hiroshi Yokoyama (LCI)

• Experiment #1: Langmuir monolayers of chiral molecules on glycerol

– Change humidity of air  Water transport across monolayer

– Motion of water  Precession of chiral liquid-crystal molecules

– Boundary conditions on domain walls, competition between 

driving and elastic interactions  Complex director modulations

– Observe only precession, not flow  Presumably because of 

viscosity of underlying fluid
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Experiment: Driven flow in 

chiral liquid-crystal films

• Experiment #2: Freely suspended films of chiral liquid crystals in 

smectic-C phase

– Different humidity on two sides  Water transport across film

– Motion of water  Precession of chiral liquid-crystal molecules

– No underlying viscous fluid  Observe both director rotation and 

large-scale flow (based on motion of dust particles)

• Experiment #3: Freely suspended films of chiral liquid crystals in 

smectic-A phase

– Motion of water  Rotation of chiral liquid-crystal molecules 

about their long axes

– Cannot observe director rotation, because there is no director

– Observe large-scale flow (based on motion of dust particles),

less than in smectic-C case
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Simulation: Phase separation 

of active spinners
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Theoretical issues

• Specific connection between experiment and simulation

– Driven rotation in experiment  active rotation in simulation

– Future experiment could investigate racemic mixture of right-

and left-handed molecules, look for chiral phase separation 

induced by water transport

• General principles

– How does driving/activity induce flow?

– How does driving/activity induce phase transition?
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Flow:

Use my favorite textbook
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Lagrangian dynamics

• Lagrangian L = T  V

• Equation of motion

• With dissipation 

D = Rayleigh dissipation function

= half the rate of energy dissipation

• With constraints

• With dissipation and constraints
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Strategy

• Construct general 

expressions for T, V, and 

D allowed by symmetry

• Derive Lagrangian

equations of motion
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• Modes that dissipate energy

• Dissipation function density

• Lagrangian equation of motion

Case 1:

Ordinary fluid

• Generalized coordinates

• Generalized velocities

• Kinetic energy density

• Potential energy density

• Constraints
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Case 2:

Nematic liquid crystal

v

Key issue:  Coupling between orientation and flow
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• Modes that dissipate energy

where background rotational flow is

• Dissipation function density

Case 2:

Nematic liquid crystal

• Generalized coordinates

• Generalized velocities

• Kinetic energy density

• Potential energy density

• Constraints

   tt ,,, rnrv 

2

2
12

2
1 nv IT  

0V

1ˆ

0

2




n

v

 t,ˆ rn

vω 
2
1

   
  

   jijiii

kjkiji

jijiijij

nANNN

nAAn

nAnAAD

212
1

652
1

2

12
1

42
1













 
nωnN 





ijjiij vvA
2
1

director rotation wrt

background flow



LCI ● CPIP
THEORY

LCI ● CPIP
THEORY

• Modes that dissipate energy

where background rotational flow is

• Dissipation function density

where ’s = Miesowicz viscosities

1 = rotational viscosity

2 = torsion coefficient
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Case 2:

Nematic liquid crystal

• Generalized coordinates

• Generalized velocities

• Kinetic energy density

• Potential energy density

• Constraints
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Example: Shear alignment

• Impose a shear flow profile

• Calculate the bulk nematic 

alignment, parameterized by

• Generalized coordinate 

• Generalized velocity

• Kinetic energy density

 xv ˆyv 


 xv ˆyv 

 0,sin,cosˆ n



• Potential energy density V = 0 

(can add elasticity and anchoring 

later if we wish)

• Dissipation function density

• Constraints automatically satisfied

• Equation of motion

• Steady-state solution

2

2
1const IT 

 
  



2cos

const

2
1

22
1

2

2
1

12
1

vv

vD









  02cos22
1

2
1

1   vvI 









 

2

11cos
2

1








LCI ● CPIP
THEORY

LCI ● CPIP
THEORY

• Modes that dissipate energy

where background rotational flow is

• Rayleigh dissipation function

Case 1 ¾: Fluid with spinning 

particles but no director

• Generalized coordinates

• Generalized velocities

• Kinetic energy density

• Potential energy density

• Constraints
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Model for chiral SmA film: 

Simple rectangular geometry

• Generalized velocities

• Kinetic energy density

• Dissipation function density

),(),,( tytyv 

2
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12
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1  IvT 

• Additional dissipation function due 

to surface stress 

• Constraints automatically satisfied

• Equations of motion

• Boundary conditions2
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Question of theoretical 

formalism

Where does this term come from? 

Possibilities are:

• Dissipation function: Term of

• Free energy: Term of

• Somewhere else?
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• If there’s no shear stress 

resisting the shear flow, then

• If the boundaries prevent shear 

flow, then they must be providing 

a shear stress of  = water

Model for chiral SmA film: 

Simple rectangular geometry

• Steady state solution
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Phase separation

Question:

• How to combine active rotation with continuum hydrodynamic 

description of the phase transition?

Variables:

• Chiral composition (r,t) = right(r,t)  left(r,t)

• Spin (r,t)

• Flow velocity v(r,t)
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Analogy with hypothetical 

equilibrium problem

If it were equilibrium statistical mechanics…

• Use free energy

• Minimize over   effective free energy in terms of  only

• Chiral symmetry-breaking transition at critical temperature 

How to formulate the corresponding active problem?


















 







 








 







 







baTkTk

baTkF

BB

B

2242

22

2

1

2

1

12

1

2

1

2

1

2

1

2

1
log

2

1

2

1
log

2

1

entropy of mixing

422
2

eff
12

1

2

1

2

1
 Tk

a

b
TkF BB 










a

b
TkB

2





LCI ● CPIP
THEORY

LCI ● CPIP
THEORY

Case A

• Zero-dimensional, no conservation law, no flow velocity

• By analogy with previous problems, equations of motion must be
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rotational viscosity term

in dissipation function

Active spinning term: 

Derive from dissipation 

function, free energy, or ?

Derive from

entropy of mixing term

in free energy

Active spinning term: 

Derive from ?



LCI ● CPIP
THEORY

LCI ● CPIP
THEORY

Case B

• One-dimensional with conservation law for chiral particles,

still no flow velocity

• Conservation law gives

where current is

• Equations of motion become 
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Case B solution

• In steady state for rotation:

• Substitute into equation of motion for chiral composition (x,t)

• When active coupling is big enough:

• Fourier transform x  q:

• Spinodal decomposition with favored wavevector
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Case C

• Two-dimensional with conservation law for chiral particles 

and with flow velocity vy(x,t)

• Equations of motion

• Similar solution as in case B,

but with flow:
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Open questions

1. How to justify the way I introduced driving?

How to relate the two driving coefficients?

2. What if the system had a first-order transition?

How to model nucleation and growth of active 

system?


