WHAT CAN GPU COMPUTING DO FOR
NUMERICAL SIMULATIONS?

Rastko Sknepnek
Division of Physics
School of Engineering, Physics and Mathematics
University of Dundee

X\]ERSITP
N2 %

DUNDEE

22/01/2014

KITP - Active Matter: Cytoskeleton, Cells, Tissues and Flocks

N @ LEVEL SpEsEagEsRagen Ve i
REGENERATION c1 85 [T 350 ©18.0856

60 frames per se

@f.‘ *

Wtk 2

2 ‘

mi
B DRIVERS

i Y g CONDITIONS &

n > = - . . BE THE FIRST TO GET TO THE FINISH LINE
) e — / . : FINDINE*DNENTS... O oo
u - e — e gL

|H [e e, e -
. B a g iy
N ' 4
. ey y @ &t -
R Lo ge o (IR BBl
] ¥
7ESESSEEEEEEES ELEAZARIBE78 YURINING

HD: 1920x1080 = 2,073,600 pixels 106x102x104=1012
60 frames per second A TRILLION operations per second!

104 operations per pixel We need a TFLOPS device!

22/01/2014 KITP - Active Matter: Cytoskeleton, Cells, Tissues and Flocks

Outline

* CPU vs. GPU architecture

* Data parallelization

* NVIDIA™ CUDA™ overview
* CUDA™ in real life

* Limitations

22/01/2014 KITP - Active Matter: Cytoskeleton, Cells, Tissues and Flocks

CPU

* General purpose

e Sufficiently fast, yet versatile
(from spreadsheets to games
and from Facebook to fluid
dynamic)

* Easily programmable

O D DD DD D D e D D

—

Some task are too demanding (e.g., graphics)
and need to be offloaded to coprocessors.

4

Specialized hardware components (such as GPU)

Core™ i/

oooooooooo
ooooooooooooooooooooooo

22/01/2014 KITP - Active Matter: Cytoskeleton, Cells, Tissues and Flocks

In 2006 NVIDIA released Compute
Unified Device Architecture (CUDA)

G80 GPU — general purpose parallel
computing platform opened access
to GPU’s tremendous computational
capabilities (over 500 GFLOPS and
90GB/s bandwidth) to non graphical
applications.

GPGPU WAS BORN! (GeForce 8800 GTX, 2006)

Theoretical GFLOP/s

Theoretical GB/s

4750
4500 300
4250 NVIDIA GPU Single Precision
4000 e=p==NVIDIA GPU Double Precision 270 A—
3750 Intel CPU Double Precision Tesla K20X
3500 =mg=m|ntel CPU Single Precision 240 o e 81241
3250 GeForce GPU
3000 210
2750 Tesla GPU
2500 180 = y
2250 Tesla M2090
2000 150 F—
1750 Tesla C2050
1500 Tesla K20X 120
1250
1000 TeslaM2090 90 Tesl@a CT060

750

500 Tesla C2050 60 Sandy Bridge

TeslaC1060 .
250 Harpertown Sandy Bridge Bloomfield
Woodcrest 30
0 ' pentium 4 Bloomfield West Woodcrest
Apr-01 Sep-02 Jan-04 May-05 Oct-06 Feb-08 Jul-09 Nov-i0 Apr-12 Aug-13 Dec-14 GeForce FX5900 Prescott Westmere
P! ep-! y- P 8-
0 arpertown

NOorthwood

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

22/01/2014 KITP - Active Matter: Cytoskeleton, Cells, Tissues and Flocks 5

Side by side comparison

CPU

(intel“

Core™ i/

Intel Core i7-4960X ($1,000)

22nm manufacturing

6 cores/15MB shared L3
cache

3.6 GHz

~1.9 billion transistors

~60 GB/s memory bandwidth
(theoretical)

~160 GFLOPS

~200W of power

NVIDIA TITAN GK110 (Kepler)
(~$1,000)

28 nm manufacturing

2688 CUDA cores/1,536KB of
L2 cache

837 MHz

~7.1 billion transistors

~290 GB/s memory bandwidth
(theoretical)

~4 TFLOPS (single) and 1.3
TFLOPS (double)

250W of power

22/01/2014

KITP - Active Matter: Cytoskeleton,

Cells, Tissues and Flocks

Radically different architectures

4th Generation Intel® Core™ Processor Die Map Runs handful of threads at the same
22nm Tri-Gate 3-D Transistors time

= B3| small number of registers (16 per core)

Agent, §

wml | (expensive context switching)
£ 'cr;rel:r]glrl!elr

Complex logic control

- D|splay, PCle 7
+ and DMI 10s

CPU hides memory latency by
large multilevel caches (L1, L2,
and L3)

PCI Express 3.0 Host Interface

Runs thousands of threads
simultaneously (Single Instruction
Multiple Threads — SIMT)

Huge number of registers (~65k)
(cheap context switching)

Simple control logic and very little
cache - most transistors devoted to
number crunching

Memory latency hidden by

computations. GTX TITAN GK110 GPU (Kepler)
22/01/2014 KITP - Active Matter: Cytoskeleton, Cells, Tissues and Flocks 7

Introducing CUDA
Let’s start with an example...
Add to vectors (C = A + B):

A |3|1|2!|s5/l1l1]l0|4]| .-~ |1]|3]5
+

B 67112/ 8|I5|9]1 0|33
PP

C: |9/8|3|7|/9|6|9|5| - |1|6]8

On CPU in ANSI-C

void VecAdd(size_t N, float™ A, float* B, float* C)
{

unsigned int i;

for (i=0; i < N; i++)
Clil = Ali] + B[i]: } 100p

22/01/2014 KITP - Active Matter: Cytoskeleton, Cells, Tissues and Flocks

It's much faster to do it in parallel (with CUDA)

A 311(2(5(1(1]0]|4 1135
+ + + + + + + + + + +
B 6 21815 1 0133
4 ¥y 3 3 4 4
C: 9(8|3]7|9]/6|9]5 11618
/| Kernel definition
void VecAdd(float* A, float* B, float* C)
{
inti= :
C[i] = Ali] + BIi[;
}
int main()
{
VecAdd (A, B, C);
}

22/01/2014 KITP - Active Matter: Cytoskeleton, Cells, Tissues and Flocks

Looks like C, but what actually happened here?

// Kernel definition
void VecAdd(float* A, float* B, float* C) T

{ |

CI[i] = Ali] + BIi]; _
}
int main()
{ CPU (host) code

VecAdd (A, B, C); ()
}

= : new keyword indicating that this code will run on the device (GPU)

. Internal variable that specifies id of the current thread

: host will invoke N threads stored in one block in the device

Code is split into host and device parts (more below).

_ _ Glossary:
Device code runs N treads in parallel. « Host = CPU
» Device = GPU
* Actual code would need memory allocation. « Code on device = “kernel”

22/01/2014 KITP - Active Matter: Cytoskeleton, Cells, Tissues and Flocks 10

Back to hardware...

GPU contains up to 15 SMX (streaming multiprocessors)

PCI Express 3.0 Host Interface

W schedy Schaduler
Dlspau:h Di spatnh Dlspatch Dispatch Dispatch Dispatch Dispatch Dispatch
& A E £ E 8

Register File (65,536 x 32-hit)
4+ 4 4 4 3 4 4 &

4+ 4 3 E 3 4 4 3
cmmm-mmcm-mﬁucmmm-mcmm

g-MMM-MMM-LMT!FUMMM-GWGMM-LMI
i
2 1

L
T SFU mcmm-conconcm-mr
T SFU CMWM-MW-M-MI
T SFU mmm-mmm-nm:
T

Each SMX has:

192 single-precision CUDA
cores

64 double-precision units
32 special function units
(SFU)

32 load/store units
(LD/ST).

64 KB Configurable Shared
Memory and L1 Cache
48KB Read-Only Data Cache
255 registers per thread

Tex Tex Tex Tex Tex Tex Tex Tex

The SMX schedules threads
In groups of 32 parallel
threads called warps.

4 warp schedulers/SMX

8 instruction dispatch units
4 warps to be issued and
executed concurrently.

22/01/2014

KITP - Active Matter: Cytoskeleton, Cells, Tissues and Flocks

11

Thread — basic unit of execution (runs on a core)

Threads are grouped into blocks

* Currently each block can
contain up to 1024 threads

* Typically one uses 256
(16x16) threads per block

* Each block runs on one SMX

* Threads within block can
access common shared
memory

Thread block are organized into a grid.

* Thread blocks are required
to execute independently: It
must be possible to execute
them in any order.

* Thread blocks can be
scheduled in any order
across any number of SMXs.

; - Per-thread locl

o Mema ry

Thread Block

Grid O

¥ Per-block shared
> MEMD Py
-

FYY ¥ 1

Blode (0, 0) | Block (1, 0) | Block (2 0)

AR AR

Blodk (0, 1) || Block (1, 1) | Block (2 1)

lkina SARBRa

Grid 1

Block (0, 0)
Block (0, 1)

Block (0, Z)

i

Global memory
Block (1. O)

Block (1, 1)

Block (1. 2)

]

22/01/2014 KITP - Active Matter: Cytoskeleton, Cells, Tissues and Flocks

12

Back to the example

{
inti= :
Cli] = Ali] + BIi;
}
int main()
{
VecAdd (A, B, C);
) —

void VecAdd(float* A, float* B, float* C)

| One thread
(single core)

Grid with one thread block
Thread block with N treads

Grid O

Block (0,0)

1w

SMX executes groups of 32 treads (called
warp) at the same time.

Each thread executes same instruction
(SIMT)

Divergence is possible!

Latency hidden by fast context changes.

Note: For convenience threads within a block can be indexed with one-, two-, or
three-dimensional indices. Same is true for block within a grid.

22/01/2014 KITP - Active Matter: Cytoskeleton, Cells, Tissues and Flocks

13

Latency hiding

Although running at 200 GB/s bandwidth’, memory access is still much slower

than any computation (up to 800 cycles). For optimal performance one needs to
hide this latency by keeping cores busy.

CPU hides memory latency through multilevel caches r

L] processing
O e e L) e
L] ready
GPU hides latency with high throughput. @ context switching
| |

—
J
N/

) |
|
|
|

-— —
~
N/

[

For maximum performance one needs to spawn many (thousands!) of threads.

*Word of caution: For maximal bandwidth memory access needs to be coalesced.

22/01/2014 KITP - Active Matter: Cytoskeleton, Cells, Tissues and Flocks 14

Programming model: Device and host are separate entities with their own memory

Load GPU program and execute device

host

GigaThread™

PCl bus
1

CPU Memory

RRNRRNNRNEN

Copy U memory to

LTI

GPU mermory. terconnect

Copy results from GPU to CPU memory

22/01/2014 KITP - Active Matter: Cytoskeleton, Cells, Tissues and Flocks

15

CUDA introduces heterogeneous computing

Parts of the code are executed on CPU and parts on GPU

execution path

v

UL
UL

Serial Code

Grid 1

Block (0,0)

W

Block (1,0)

W

Executes on host

Executes on device (in parallel)

Executes on host

Executes on device (in parallel)

22/01/2014

KITP - Active Matter: Cytoskeleton, Cells, Tissues and Flocks

16

Full example...

#include <stdio.h>

__global__ void saxpy(int n, float a, float *x, float *y)

{

int i = blockldx.x*blockDim.x + threadldx.x;
if (i <n) y[i] = a*x[i] + y[i;
}

int main(void)

{

device kernel

int N = 0; -
flo host and device arrays
x = (floarymattoctN™Sizeof(float));

> system size N = 220 elements

\ 4

y = (float*)malloc(N*sizeof(float));
cudaMalloc(&d_x, N*sizeof(float));

allocating memory on host.

\ 4

cudaMalloc(&d_y, N*sizeof(float));
for (inti=0;i<N; i++)
{

x[i] = 1.0f;

y[i] = 2.0f;

}

populating host arrays

cudaMemcpy(d_x, X, N*sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(d_y, y, N*sizeof(float), cudaMemcpyHostToDevice);

saxpy<<<(N+255)/256, 256>>>(N, 2.0, d_Xx, d_y);

allocating memory on device.

copy data to device

cudaMemcpy(y, d_y, N*sizeof(float), cudaMemcpyDeviceToHost); —
float maxError = 0.0f;
for (inti=0;i<N; i++)

maxError = max(maxError, abs(y[i]-4.0f));

> execute tread block grid
> copy data back to host

printf("Max error: %fn", maxError);

}

> do something with the result

22/01/2014

KITP - Active Matter: Cytoskeleton, Cells, Tissues and Flocks

17

Where one can see great speedups...

° Problems that require huge amount of computations and/or bandwidth
* Problems that have regular (predicable) memory access patterns
* Problems that do not require diverging code

Most of dense linear algebra (PDE solvers), large scale N-body simulations
(gravity), molecular dynamics (MD) fall into this category.*

Word of caution: Unfortunately, it is not sufficient to simply recompile your
code on GPU and see a 100x speed up (most likely you'd see a slow down).
Significant rewriting and even algorithm redesign is often necessary.

*Different level of complexity to implement them such that the GPU’s power is
fully utilized.

22/01/2014 KITP - Active Matter: Cytoskeleton, Cells, Tissues and Flocks 18

Many libraries and software packages are already available!

22/01/2014

CUFET
CUBLAS
CURAND

CUSPARSE

GPU Computing Applications

SVN
Opencu

ENL

ATLEAS:
Mathematica

Programming Languages

Directives

Java
Python DirectCompute
Wr!;ppers p (e.g. OpenACC)

CUDA-Enabled NVIDIA GPUs

Kepler Architecture
(compute capabilities 3.x)

GeForce 600 Series

TeslaK20
TeslaK10

Fermi Architecture
(compute capabilities 2.x)

GeForce 500 Series
GeForce 400 Series

QuadroFermi Series

Tesla20 Series

Tesla Architecture
(compute capabilities 1.x)

GeForce 200 Series
GeForce 9 Series
GeForce 8 Series

QuadroFX Series
QuadroPlex Series
QuadroNVs Series

Tesla10 Series

ﬁ_ :-—-.' -
—_—— N =
- Tofessional

£ Graphics
—

~ Computing

KITP - Active Matter: Cytoskeleton, Cells, Tissues and Flocks

What GPUs are not good for...

GPUs are NOT the silver bullet!
(They are not here to replace CPU.)

Types of problems that don’t run well on GPUs:

* Most graph algorithms (too unpredictable, especially in memory access)

* Sparse linear algebra (but this is bad on the CPU too)

* Small signal processing problems (FFTs smaller than 1000 points, for example)
* Search

* Sort

* Complex data structures

22/01/2014 KITP - Active Matter: Cytoskeleton, Cells, Tissues and Flocks 20

Summary

°* Modern GPUs are much more than just devices for producing fancy
graphics.

* They deliver tremendous computational power (TFLOPS) and
bandwidth at very low cost and power consumption.

* GPU power comes from high level of parallelization accompanied by
was majority of the chip being devoted to computations at the
expense of drastically simplified control flows.

cons|

* Huge computational power at * Often requires fundamental
low cost. redesign of the code.
* Programmable for non-graphical * Programmer needs to be fairly
applications. familiar with the internal
° Programmable in C/C++ with workings of the hardware.
only a few language extensions. * Bad programming is severely
panelized.

22/01/2014 KITP - Active Matter: Cytoskeleton, Cells, Tissues and Flocks 21

