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HD: 1920x1080 = 2,073,600 pixels

60 frames per second

104 operations per pixel

106x102x104=1012

A TRILLION operations per second! 

We need a TFLOPS device!

104 operations per pixel
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Outline

• CPU vs. GPU architecture

• Data parallelization 

• NVIDIATM CUDATM overview

• CUDATM in real life

• Limitations
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CPU 

• General purpose

• Sufficiently fast, yet versatile 

(from spreadsheets to games 

and from Facebook to fluid 

dynamic)

• Easily programmable 

Some task are too demanding (e.g., graphics) 

and need to be offloaded to coprocessors. 

Specialized hardware components (such as GPU)
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(GeForce 8800 GTX, 2006)

In 2006 NVIDIA released Compute 

Unified Device Architecture (CUDA)

G80 GPU – general purpose parallel 

computing platform opened access 

to GPU’s tremendous computational 

capabilities (over 500 GFLOPS and 

90GB/s bandwidth) to non graphical 

applications.  

GPGPU WAS BORN!
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Side by side comparison

CPU GPU

Intel Core i7-4960X ($1,000) NVIDIA TITAN GK110 (Kepler) 

(~$1,000)

• 22nm manufacturing

• 6 cores/15MB shared L3 

cache

• 3.6 GHz

• ~1.9 billion transistors 

• ~60 GB/s memory bandwidth 

(theoretical)

• ~160 GFLOPS

• ~200W of power

• 28 nm manufacturing

• 2688 CUDA cores/1,536KB of 

L2 cache

• 837 MHz

• ~7.1 billion transistors

• ~290 GB/s memory bandwidth 

(theoretical) 

• ~4 TFLOPS (single) and 1.3 

TFLOPS (double)

• 250W of power
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Radically different architectures

CPU hides memory latency by 

large multilevel caches (L1, L2, 

and L3)

Complex logic control

Small number of registers (16 per core)

(expensive context switching)

Runs handful of threads at the same 

time 

GTX TITAN GK110 GPU (Kepler)

Runs thousands of threads 

simultaneously (Single Instruction 

Multiple Threads – SIMT) 

Huge number of registers (~65k)

(cheap context switching)

Simple control logic and very little 

cache - most transistors devoted to 

number crunching

Memory latency hidden by 

computations.
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Let’s start with an example…

Add to vectors (C = A + B):

3 1 2 5 1 1 0 4 1 3 5 7A: …

6 7 1 2 8 5 9 1 0 3 3 2B: …

9 8 3 7 5 1 6 8 9C: …

+

9 6 9

On CPU in ANSI-C

void VecAdd(size_t N, float* A, float* B, float* C)
{

unsigned int i;
for (i=0; i < N; i++)

C[i] = A[i] + B[i];
}

loop

Introducing CUDA
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It’s much faster to do it in parallel (with CUDA)

3 1 2 5 1 1 0 4 1 3 5 7A: …

6 7 1 2 8 5 9 1 0 3 3 2B: …

C: …

+ + + + + + + + + + + +

99 8 3 7 6 9 5 1 6 8 9

// Kernel definition 

__global__ void VecAdd(float* A, float* B, float* C) 

{ 

int i = threadIdx.x; 

C[i] = A[i] + B[i];

} 

int main() 

{ 

VecAdd<<<1, N>>>(A, B, C); 

}
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// Kernel definition 

__global__ void VecAdd(float* A, float* B, float* C) 

{ 

int i = threadIdx.x; 

C[i] = A[i] + B[i];

} 

int main() 

{ 

VecAdd<<<1, N>>>(A, B, C); 

}

Looks like C, but what actually happened here?

__global__ : new keyword indicating that this code will run on the device (GPU)

Glossary:

• Host = CPU

• Device = GPU

• Code on device = “kernel”

threadIdx.x : internal variable that specifies id of the current thread

NO LOOP!

<<<1,N>>> : host will invoke N threads stored in one block in the device

GPU (device) code

CPU (host) code

Code is split into host and device parts (more below).

Device code runs N treads in parallel.

* Actual code would need memory allocation.
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Back to hardware…

GPU contains up to 15 SMX (streaming multiprocessors)

Each SMX has: 

• 192 single‐precision CUDA 

cores

• 64 double‐precision units

• 32 special function units 

(SFU)

• 32 load/store units

• (LD/ST).

• 64 KB Configurable Shared 

Memory and L1 Cache

• 48KB Read‐Only Data Cache

• 255 registers per thread

• The SMX schedules threads 

in groups of 32 parallel 

threads called warps.

• 4 warp schedulers/SMX

• 8 instruction dispatch units

• 4 warps to be issued and 

executed concurrently.
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Thread – basic unit of execution (runs on a core)

Threads are grouped into blocks

• Currently each block can 

contain up to 1024 threads

• Typically one uses 256 

(16x16) threads per block

• Each block runs on one SMX

• Threads within block can 

access common shared 

memory

• Thread blocks are required 

to execute independently: It 

must be possible to execute 

them in any order. 

• Thread blocks can be 

scheduled in any order 

across any number of SMXs.

Thread block are organized into a grid.
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__global__ void VecAdd(float* A, float* B, float* C) 

{ 

int i = threadIdx.x; 

C[i] = A[i] + B[i];

} 

int main() 

{ 

VecAdd<<<1, N>>>(A, B, C); 

}

Back to the example

One thread

(single core)

Grid with one thread block

Thread block with N treads

Grid 0

Block (0,0)

0 N-1

Note: For convenience threads within a block can be indexed with one-, two-, or 

three-dimensional indices. Same is true for block within a grid.

• SMX executes groups of 32 treads (called 

warp) at the same time.

• Each thread executes same instruction 

(SIMT)

• Divergence is possible!

• Latency hidden by fast context changes.
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Latency hiding 

Although running at 200 GB/s bandwidth*, memory access is still much slower 

than any computation (up to 800 cycles). For optimal performance one needs to 

hide this latency by keeping cores busy. 

CPU hides memory latency through multilevel caches

GPU hides latency with high throughput.

W1

W2

W3

W4

processing

waiting

ready

context switching

T1 T2

For maximum performance one needs to spawn many (thousands!) of threads.

* Word of caution: For maximal bandwidth memory access needs to be coalesced. 
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Programming model: Device and host are separate entities with their own memory

host
device

PCI bus

Load GPU program and execute

Copy results from GPU to CPU memory

Copy data from CPU memory to 

GPU memory.
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CUDA introduces heterogeneous computing

Parts of the code are executed on CPU and parts on GPU

Serial Code

Grid 0

Block (0,0) Block (1,0)

Block (0,1) Block (1,1)

Serial Code

Grid 1

Block (0,0) Block (1,0)

e
x
e
c
u
ti
o
n
 p

a
th

Executes on host

Executes on host

Executes on device (in parallel)

Executes on device (in parallel)
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Full example…

#include <stdio.h>

__global__ void saxpy(int n, float a, float *x, float *y)

{ 

int i = blockIdx.x*blockDim.x + threadIdx.x; 

if (i < n) y[i] = a*x[i] + y[i];

}

int main(void)

{

int N = 1<<20; 

float *x, *y, *d_x, *d_y; 

x = (float*)malloc(N*sizeof(float));

y = (float*)malloc(N*sizeof(float));

cudaMalloc(&d_x, N*sizeof(float));

cudaMalloc(&d_y, N*sizeof(float)); 

for (int i = 0; i < N; i++)

{ 

x[i] = 1.0f; 

y[i] = 2.0f;

} 

cudaMemcpy(d_x, x, N*sizeof(float), cudaMemcpyHostToDevice); 

cudaMemcpy(d_y, y, N*sizeof(float), cudaMemcpyHostToDevice); 

saxpy<<<(N+255)/256, 256>>>(N, 2.0, d_x, d_y);

cudaMemcpy(y, d_y, N*sizeof(float), cudaMemcpyDeviceToHost); 

float maxError = 0.0f; 

for (int i = 0; i < N; i++) 

maxError = max(maxError, abs(y[i]-4.0f));

printf("Max error: %fn", maxError); 

} 

system size N = 220 elements

allocating memory on host.

allocating memory on device.

host and device arrays

copy data to device

populating host arrays

device kernel

execute tread block grid

copy data back to host

do something with the result
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Where one can see great speedups…

• Problems that require huge amount of computations and/or bandwidth

• Problems that have regular (predicable) memory access patterns 

• Problems that do not require diverging code

Most of dense linear algebra (PDE solvers), large scale N-body simulations 

(gravity), molecular dynamics (MD) fall into this category.*  

*Different level of complexity to implement them such that the GPU’s power is 

fully utilized. 

Word of caution: Unfortunately, it is not sufficient to simply recompile your 

code on GPU and see a 100x speed up (most likely you’d see a slow down). 

Significant rewriting and even algorithm redesign is often necessary.  
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Many libraries and software packages are already available!
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What GPUs are not good for…

GPUs are NOT the silver bullet!

(They are not here to replace CPU.)

Types of problems that don’t run well on GPUs:

• Most graph algorithms (too unpredictable, especially in memory access)

• Sparse linear algebra (but this is bad on the CPU too)

• Small signal processing problems (FFTs smaller than 1000 points, for example)

• Search

• Sort 

• Complex data structures
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Summary

• Modern GPUs are much more than just devices for producing fancy 

graphics.

• They deliver tremendous computational power (TFLOPS) and 

bandwidth at very low cost and power consumption.

• GPU power comes from high level of parallelization accompanied by 

was majority of the chip being devoted to computations at the 

expense of drastically simplified control flows.

Pros

• Huge computational power at 

low cost.

• Programmable for non-graphical 

applications.

• Programmable in C/C++ with 

only a few language extensions.

Cons

• Often requires fundamental 

redesign of the code.

• Programmer needs to be fairly 

familiar with the internal 

workings of the hardware.

• Bad programming is severely 

panelized.


