
22/01/2014 KITP - Active Matter: Cytoskeleton, Cells, Tissues and Flocks 1

WHAT CAN GPU COMPUTING DO FOR

NUMERICAL SIMULATIONS?

Rastko Sknepnek

Division of Physics

School of Engineering, Physics and Mathematics

University of Dundee

22/01/2014 KITP - Active Matter: Cytoskeleton, Cells, Tissues and Flocks 2

1920 pixels1
0

8
0

 p
ix

e
ls 60 frames per second

HD: 1920x1080 = 2,073,600 pixels

60 frames per second

104 operations per pixel

106x102x104=1012

A TRILLION operations per second!

We need a TFLOPS device!

104 operations per pixel

22/01/2014 KITP - Active Matter: Cytoskeleton, Cells, Tissues and Flocks 3

Outline

• CPU vs. GPU architecture

• Data parallelization

• NVIDIATM CUDATM overview

• CUDATM in real life

• Limitations

22/01/2014 KITP - Active Matter: Cytoskeleton, Cells, Tissues and Flocks 4

CPU

• General purpose

• Sufficiently fast, yet versatile

(from spreadsheets to games

and from Facebook to fluid

dynamic)

• Easily programmable

Some task are too demanding (e.g., graphics)

and need to be offloaded to coprocessors.

Specialized hardware components (such as GPU)

22/01/2014 KITP - Active Matter: Cytoskeleton, Cells, Tissues and Flocks 5

(GeForce 8800 GTX, 2006)

In 2006 NVIDIA released Compute

Unified Device Architecture (CUDA)

G80 GPU – general purpose parallel

computing platform opened access

to GPU’s tremendous computational

capabilities (over 500 GFLOPS and

90GB/s bandwidth) to non graphical

applications.

GPGPU WAS BORN!

22/01/2014 KITP - Active Matter: Cytoskeleton, Cells, Tissues and Flocks 6

Side by side comparison

CPU GPU

Intel Core i7-4960X ($1,000) NVIDIA TITAN GK110 (Kepler)

(~$1,000)

• 22nm manufacturing

• 6 cores/15MB shared L3

cache

• 3.6 GHz

• ~1.9 billion transistors

• ~60 GB/s memory bandwidth

(theoretical)

• ~160 GFLOPS

• ~200W of power

• 28 nm manufacturing

• 2688 CUDA cores/1,536KB of

L2 cache

• 837 MHz

• ~7.1 billion transistors

• ~290 GB/s memory bandwidth

(theoretical)

• ~4 TFLOPS (single) and 1.3

TFLOPS (double)

• 250W of power

22/01/2014 KITP - Active Matter: Cytoskeleton, Cells, Tissues and Flocks 7

Radically different architectures

CPU hides memory latency by

large multilevel caches (L1, L2,

and L3)

Complex logic control

Small number of registers (16 per core)

(expensive context switching)

Runs handful of threads at the same

time

GTX TITAN GK110 GPU (Kepler)

Runs thousands of threads

simultaneously (Single Instruction

Multiple Threads – SIMT)

Huge number of registers (~65k)

(cheap context switching)

Simple control logic and very little

cache - most transistors devoted to

number crunching

Memory latency hidden by

computations.

22/01/2014 KITP - Active Matter: Cytoskeleton, Cells, Tissues and Flocks 8

Let’s start with an example…

Add to vectors (C = A + B):

3 1 2 5 1 1 0 4 1 3 5 7A: …

6 7 1 2 8 5 9 1 0 3 3 2B: …

9 8 3 7 5 1 6 8 9C: …

+

9 6 9

On CPU in ANSI-C

void VecAdd(size_t N, float* A, float* B, float* C)
{

unsigned int i;
for (i=0; i < N; i++)

C[i] = A[i] + B[i];
}

loop

Introducing CUDA

22/01/2014 KITP - Active Matter: Cytoskeleton, Cells, Tissues and Flocks 9

It’s much faster to do it in parallel (with CUDA)

3 1 2 5 1 1 0 4 1 3 5 7A: …

6 7 1 2 8 5 9 1 0 3 3 2B: …

C: …

+ + + + + + + + + + + +

99 8 3 7 6 9 5 1 6 8 9

// Kernel definition

__global__ void VecAdd(float* A, float* B, float* C)

{

int i = threadIdx.x;

C[i] = A[i] + B[i];

}

int main()

{

VecAdd<<<1, N>>>(A, B, C);

}

22/01/2014 KITP - Active Matter: Cytoskeleton, Cells, Tissues and Flocks 10

// Kernel definition

__global__ void VecAdd(float* A, float* B, float* C)

{

int i = threadIdx.x;

C[i] = A[i] + B[i];

}

int main()

{

VecAdd<<<1, N>>>(A, B, C);

}

Looks like C, but what actually happened here?

__global__ : new keyword indicating that this code will run on the device (GPU)

Glossary:

• Host = CPU

• Device = GPU

• Code on device = “kernel”

threadIdx.x : internal variable that specifies id of the current thread

NO LOOP!

<<<1,N>>> : host will invoke N threads stored in one block in the device

GPU (device) code

CPU (host) code

Code is split into host and device parts (more below).

Device code runs N treads in parallel.

* Actual code would need memory allocation.

22/01/2014 KITP - Active Matter: Cytoskeleton, Cells, Tissues and Flocks 11

Back to hardware…

GPU contains up to 15 SMX (streaming multiprocessors)

Each SMX has:

• 192 single‐precision CUDA

cores

• 64 double‐precision units

• 32 special function units

(SFU)

• 32 load/store units

• (LD/ST).

• 64 KB Configurable Shared

Memory and L1 Cache

• 48KB Read‐Only Data Cache

• 255 registers per thread

• The SMX schedules threads

in groups of 32 parallel

threads called warps.

• 4 warp schedulers/SMX

• 8 instruction dispatch units

• 4 warps to be issued and

executed concurrently.

22/01/2014 KITP - Active Matter: Cytoskeleton, Cells, Tissues and Flocks 12

Thread – basic unit of execution (runs on a core)

Threads are grouped into blocks

• Currently each block can

contain up to 1024 threads

• Typically one uses 256

(16x16) threads per block

• Each block runs on one SMX

• Threads within block can

access common shared

memory

• Thread blocks are required

to execute independently: It

must be possible to execute

them in any order.

• Thread blocks can be

scheduled in any order

across any number of SMXs.

Thread block are organized into a grid.

22/01/2014 KITP - Active Matter: Cytoskeleton, Cells, Tissues and Flocks 13

__global__ void VecAdd(float* A, float* B, float* C)

{

int i = threadIdx.x;

C[i] = A[i] + B[i];

}

int main()

{

VecAdd<<<1, N>>>(A, B, C);

}

Back to the example

One thread

(single core)

Grid with one thread block

Thread block with N treads

Grid 0

Block (0,0)

0 N-1

Note: For convenience threads within a block can be indexed with one-, two-, or

three-dimensional indices. Same is true for block within a grid.

• SMX executes groups of 32 treads (called

warp) at the same time.

• Each thread executes same instruction

(SIMT)

• Divergence is possible!

• Latency hidden by fast context changes.

22/01/2014 KITP - Active Matter: Cytoskeleton, Cells, Tissues and Flocks 14

Latency hiding

Although running at 200 GB/s bandwidth*, memory access is still much slower

than any computation (up to 800 cycles). For optimal performance one needs to

hide this latency by keeping cores busy.

CPU hides memory latency through multilevel caches

GPU hides latency with high throughput.

W1

W2

W3

W4

processing

waiting

ready

context switching

T1 T2

For maximum performance one needs to spawn many (thousands!) of threads.

* Word of caution: For maximal bandwidth memory access needs to be coalesced.

22/01/2014 KITP - Active Matter: Cytoskeleton, Cells, Tissues and Flocks 15

Programming model: Device and host are separate entities with their own memory

host
device

PCI bus

Load GPU program and execute

Copy results from GPU to CPU memory

Copy data from CPU memory to

GPU memory.

22/01/2014 KITP - Active Matter: Cytoskeleton, Cells, Tissues and Flocks 16

CUDA introduces heterogeneous computing

Parts of the code are executed on CPU and parts on GPU

Serial Code

Grid 0

Block (0,0) Block (1,0)

Block (0,1) Block (1,1)

Serial Code

Grid 1

Block (0,0) Block (1,0)

e
x
e
c
u
ti
o
n
 p

a
th

Executes on host

Executes on host

Executes on device (in parallel)

Executes on device (in parallel)

22/01/2014 KITP - Active Matter: Cytoskeleton, Cells, Tissues and Flocks 17

Full example…

#include <stdio.h>

__global__ void saxpy(int n, float a, float *x, float *y)

{

int i = blockIdx.x*blockDim.x + threadIdx.x;

if (i < n) y[i] = a*x[i] + y[i];

}

int main(void)

{

int N = 1<<20;

float *x, *y, *d_x, *d_y;

x = (float*)malloc(N*sizeof(float));

y = (float*)malloc(N*sizeof(float));

cudaMalloc(&d_x, N*sizeof(float));

cudaMalloc(&d_y, N*sizeof(float));

for (int i = 0; i < N; i++)

{

x[i] = 1.0f;

y[i] = 2.0f;

}

cudaMemcpy(d_x, x, N*sizeof(float), cudaMemcpyHostToDevice);

cudaMemcpy(d_y, y, N*sizeof(float), cudaMemcpyHostToDevice);

saxpy<<<(N+255)/256, 256>>>(N, 2.0, d_x, d_y);

cudaMemcpy(y, d_y, N*sizeof(float), cudaMemcpyDeviceToHost);

float maxError = 0.0f;

for (int i = 0; i < N; i++)

maxError = max(maxError, abs(y[i]-4.0f));

printf("Max error: %fn", maxError);

}

system size N = 220 elements

allocating memory on host.

allocating memory on device.

host and device arrays

copy data to device

populating host arrays

device kernel

execute tread block grid

copy data back to host

do something with the result

22/01/2014 KITP - Active Matter: Cytoskeleton, Cells, Tissues and Flocks 18

Where one can see great speedups…

• Problems that require huge amount of computations and/or bandwidth

• Problems that have regular (predicable) memory access patterns

• Problems that do not require diverging code

Most of dense linear algebra (PDE solvers), large scale N-body simulations

(gravity), molecular dynamics (MD) fall into this category.*

*Different level of complexity to implement them such that the GPU’s power is

fully utilized.

Word of caution: Unfortunately, it is not sufficient to simply recompile your

code on GPU and see a 100x speed up (most likely you’d see a slow down).

Significant rewriting and even algorithm redesign is often necessary.

22/01/2014 KITP - Active Matter: Cytoskeleton, Cells, Tissues and Flocks 19

Many libraries and software packages are already available!

22/01/2014 KITP - Active Matter: Cytoskeleton, Cells, Tissues and Flocks 20

What GPUs are not good for…

GPUs are NOT the silver bullet!

(They are not here to replace CPU.)

Types of problems that don’t run well on GPUs:

• Most graph algorithms (too unpredictable, especially in memory access)

• Sparse linear algebra (but this is bad on the CPU too)

• Small signal processing problems (FFTs smaller than 1000 points, for example)

• Search

• Sort

• Complex data structures

22/01/2014 KITP - Active Matter: Cytoskeleton, Cells, Tissues and Flocks 21

Summary

• Modern GPUs are much more than just devices for producing fancy

graphics.

• They deliver tremendous computational power (TFLOPS) and

bandwidth at very low cost and power consumption.

• GPU power comes from high level of parallelization accompanied by

was majority of the chip being devoted to computations at the

expense of drastically simplified control flows.

Pros

• Huge computational power at

low cost.

• Programmable for non-graphical

applications.

• Programmable in C/C++ with

only a few language extensions.

Cons

• Often requires fundamental

redesign of the code.

• Programmer needs to be fairly

familiar with the internal

workings of the hardware.

• Bad programming is severely

panelized.

