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What do I mean by Flocking?

In Vivo: All moving in the same direction



In silica: Vicsek algorithm (e.g.) 
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What do I mean by Flocking?

• Spontaneous (no road signs (“no external 
fields”) telling critters which way to go)

• Short ranged interactions 

• (no e.g.,  chemotaxis)



Flocking in two dimensions 
is ASTOUNDING!

dLC = 2

Why? In equilbrium, lower critical dimension 

Long-ranged order (LRO) impossible
For                              
(Mermin-Wagner Theorem)

d £ dLC = 2



Mermin-Wagner theorem:
Pointers vs. Flockers

• APS pointers (“XY model”):

J (r, t)

x̂

L

<J 2 >= D ln(L)
L®¥

¾ ®¾¾¥

No Long
Ranged order

< S(r, t) >= 0

Error size

Si

Equilibrium result

“Open up to infinity and become infinity” 

(JT’s Yogi teabag while preparing this slide)

CAN NOT all POINT
in same direction 
in d=2,

but
CAN all MOVE
in same direction



This is without signs (“external fields”)

• With signs, easy to order in ANY dimension d 

• IF the signs are accurate (consistent)

• What if the signs point in random directions?

• “Quenched disorder” 

• (“Quenched” means the signs never change)





With quenched disorder, Flocking in 
ANY physical dimension

(d=2 AND d=3) is even MORE
Astounding!

in equilibrium with quenched disorder

(Grinstein and Luther, 1979)  

dLC = 4

Yet it also happens!



Outline

• I) Review of   flocks  with “annealed disorder” (i.e., Langevin (time-
dependent) noise (with Yu-hai Tu, IBM Watson)  

• (J. Toner, Y.-h. Tu, and S. Ramaswamy, Ann. Phys. 318, 170 (2005))
• Surprising result: LRO in d=2 (IMPOSSIBLE in equilibrium)

• II)Flocks with Quenched (i.e., time-independent) disorder (with 
Nicholas Guttenberg, UO)

• Even more surprising results: 
• LONG RANGED ORDER in d=3 (IMPOSSIBLE in equilibrium)
• QUASI-LONG RANGED ORDER in d=2 (vs Short ranged order in 

equilibrium)



Flocks with annealed disorder
(i.e., Langevin (time-dependent) noise)

I) Microscopic models (Vicsek)

Important points: rotation invariance
locality

II) Mermin-Wagner Theorem: Are birds smarter than nerds?

III)   Continuum theory: analogy with fluid mechanics

IV) Predictions: 

A) Sound modes, whose speeds vanish in certain directions: crucial for

quenched disorder

B) How motion beats Mermin-Wagner 
(“anomalous hydrodynamics”)



I) Microscopic Models
Vicsek algorithm:
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Essential Features of Algorithm

• Only Local interactions: short ranged in space
and time

• Ferromagnetic interactions (favor alignment)

• “Birds” keep moving (        ) and making errorsv ¹ 0



Symmetries:

Dynamics Phase

Translation 
Invariance

YES YES

Rotation 
Invariance

YES NO

Galilean
Invariance

NO NO

< v(r, t) >º v0 ¹ 0

< r(r, t) >º r0

=CONSTANT



Dynamics produces order:

t=0

Run algorithm 
Many steps (t>>1)

< v(r, t) >= 0 < v(r, t) >= v0 ¹ 0

t>>1



However…..

This should be Impossible!

Why?   

Violates Mermin-Wagner theorem

Are Birds smarter than nerds?



Continuum Theory of Flocks

• Hard (impossible) to solve microscopic model with ~10^5 
birds

• Harder to figure out what happens if you change model 
(universal vs system-specific)

• Historical analog: Fluid mechanics (Navier, Stokes, 1822):

No theory of atoms and molecules

No statistical physics

No computers, ipad, ipod, etc

• So, how’d they do it?



Continuum Approach

ri(t)® Continuous fields:

r(r, t)

v(r, t)

Coarse grained number density:

: Coarse grained velocity 

Replace

Valid for: Length scales L >> interatomic distance

Time scales t >> collision time



r(r, t),v(r, t)Equations of motion for

Make ‘em up!

-Lowest order in space, time derivatives

dr(r, t) º r(r, t)- < r(r, t) >

dv(r, t) º v(r, t)- < v(r, t) >

Respect Symmetries (for flocks, 
Rotation invariance)

Worked for fluids, should work for flocks

Rules: 
-Lowest order in fluctuations



Our (Yu-hai Tu and JT) idea: same 
approach, different symmetry

• No Galilean invariance (birds move through a 

Special “rest frame” (e.g., air, water, surface   

of Serengeti. Etc….))



¶tv + l1(v ×Ñ)v + l2v(Ñ×v)+ l3(Ñ | v |2 ) =av - b | v |2 v

-ÑP(r)- v(v ×ÑP2(r))+DBÑ(Ñ×v)+DTÑ
2v +D2(v ×Ñ)2v + f

¶tr +Ñ× (rv) = 0

Density EOM:

Velocity EOM:

Hydrodynamic equations for 
Flocks:

(“convective 
Derivative”)

New terms (forbidden
in NS equations due to
Galilean invariance)Other “2 v, one grad” terms

“move faster,
Slowpoke”

“but not 
TOO Fast!”

Anisotropic pressure
Anisotropic
viscosity

Number conservation
(“immortal” flock)

Noise (errors)

Connection to Equilibrium Ferromagnet (Pointers)
(and Mermin-Wagner Theorem):



f (r, t) :
Langevin white noise

(i.e., short range correlated in
TIME (and space) 

< fi(r, t) f j (r ', t ') >= Ddijd
d (r - r ')d (t - t ')

Noise strength



| v |v0

v̂ ×¶tv

Acceleration in direction of motion:

Speed

α(|v|) |v| − β(|v|)|v|^3 

Þ< v(r, t) >= v0 x̂
Arbitrary direction
(Spontaneously 
Broken symmetry)



Predictions of hydrodynamic theory

• Sound waves

• Anomalous Hydrodynamics for d<4.

Long-ranged order in d=2



Polar plot of sound speeds:
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One sound speed vanishes: crucial for 

quenched disorder problem

Example: normal fluid c1 = c0

c2 = -c0

J = ±Jc ±p

Flock



Why does sound speed vanish
in certain directions?

J = ±Jc ±p

Competition between CONVECTION
and PROPAGATION



VC º

VP º Propagation velocity of waveVC º Velocity of current (i.e., convection)



normal to wavefronts

direction of flock
motion

Convection at speed (geometric mean of density
and velocity convection speeds) 

vsl
Propagation perpendicular
to mean flock motion at speed c0

Sound wavefronts

J c

J c
Net motion is 
ALONG wavefronts

NO MOTION
OF PATTERN



Anomalous Hydrodynamics

Hydrodynamics 
With noise

Hydrodynamics 
Without noise

In ALL d £ 4



l

Attenuation length La

Without Noise: La µl2 /D

With Noise: La µl6/5

Example: Sound damping in flocks:

d=2

d=3La µl8/5

Deff (L)µL4/5 d=2
Anomalous
Hydrodynamics:

Deff (L)µL2(4-d )/5

Deff (L)µL2/5
d=3



Why does this happen?

Fluctuations (waves) interact due to 
Convective nonlinearity

¶tv + l1(v ×Ñ)v + l2v(Ñ×v)+ l3(Ñ | v |2 ) =av - b | v |2 v

-ÑP(r)- v(v ×ÑP2(r))+DBÑ(Ñ×v)+DTÑ
2v +D2(v ×Ñ)2v + f



Long-ranged order in d=2

• Stabilized by this breakdown of 
hydrodynamics (damps out noise induced 
fluctuations (negative feedback: fluctuations 
create divergence of D, which suppresses
fluctuations)



Model for flock with quenched 
disorder: Same as before, except 

random forcing now has quenched 
piece, as well as Langevin piece:

¶tv + l1(v ×Ñ)v + l2v(Ñ×v)+ l3(Ñ | v |2 ) =av - b | v |2 v

-ÑP(r)- v(v ×ÑP2(r))+DBÑ(Ñ×v)+DTÑ
2v +D2(v ×Ñ)2v + f

+ fQ(r )



Quenched disorder=Static random 
forcing

< fi
Q(r, t) f Qj (r ', t ') >= Ddijd

d (r - r ')

Infinitely  long correlations in time

Note: No delta fn in t-t’



Physical realizations of this:

1) Obstacles:

2) “Dead birds”:        Don’t move, fixed 
random positions and orientations, weight
W<1 in averaging for live birds    

3) random terrain, rough substrate, etc



What is the effect of 
quenched disorder IN EQUILIBRIUM?

• HUGE:            vs for annealed

disorder (see, e.g. Grinstein and Luther, 1979)

• => No LRO in d=2 OR d=3!

dLC = 4 dLC = 2



What is the effect of 
quenched disorder on FLOCKS?

• You might think: not much, because

• In co-moving frame of flock, disorder looks 
time dependent

• But: what matters is not how flock moves, but 
how sound moves (sound carries fluctuations)

• And some sound waves DON’T move!



Polar plot of sound speeds:

J c

One sound speed vanishes: crucial for 

quenched disorder problem



Analogy: forced, very underdamped
oscillator

• Off resonance: response small, limited by 
spring constant of oscillator (independent of 
damping)

| Z(w) |2=
1

(w 2 -w0

2 )2 +g 2w 2

O
n

r



Response

w0 w-w0

1

g
g=damping

undamped
response

damped 
response

Resonant frequencyw0 =



w

External driving force Quenched disorder

Driving frequency (Disorder is
static)                  

Resonant frequency 

Damping

Driven underdamped
oscillator

Flock with 
Quenched disorder

w = 0

w0

g

c1,2(J )q

Dq2

f fQ(r )



c1,2(J ) = 0

J = ±Jc ±p

w = 0
So, when                               , quenched disorder 
is “on resonance” at 

=> Biggest fluctuations at  



J = ±p / 2

One other weird wrinkle:
fluctuations vanish at 

Why?

r ­

r ¯

r ¯ Mean flock motion

Propagation direction

No convection
To relieve 
Density buildup

Pressure builds up, suppresses
these fluctutions

velocities



Summary of velocity fluctuations
(Fourier space    )     

| v(q) |2 =
Dcos2 J

q2[D2q2 + (sin2 J - tan2 Jc cos2 J )2 ]

q

J
-

p

2

p

2

p-p J c p -JcJc -p -J c

1

q4

1

q2



Result from “dead bird” simulation:



Great, but….

• Plot looks the SAME for smaller q’s!

• What’s happening?!

• Anomalous Hydrodynamics 
(again!)



Anomalous Hydrodynamics (again!)

Deff (q)µq2(d-4)/5(vs
for annealed problem) 

Deff (q)µq(d-5)/3

=> in d=2, Deff (q)µq-1

| v(q) |2 =
Dcos2 J

q2[D2

eff (q)q
2 + (sin2 J - tan2 Jc cos2 J )2 ]

µ
1

q2
=>

For
ALL

J
(Even             ) J =Jc



• If noise is small,    this coefficient will be small

• => Big peak at        , but q-independent

• EXACTLY what we see  

Deff (q) = Aq-1

J c



Back to real space (d=2):

| v(q) |2 µ
1

q2
=> |< v(r ) >|µL-h(D)

“Quasi-long-ranged order”
Exactly what’s seen by Peruani et al 
in simulations of flocks with obstacles

h(D) Non-universal exponent, 
grows as noise            growsD



d=3

D(q)µq(d-5)/3 = q-2/3

Strong enough to 
Stabilize long-ranged order

< v(r ) >¹ 0



Summary:

• Flocking is robust against quenched disorder, 

• as well as annealed disorder

• Long ranged order in d=3

• Quasi-long-ranged order d=2

• Very detailed predictions of hydrodynamic

• theory verified by simulations (ours and 
others)



Thanks for your attention, and happy 
St Patrick’s Day!

An actual pub in Dublin, IRE



¶tv + l1(v ×Ñ)v + l2v(Ñ× v)+ l3Ñ | v |2=av - b | v |2 v

-ÑP(r)- v(v ×ÑP2(r))+DBÑ(Ñ× v)+DTÑ
2v +D2 (v ×Ñ)2v

+ fQ(r )


