The acrobatics of swimming bacteria

Son, Guasto, & Stocker, Nat Phys 2013

Jeff Guasto

Assistant Professor

Dept. of Mechanical Engineering

Tufts University

Acknowledgements

Roman Stocker, MIT

Kwangmin Son, MIT Roberto Rusconi, MIT

F.Menolascina, MIT

Peko Hosoi, MIT

Lisa Burton, MIT

Jerry Gollub, HC

Karl Johnson, HC

H. Gadelha, Oxford Orr Shapiro, Weizmann

Massachusetts Institute of **Technology**

Why study the biophysics of motile single cells?

Swimming microorganisms in the environment

Swimming cells in the human body

"There's plenty of room at the bottom!" -Feynman

Robots for nano-medicine & drug delivery

Anti-biofouling in medical devices

Fertility treatments

Powering micro-machines

Biofuel production & bioreactors

Fluid mechanics: The physical rules of the game

• The Reynolds number, R

No coasting!!

Life in the slow lane

Motion is perfectly 'reversible'

Organism	R
Whale	108
Tuna	10^{7}
Michael Phelps	10^5
Goldfish	100
House Fly	10
← This Expt.	0.01
Bacterium	10-4

Vogel, 1994

What does this mean for locomotion?

• Purcell's "Scallop" Theorem

Time doesn't matter. The pattern of

motion is the same, whether slow or fast,

whether forward or backward in time.

The Scallop Theorem
Purcell, AJP 1977

- Ed Purcell (Harvard)
 - 1952 Nobel Prize (physics)
 - Discovered nuclear magnetic resonance (NMR), which is the basis for MRI

Nature's solutions for motility

Rigid flagella (prokaryotes)

Nature's solutions for motility

Flexible flagella (eukaryotes)

Guasto et al, PRL 2010

Fluid flows generated by cells

Swimming microalgae (Chlamydomonas)

Guasto et al, PRL 2010 Leptos et al, PRL 2009 Kurtuldu et al, PNAS 2011

• Beat period = 19 ms (50 Hz)

Mixing in active suspensions

Collective bacterial motion (high cell concentration)

Propulsion is only half of the story

Chemotactic turning of sperm

Microfluidics
enable the precise
engineering of
microscale fluid and
chemical conditions

Chemoattractant Gradient

Turning is crucial for bacterial survival

Turning allows cells to find resources (chemotaxis)

Many bacteria have only one flagellum

- 95% of marine bacteria:
 - Vibrio alginolyticus
 - Vibrio cholerae
 - Shewanella putrefaciens
 - Pseudoalteromonas haloplanktis

- Previous view:
 - Cells only swim forward and backward ('run and reverse') via rotary motor control

Run, reverse, & flick motility

- Flagellum = propeller + rudder
- Mean angle change = 90°

Cells swim forward prior to 'flick'

Flagellar bending concentrated at base

20 nm diameter flagellum

Forward swimming implies compression

Nishioka et al 1998

Forward : compression → unstable

H.C. Berg

But, buckling is bad ... right?

Turning by buckling

- Hydrodynamic force
 - given by swimming speed

$$P_{visc} = 6\pi\mu aV$$

- Critical buckling force
 - beam theory, given by bending rigidity, EI

$$P_{cr} = \pi^2 \frac{EI}{L^2}$$

Hypothesis: Turning by buckling of the 'hook'

How to test for buckling at the nanometer scale?

$$P_{cr} = \pi^2 \frac{EI}{L^2}$$

$$P_{visc} = 6\pi\mu aV$$

Test for buckling by slowing down bacteria

The sudden onset of buckling

Turning by buckling appears to be VERY common

• Observed in 60-70% of cells

What lessons do we learn from turning by buckling?

- Engineered materials: biological structures provide inspiration for advanced engineered materials
- Micro-robotics: under-actuated dynamics use the flagellum as both a 'motor and rudder'
- Evolution: common and biologically 'cheap' motility strategy

Bacteria can exploit a flagellar buckling instability to change direction

Kwangmin Son¹, Jeffrey S. Guasto² and Roman Stocker²*

