The acrobatics of swimming bacteria
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Why study the biophysics of motile single cells?
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Swimming microoreanisms in the environment

Courtesy:
Mick Follows

Stocker et al, Science 2010

web.mit.edu : ' | o 3 T'llfts
X s

UNIVERSITY



Swimming cells in the human body

Reproduction & fertilization

Cervix (2-3 cm)

Acrosome
Nucleus

Mitochondrion
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“There’s plenty of room at the bottom!” -Feynman

Robots for nano-medicine & drug delivery
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Dreyfus et al, Nature 2005
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Anti-biofouling in medical devices
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Fluid mechanics: The physical rules of the game

* The Reynolds number, R * No coasting!!

R= 4p - 4V

7/7/
=/5%cm' Ar water
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Purcell, Am J Phys 1977



Life 1in the slow lane

* Motion is perfectly ‘reversible’

Organism m
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Tuna 107
Michael Phelps 10°
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Bacterium 104
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What does this mean for locomotion?

» Purcell’s “Scallop” Theorem « Ed Purcell (Harvard)
— 1952 Nobel Prize (physics)

Time doesnt matter. The pattern of

e the Same. whether Slow or farp — Discovered nuclear magnetic
motion IS me, a1 resonance (NMR), which is the
whether forward or backward in Fime, basis for MR

The Scallo p Theorem —

_ .
Purcell, AJP 1977
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Nature’s solutions for motility

 Rigid flagella (prokaryotes)




Nature’s solutions for motility

 Flexible flagella (eukaryotes)
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Fluid flows generated by cells




Swimming microalgae ( Chlamydamonas)
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Mixing 1n active suspensions




Collective bacterial motion (high cell concentration)
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Propulsion is only half of the story

Synchrony Asynchrony

J.S. Guasto 1000 fps




Chemotactic turning of sperm

Microfluidics
enable the precise
engineering of

il microscale fluid and
chemical conditions

Chemoattractant

Gradient
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Turning 1s crucial for bacterial survival




urnine allows cells to find resources (chemotaxis
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Many bacteria have only one flagellum

I um

- Vibrio alginolyticus

* 95% of marine bacteria:

— Vibrio alginolyticus
— Vibrio cholerae

— Shewanella putrefaciens

— Pseudoalteromonas
haloplanktis

[Na‘] = 100 mM

* Previous view:

— Cells only swim forward and
backward (‘run and reverse’)
via rotary motor control
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Run, reverse, & flick motility

3 Start> ‘flick’

How to turn (° turnble )
with only one flagellum?

“flick’ _10 alll

Xie et al, PNAS 2011

Forward Run Stocker, PNAS 2011

Backward Run

» Flagellum = propeller + rudder
 Mean angle change = 90°




Cells swim forward prior to ‘flick’

0003 ms

1000 fps.(phase\contrast)
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Flagellar bending concentrated at base
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« 20 nm diameter flagellum




Forward swimming implies compression
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Nishioka et al 1998

Dra Thrust
<_g —

Swimming
Backward : tension = stable direction

Swimming Dra
directiond®™1T—" l’_g>
Thrust

Forward : compression = unstable

H.C. Berg
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But buckhng 1s bad ... right?




Turning by buckling

« Hydrodynamic force

— given by P. =6muaV
swimming speed

« Critical buckling force , ET

M Flagellum is 10,000

more stiff!!

— beam theory, givenby | =7 I
bending rigidity, EI

times

Hydrodynamic load II _ '

~ .
Critical load (hook) | [ AN ' BucKing
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Hypothesis: Turning by buckling of the “hook’




How to test for buckling at the nanometer scale?




Test for buckling by slowing down bacteria

[Na'] = 100 mM
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The sudden onset of buckling
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Turning by buckling appears to be VERY common

* Observed in 60-70% of cells
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What lessons do we learn from turning by buckling?

 Engineered materials:
biological structures provide
inspiration for advanced
engineered materials

* Micro-robotics:
under-actuated dynamics use the
flagellum as both a ‘motor and .
rudder’

« Evolution:
common and biologically ‘cheap’

motility strategy 3 um
tracked flagellum e
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Bacteria can exploit a flagellar buckling instability
to change direction
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