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Life at the cellular level
• Gene            protein 
• Proteins 

– provide structure to cells and tissues
– work as molecular motors
– sense chemicals in the environment
– drive chemical reactions
– regulate gene expression

• Cellular functions rely on the 
coordinated action of gene 
products. 

• Interconnections between 
components are the essence 
of a living process.
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Definition of cellular networks
1. Protein interaction networks
Nodes: proteins
Edges: protein-protein interactions (binding)

2. Signal transduction networks
Nodes: proteins, molecules
Edges: reactions and processes reflecting
information transfer

3. Metabolic networks
Nodes: metabolites, enzymes
Two types of edges: mass flow or catalysis. 

4. Gene regulatory networks
Two types of nodes: mRNA , protein 
Two types of edges: mass flow or regulation 
(activating or inhibiting).



Mapping of cellular interaction networks
Experimental advances allow  the construction of genome-wide 
cellular interaction networks

• Protein networks
Uetz et al. 2000, Ito et al., 2001, Krogan et al. 2006 – S. cerevisiae, 
Giot et al. 2003 – Drosophila melanogaster , Li et al. 2004 – C. 
elegans, Rual et al 2005 - Human interactome

• Transcriptional regulatory networks
Shen-Orr et al. 2002 – E. coli, 
Guelzim et al 2002, Lee et al. 2002 - S. cerevisiae, 
Davidson et al. 2002 – sea urchin

• Signal transduction networks
Ma’ayan et al. 2005 – mammalian hippocampal neuron

Graph analysis uncovered common architectural features of cellular 
networks: Connected, short path length, heterogeneous (scale-free),
overexpressed interaction motifs



Importance of a dynamical understanding

Only subsets of the genome-wide interaction networks are active
in a given external condition

Han et al. 2004 – dynamical modularity of protein interaction
networks – date hubs and party hubs

Luscombe et al. 2004 – endogeneus and exogeneus transcriptional
subnetworks

Network topology needs to be complemented by a description of
network dynamics – states of the nodes and changes in the state

Quantitative dynamic description is only feasible on smaller
networks (modules):
Signal transduction in bacterial chemotaxis, the yeast cell cycle, 
the mammalian circadian clock



Dynamic modeling
• Network = backbone of process
• Node states + transfer functions          outcome

Ingredients: components of the system; interactions, states of 
components
Hypotheses: transfer functions, kinetics, parameters.
Validation: capture known behavior. 
Explore: study cases that are not accessible experimentally

change parameters, change assumptions
gain insight into why complexity is necessary

Qualitative models: the regulatory network is more important than 
the kinetic details of the individual interactions.

Essential information: inhibitors, conditional activation, 
independent activation, decay, relative timing (when known)



Dose-response curves for regulated processes
• Y – regulator (e.g. 

transcriptional activator)
• X – target (e.g. mRNA)
• Synthesis is a nonlinear 

function of activator
• Decay is un-catalyzed
• Parameters:

– maximum rate TmaxρX
– Half-maximal activation KY
– Hill coefficient ν
– Half- life HX

Combinatorial regulation of 
synthesis is approximated with 
similar sigmoidal curves.
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From dose-response curves  to switches

Boolean simplification:
Y>KY             Y=ON
Y<KY              Y=OFF

X* = Y
Activation:
If Y=ON      X produced
X*=ON
Decay:
If Y= OFF    X decays
X*=OFF

If ν is large, the dose-response
curve becomes a switch

If Y>KY   dX/dt>0
If Y<KY   dX/dt<0
The activation threshold is KY
If activation is weak, mRNA
can decay.

X – mRNA
Y – transcriptional 
activator



Refinement of Boolean model

• Discrete decay times and threshold durations

• Asynchronous update

• Hybrid model (Glass & Kauffmann 1973): each node is 
characterized by both a continuous and a Boolean variable.

• Xi  is defined by the threshold rule

X̂Y
dt
X̂d

−=

⎩
⎨
⎧

>
<

=
50 if      1
50  if      0

.X̂,
.X̂,X

XtXYX* τ−= not  and   and
0
U
maxi

i

itYX*
=

−=



Modeling the segment polarity gene network
Input: segment polarity genes
Hypotheses:

continuous model: transcription factors act as enzymes
Boolean model: mRNA and protein activity is switch-like

Validation: reproduces known gene expression patterns.
Explored: changes in kinetic parameters

knock-out mutations
changes in initial conditions

Insight: topology is a main source of robustness.

G. von  Dassow et al., Nature 406, 188 (2000)
R. Albert, H. G. Othmer, Journ. Theor. Biol. 223, 1 (2003)
M. Chaves, R. Albert, E. Sontag Journ. Theor. Bio. 235, 431 (2005).
M. Chaves, E. Sontag, R. Albert, IEE Proc. Systems Biology 153, 154  (2006).



Segmentation of the fruit fly embryo

Transient gene 
products, 

initiate the next 
step then 

disappear.1h after fertilization

7h after fertilization



Segment polarity genes

Gene products form a network that maintains a gene 
expression pattern initiated in an earlier stage.  

Genes                                                      Proteins
•wingless (wg)                        Wingless protein (WG) - secreted
•hedgehog (hh)                       Hedgehog protein (HH) - secreted
•engrailed (en)                        Engrailed protein (EN) - transcription factor
•patched (ptc)                         Patched protein (PTC) - receptor
•smoothened (smo)                Smoothened protein (SMO) - receptor
•sloppy paired (slp)                 Sloppy paired protein (SLP) - transcription factor
•cubitus interruptus (ci)           Cubitus interruptus protein (CI) 

Cubitus activator (CIA) - transcription factor
Cubitus repressor (CIR) - transcription factor



Evolution of gene expression patterns

ci en ptc

en hh wg

early stages
2:50 h

pre-pattern 
3:00-3:30 h

stable pattern
4:20-7:20 h

3:30 h



Wild type, stable gene patterns

•en is expressed in the anterior part of the parasegment.
•wg is expressed in the posterior part of the parasegment.
• parasegmental grooves form between the wg and en stripes.

• two ptc stripes in each parasegment.
• ci pattern is complementary to that of en.

wg en wg en



Gene interaction network in the von 
Dassow model  

oval:  mRNA
rectangle: protein
hexagon: protein complex

inhibition
transport



Competition between a transcriptional 
activator and a transcriptional repressor 

Transcriptional activation



The 2D pattern is reduced to 1D, assume cells are hexagonal
The gene expression is essentially binary (ON in some cells, OFF in 
others )

Gene expression patterns

G. von  Dassow et al., Nature 406, 188 (2000)
wild type model solution



• Start from the wild type initial condition for en and wg

• Generate a set of kinetic parameters from the biologically relevant 
range (48 unknown parameters)

• Run the simulation until steady state is reached.
• Use threshold (>6% of maximal concentration) to decide whether 
node is ON or OFF.

• Compare with wild type pattern, if the same accept as a solution.

• 1 in every 46 parameter combinations lead to wild type final patterns.

• The parameter combinations leading to wild type steady states are 
distributed homogeneously in the biologically relevant parameter space.

It is not the fine-tuning of the kinetic rates but the overall network 
topology what matters.

Robustness to parameter changes



Second reconstruction of the segment 
polarity gene interaction network

PROTEIN

mRNA

PROT
COMPL

cell neighbor cell

translation,
activation,
modification

repression



• Transcripts and proteins are either ON (1) or OFF(0).

• Transcription depends on transcription factors; inhibitors are dominant.

• Translation depends on the presence of the transcript.

• Transcripts and most proteins decay if not produced.

• Synchronous update: transcription, translation, mRNA/protein decay on 
the same timescale, protein binding faster

• Asynchronous update & hybrid model: post-translational processes faster 
than pre-translational
M. Chaves, R. Albert, E. Sontag Journ. Theor. Bio. 235, 431 (2005).
M. Chaves, E. Sontag R. Albert, IEE Proc. Syst. Bio. 153, 154 (2006).

Qualitative (Boolean) model

R. Albert, H. G. Othmer, Journ. Theor. Bio. 223, 1 (2003).



Updating rules
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Initial state  - updating rules– steady state

Synchronous:                                Asynchronous:

Hybrid:

The steady state repertoire is independent of durations.

Start with the synchronous model, then explore whether  conclusions
change by asynchronicity.

cell with node ON

cell with node OFF

State: 14 mRNAs and proteins  x  4 cells 
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The model reproduces the wild type 
steady state 

wt initial state steady state

The interaction network and the net effect of 
the interactions (with reasonable assumptions 
on timing) is enough to capture the functioning 
of the network.

wg en

ptc



wg, en or hh mutations are lethal

No wg, en and hh stripes, no segmentation, regardless of initial state
or interaction durations.

final stateinitial state



ptc mutation broadens the stripes

The wg, en and hh stripes broaden, regardless of initial state or 
interaction durations.

final stateinitial state



ci mutation can preserve the prepattern

The effect of ci mutation depends on the initial state. 
For wild type prepattern, the wg, en, hh stripes remain, independent
of durations.

final state initial state



Model correctly reproduces experimental 
results on knock-out mutants

wild type

wg

hh mutant

Gallet et al., Development 127, 5509 (2000)

ci mutant

wild type ci mutant ptc mutant

en

Tabata, Eaton, Kornberg, Genes & Development 6, 2635 (1992)



Dynamic repertoire: four steady states

wild type

broad lethal

displaced

ectopic furrow no segmentation



3
3
4
4
4
4
8
8

16
16
16
8
8

16

How many initial states lead to the wild type 
steady state (in the synchronous model) ?

minimal prepattern steady state

Total number of wild-type inducing prepatterns: iN611 108106 −×=×



Asynchronous model: each node updated at multiples of γi , γi
chosen from a uniform distribution on (0, 2) or a subset thereof.

Hybrid model:  Individual activation threshold                  ,
individual synthesis/ decay rate αi,   α-1= γ

Assume that mRNA 
synthesis/decay timescale 
is longer than protein 
timescale,  γmRNA> γprot,  
αmRNA< αprot

Divergence from wild-type development

( )1 0,i ∈θ

min(αProt)/max(αmRNA)

Scale separation

asynchronous model
hybrid model

Then incidence of the WT 
steady state > 93%



Interplay between topology and function

• The network contains two activating clusters  that inhibit each other 
in each cell, en, hh and ci, wg, ptc

• At the same time en and wg enforce each other in neighboring 
cells through the secreted proteins HH and WG

• SLP is a  regulatory source that maintains asymmetry and limits en
and wg to different halves of the parasegment.



Modeling drought signaling in plants

Phenomenon: abscisic acid induced closure of plant stomata

Hypotheses: network inference from indirect information
protein activity is switch-like

Validation: reproduces known wild type and disrupted behavior.
Explored: disruptions

changes in initial conditions
changes in timing

Insight: variability in timing and initial conditions does not matter
65% of perturbations have no negative effect
identified critical perturbations

S. Li, S. Assmann and R. Albert, PLoS Biology 4, e312 (2006).

ABA



CO2 H2O

Stomatal sizes are determined by the 
turgor (fullness) of the guard cells.

During drought conditions plants 
synthesize a hormone called abscisic 
acid (ABA) that initiates a signal 
transduction network to close 
stomata.

How is this crucial process being 
orchestrated, and how is its sensitivity 
and reliability maintained?

The exchange of O2 and CO2 in 
plants occurs through stomata.

90% of the water taken up by a plant 
is lost in transpiration.

Stomata and guard cells



• Genetic & pharmacological perturbations of putative mediators
Compare input - output (ABA- aperture change) relationships 
in normal and perturbed plants 

• Scarce biochemical evidence for interaction

Experimental observations mainly indirect

ABA Closure

K+ effluxCa2+
c 

increase

membrane 
depolarizationNO, S1P, IP3

ABI1



Network construction from indirect evidence

– nodes: all proteins, molecules, ion channels implicated in the process
– compress biological information into activation or inhibition
– hypothesis: indirect causal relationships and processes correspond to 

paths                  ABA           ion flow,   ABA          Sph kinase activity

– activating or inhibiting effects on processes represented as 
intersection of two paths      SphK (ABA           closure)

Need to determine the closest regulator and target of each node

interaction Node/Process BNode A

Arabidopsispromotes SphKABA

Arabidopsispartially promotes ABA → AnionEMSphK

Commelina
communispromotes ABA → closurePLC

species



Network reduction
Find the most parsimonious (least redundant) network that incorporates all
nodes and known processes. 
• Introduce intermediary nodes
• Contract intermediary nodes
• Review and revise 

General algorithm - Bhaskar Dasgupta
binary transitive reduction with critical edges, pseudo-vertex collapse

R. Albert, B. DasGupta et al, Journ. Comp Biology (in the press, 2007).



• intermediary nodes, enzymes, signal transduction proteins, transport,  small molecules



What additional information is essential and available 
for describing the flow of information during this 
process?

Inhibitors – block the signal
Conditional activation 
Independent activation

Boolean framework: 
NOT, AND, OR
States: 1 = active/high/open,
0 = inactive/low/closed

Ca2+
c* = (CaIM or CIS) and not Ca2+ ATPase

Closure* = (KOUT or KAP) and AnionEM and Actin and not Malate

Randomly selected initial condition (except for ABA), random timing
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Results: normal behavior, +ABA 
• Percentage of in silico stomata that are closed after ABA 

treatment reaches 100% by 8 timesteps.

+ABA



Results: normal behavior, -ABA 
• Percentage of in silico stomata that are closed in the absence 

of ABA treatment reaches 0% by 6 timesteps.
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Simulated knockouts



Results: dynamic effects of knockouts

Normal response of simulated population to ABA stimulus. 
ABI1 knockout mutants have faster response at the population level.
Perturbations in Ca2+ lead to slower response at the population level.
Perturbations in  pH lead to decreased sensitivity at the population level.
Perturbations in anion flow lead to insensitivity.
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Experimental validation of Ca2+ and 
pH prediction

Normal: “open” and
“closed” state
distinguishable

pHc disrupted: “open”
and “closed” state
indistinguishable

Ca2+ disrupted: “open”
and “closed” state

distinguishable

Further analysis: quantitative degree of closure,  transients

Aperture in µm

P
er

ce
nt
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e



Modeling pathogen-immune system 
interactions

Phenomenon: respiratory infection of mice by two bacterial strains
Hypotheses: discrete states, switch-like state changes

finite decay times
Validation: reproduces known wild type and disrupted infection   

timecourses.
Explored: disruptions in immune components or bacteria

changes in timing
different initial conditions
re-infections

Insights: discrete infection phases
relationships among cytokine timescales
differences among pathogens

J. Thakar, M. Pilione,G. Kirimajeswara, E. T. Harvill, R. Albert, 
PLoS Comp Biol. 3, e109 (2007).



Immune Response Overview

Adaptive Immunity
(7-14 days after infection)

Gram-negative bacteria

TLR-4 & other 
receptors

Cytokines/chemokines

Cell recruitment 
& activation

neutrophil
macrophage

dendritic cell

phagocytosis, 
processing

antigen presentation

T

BT

antibody 
production

B

Innate Immunity
(immediate response)

antibody 
effector

functions

Bacterial 
Clearance

Complement

Thanks to Harvill lab members



Interaction network of immune responses

FHA/
ACT

Dead PMNs

PTX

O-Ag

TTSS



B. bronchiseptica

B. pertussis

Infection timecourse in model and experiment

node on
node off



B. bronchiseptica B. pertussis
Wild Type

Antibody treatment

days days

Lo
g 1

0
C

FU

Lo
g 1

0
C

FU

G. Kirimanjeswara et al. Infect Immun 71, 1719 (2003)

node on
node off



B. bronchiseptica B. pertussis
Wild Type

Re-infection of convalescent hosts
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Conclusions
Network synthesis allows the logical organization of signaling
components.

Network analysis and dynamic modeling:
• has predictive value   
• has practical value for prioritization of experiments.
• allows discovery of new strategies
• will be useful for other incompletely known regulatory networks.

Methodology can be refined iteratively with experiments

Toward theory of biological circuits
• Robustness through redundancy & feedback
• Noise filtering through synergy 
• Adaptability through cross-talk
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