Circadian clocks and noise

Didier Gonze

Overview

Molecular mechanism

What is the molecular mechanism underlying circadian oscillations?

Effect of noise

How robust are the circadian oscillations with respect to molecular noise?

Synchronization

By which mechanism the circadian oscillators are synchronized?

Circadian rhythms

Circadian rhythms are endogeneous 24h-period rhythms that allow living organisms to live in phase with the alternance of day and night.

Circadian rhythms in *Drosophila*

Locomotor activity

Expression of per gene

Konopka RJ & Benzer S (1971) Clock mutants of *Drosophila melanogaster. Proc Natl Acad Sci USA* **68**, 2112-6.

Zeitgeber fine

Molecular mechanism of circadian clocks

Core mechanism: negative feedback loop

	clock gene
Drosophila Mammals Neurospora	<pre>per (period), tim (timeless) mper1-3 (period homologs) frq (frequency)</pre>

Deterministic models for circadian rhythms

Goldbeter A (1995) A model for circadian oscillations in the *Drosophila* period protein (PER). *Proc. R. Soc. Lond. B. Biol. Sci.* 261, 319-24.

$$\frac{dM_P}{dt} = v_s \frac{K_I^n}{K_I^n + P_N^n} - v_m \frac{M_P}{K_m + M_P}$$
 PER protein (unphosph.)
$$\frac{dP_0}{dt} = k_s M_P - v_1 \frac{P_0}{K_1 + P_0} + v_2 \frac{P_1}{K_2 + P_1}$$
 PER protein (monophosph.)
$$\frac{dP_1}{dt} = v_1 \frac{P_0}{K_1 + P_0} - v_2 \frac{P_1}{K_2 + P_1} - v_3 \frac{P_1}{K_3 + P_1} + v_4 \frac{P_2}{K_4 + P_2}$$
 PER protein (biphosph.)
$$\frac{dP_2}{dt} = v_3 \frac{P_1}{K_3 + P_1} - v_4 \frac{P_2}{K_4 + P_2} - v_d \frac{P_2}{K_4 + P_2} - k_1 P_2 + k_2 P_N$$
 nuclear PER protein
$$\frac{dP_N}{dt} = k_1 P_2 - k_2 P_N$$

Goldbeter A (1995) A model for circadian oscillations in the *Drosophila* period protein (PER). *Proc. R. Soc. Lond. B. Biol. Sci.* 261, 319-24.

Dynamics of per mRNA (M_P) : synthesis

$$\frac{dM_P}{dt} = v_s \frac{K_I^n}{K_I^n + P_N^n} - v_m \frac{M_P}{K_m + M_I}$$

Inhibition: Hill function

Dynamics of per mRNA (M_P) : degradation

$$\frac{dM_P}{dt} = v_s \frac{K_I^n}{K_I^n + P_N^n} - v_m \frac{M_P}{K_m + M_P}$$

Degradation: Michaelis-Menten

$$E \ll M$$

$$k_1, k_{-1} >> k_2$$

$$E_{tot} = E + ME$$

$$K_{M} = (k_{-1} + k_{2}) / k_{1}$$
 $v_{m} = k_{2} E_{tot}$

Dynamics of PER protein (P_0, P_1, P_2, P_N)

$$\frac{dP_0}{dt} = k_s M_P - v_1 \frac{P_0}{K_1 + P_0} + v_2 \frac{P_1}{K_2 + P_1}$$
PER synthesis: proportional to mRNA

$$\frac{dP_1}{dt} = v_1 \frac{P_0}{K_1 + P_0} - v_2 \frac{P_1}{K_2 + P_1} - v_3 \frac{P_1}{K_3 + P_1} + v_4 \frac{P_2}{K_4 + P_2}$$

$$\frac{dP_2}{dt} = v_3 \frac{P_1}{K_3 + P_1} - v_4 \frac{P_2}{K_4 + P_2} - v_d \frac{P_2}{K_d + P_2} - k_1 P_2 + k_2 P_N$$

$$\frac{dP_N}{dt} = k_1 P_2 - k_2 P_N$$

Dynamics of PER protein (P_0, P_1, P_2, P_N)

$$\frac{dP_0}{dt} = k_s M_P - v_1 \frac{P_0}{K_1 + P_0} + v_2 \frac{P_1}{K_2 + P_1}$$

PER phosphorylation/dephosphorylation:

Michaelis-Menten

$$\frac{dP_1}{dt} = v_1 \frac{P_0}{K_1 + P_0} - v_2 \frac{P_1}{K_2 + P_1} - v_3 \frac{P_1}{K_3 + P_1} + v_4 \frac{P_2}{K_4 + P_2}$$

PER phosphorylation/dephosphorylation:

Michaelis-Menten

$$\frac{dP_2}{dt} = v_3 \frac{P_1}{K_3 + P_1} - v_4 \frac{P_2}{K_4 + P_2} - v_d \frac{P_2}{K_d + P_2} - k_1 P_2 + k_2 P_N$$

$$\frac{dP_N}{dt} = k_1 P_2 - k_2 P_N$$

Dynamics of PER protein (P_0, P_1, P_2, P_N)

$$\frac{dP_0}{dt} = k_s M_P - v_1 \frac{P_0}{K_1 + P_0} + v_2 \frac{P_1}{K_2 + P_1}$$

$$\frac{dP_1}{dt} = v_1 \frac{P_0}{K_1 + P_0} - v_2 \frac{P_1}{K_2 + P_1} - v_3 \frac{P_1}{K_3 + P_1} + v_4 \frac{P_2}{K_4 + P_2}$$

$$\frac{dP_2}{dt} = v_3 \frac{P_1}{K_3 + P_1} - v_4 \frac{P_2}{K_4 + P_2} - v_d \frac{P_2}{K_d + P_2} - k_1 P_2 + k_2 P_N$$

$$\frac{PER \text{ degradation:}}{\text{Michaelis-Menten}}$$

$$\frac{dP_N}{L} = k_1 P_2 - k_2 P_N$$

Dynamics of PER protein (P_0, P_1, P_2, P_N)

$$\frac{dP_0}{dt} = k_s M_P - v_1 \frac{P_0}{K_1 + P_0} + v_2 \frac{P_1}{K_2 + P_1}$$

$$\frac{dP_1}{dt} = v_1 \frac{P_0}{K_1 + P_0} - v_2 \frac{P_1}{K_2 + P_1} - v_3 \frac{P_1}{K_3 + P_1} + v_4 \frac{P_2}{K_4 + P_2}$$

$$\frac{dP_2}{dt} = v_3 \frac{P_1}{K_3 + P_1} - v_4 \frac{P_2}{K_4 + P_2} - v_d \frac{P_2}{K_4 + P_2} - k_1 P_2 + k_2 P_N$$

PER nuclear transport: linear

$$\frac{dP_N}{dt} = k_1 P_2 - k_2 P_N$$

Limit-cycle oscillations

- Mutants (long-period, short-period, arrythmic)
- Entrainment by light-dark cycles
- Phase shift induced by light pulses
- Suppression of oscillations by a light pulse
- Temperature compensation
- ...

Molecular mechanism of circadian clocks

	Clock gene	Activator	Effect of light
Drosophila	per, tim	clk, cyc	TIM degradation per transcription frq transcription
Mammals	mper1-3, cry1,2	clock, bmal1	
Neurospora	frq	wc-1, wc-2	

Dunlap JC (1999) Molecular bases for circadian clocks. *Cell* **96**: 271-290. **Young MW & Kay SA** (2001) Time zones: a comparative genetics of circadian clocks. *Nat. Genet.* **2**: 702-715.

Molecular mechanism of circadian clocks

Example: circadian clock in mammals

Figure from Gachon, Nagoshi, Brown, Ripperger, Schibler (2004) The mammalian circadian timing system: from gene expression to physiology. *Chromosomia* **113**: 103-112.

Model for the mammalian circadian clock

16-variable model including per, cry, bmal1, rev-erb α

Leloup J-C & Goldbeter A (2003) Toward a detailed computational model for the mammalian circadian clock. *Proc Natl Acad Sci USA.* 100: 7051-7056.

Stochastic models for circadian rhythms

Circadian clocks limited by noise?

Circadian clocks limited by noise

N. Barkai & S. Leibler, *Nature* (2000) 403: 267-268

Goldbeter A (1995) A model for circadian oscillations in the *Drosophila* period protein (PER). *Proc. R. Soc. Lond. B. Biol. Sci.* 261, 319-24.

$$\frac{dM_P}{dt} = v_s \frac{K_I^n}{K_I^n + P_N^n} - v_m \frac{M_P}{K_m + M_P}$$

$$\frac{dP_0}{dt} = k_s M_P - v_1 \frac{P_0}{K_1 + P_0} + v_2 \frac{P_1}{K_2 + P_1}$$

$$\frac{dP_1}{dt} = v_1 \frac{P_0}{K_1 + P_0} - v_2 \frac{P_1}{K_2 + P_1} - v_3 \frac{P_1}{K_3 + P_1} + v_4 \frac{P_2}{K_4 + P_2}$$

$$\frac{dP_2}{dt} = v_3 \frac{P_1}{K_3 + P_1} - v_4 \frac{P_2}{K_4 + P_2} - v_d \frac{P_2}{K_d + P_2} - k_1 P_2 + k_2 P_N$$

$$\frac{dP_N}{dt} = k_1 P_2 - k_2 P_N$$

Stochastic simulations

Fluctuations are due the limited number of molecules (**molecular noise**). They can be assessed thanks to stochastic simulations.

Such an approach requires a description in term of the number of molecules (instead of concentrations).

Here, we will focus on several robustness factors:

- Number of molecules
- Degree of cooperativity
- Periodic forcing (LD cycle)
- Proximity of a bifurcation point
- Coupling between cells

Detailed reaction scheme

$$G + P_N \rightleftharpoons GP_N$$

$$GP_N + P_N \rightleftharpoons GP_{N2}$$

$$GP_{N2} + P_N \rightleftharpoons GP_{N3}$$

$$GP_{N3} + P_N \rightleftharpoons GP_{N4}$$

Successive binding of 4 P_N molecules to the gene G

$[G, GP_{N1}, GP_{N2}, GP_{N3}] \to M + [G, GP_{N1}, GP_{N2}, GP_{N3}]$

$$M + E_m \rightleftharpoons C_m \rightarrow E_m$$

$$M \to M + P_0$$

$$P_0 + E_1 \rightleftharpoons C_1 \rightarrow P_1 + E_1$$

$$P_1 + E_2 \rightleftharpoons C_2 \rightarrow P_0 + E_2$$

$$P_1 + E_3 \rightleftharpoons C_3 \rightarrow P_2 + E_3$$

$$P_2 + E_4 \rightleftharpoons C_4 \rightarrow P_1 + E_4$$

$$P_2 + E_d \rightleftharpoons C_d \rightarrow E_d$$

$$P_2 \rightleftharpoons P_n$$

Transcription

Degradation of mRNA

Translation

Phosphorylation / Dephosphorylation

Degradation of protein

Translocation of protein

Gillespie algorithm

A **reaction rate** w_i is associated to each reaction step. These probabilites are related to the kinetics constants.

Initial number of molecules of each species are specified.

The **time interval** is computed stochastically according the reation rates.

At each time interval, the **reaction** that occurs is chosen randomly according to the probabilities w_i and both the number of molecules and the reaction rates are updated.

$$A \xrightarrow{w_1} B$$

$$B + C \xrightarrow{w_2} I$$

$$E \xrightarrow{w_3} E$$

 $D \xrightarrow{\longrightarrow} E + F$

. . .

Gillespie D.T. (1977) Exact stochastic simulation of coupled chemical reactions. *J. Phys. Chem.* 81: 2340-2361. **Gillespie D.T.**, (1976) A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions. *J. Comp. Phys.*, 22: 403-434.

Stochastic description of the model

Reaction number	Reaction step	Probability of reaction
Ĩ	$G + P_N \xrightarrow{u_1} GP_N$	$w_1 = a_1 \times G \times P_N / \Omega$
2	$GP_N \xrightarrow{d_1} G + P_N$	$w_2 = d_1 \times GP_N$
3	$GP_N + P_N \xrightarrow{u_2} GP_{N2}$	$w_3 = a_2 \times GP_N \times P_N / \Omega$
4	$\begin{array}{c} GP_N + P_N \xrightarrow{u_2} GP_{N2} \\ GP_{N2} \xrightarrow{d_2} GP_N + P_N \end{array}$	$w_4 = d_2 \times GP_{N2}$
5	$GP_{N2} + P_N \xrightarrow{u_3} GP_{N3}$	$w_5 = a_3 \times GP_{N_2} \times P_N / \Omega$
6	$GP_{N3} \xrightarrow{d_3} GP_{N2} + P_{N3}$	$w_6 = d_3 \times GP_{N3}$
7	$GP_{N3} + P_N \xrightarrow{u_4} GP_{N4}$	$w_7 = a_4 \times GP_{N3} \times P_N / \Omega$
8	$GP_{N4} \xrightarrow{d_4} GP_{N3} + P_N$	$w_8 = d_4 \times GP_{N4}$
9	$[G,GP_N,GP_{N2},GP_{N3}] \xrightarrow{\nu_s} M_P$	$w_9 = v_s \times (G + GP_N + GP_{N2} + GP_{N3})$
10	$M_P + E_m \xrightarrow{k_{mi}} C_m$	$W_{10} = k_{m1} \times M_p \times E_m / \Omega$
11	$C_{m} \xrightarrow{k_{m2}} M_{P} + E_{m}$ $C_{m} \xrightarrow{k_{m3}} E_{m}$ $M_{P} \xrightarrow{k_{s}} M_{P} + P_{0}$	$w_{11} = k_{m2} \times C_m$
12	$C_{m} \xrightarrow{k_{m3}} E_{m}$	$w_{12} = k_{m3} \times C_m$
13	$M_P \xrightarrow{k_s} M_P + P_0$	$W_{13} = k_s \times M_p$
14	$P_0 + E_1 \xrightarrow{k_1} C_1$	$w_{14} = k_{11} \times P_0 \times E_1 / \Omega$
15	$C_1 \xrightarrow{k_{12}} P_0 + E_1$	$w_{15} = k_{12} \times C_1$
16	$C_1 \xrightarrow{k_3} P_1 + E_1$	$w_{16} = k_{13} \times C_1$
17	$P_1 + F_2 \xrightarrow{k_{21}} C_2$	$w_{17} = k_{21} \times P_1 \times E_2 / \Omega$
18	$C_2 \xrightarrow{\kappa_{22}} P_1 + E_2$	$w_{18} = k_{22} \times C_2$
19	$C_2 \xrightarrow{k_{23}} P_0 + E_2$	$w_{19} = k_{23} \times C_2$
20	$C_2 \xrightarrow{k_{23}} P_0 + E_2$ $P_1 + E_3 \xrightarrow{k_{31}} C_3$	$w_{20} = k_{31} \times P_1 \times E_3 / \Omega$
21	$C_3 \xrightarrow{k_{32}} P_1 + E_3$	$w_{21} = k_{32} \times C_3$
22	$C_3 \xrightarrow{k_{33}} P_2 + E_3$	$w_{22} = k_{33} \times C_3$
23	$P_2 + E_4 \xrightarrow{k_4} C_4$	$w_{23} = k_{41} \times P_2 \times E_4 / \Omega$
24	$C_4 \xrightarrow{k_{42}} P_2 + E_4$	$w_{24} = k_{42} \times C_4$
25	$C_4 \xrightarrow{k_{43}} P_1 + E_4$	$w_{25} = k_{43} \times C_4$
26	$P_2 + E_d \xrightarrow{k_{d1}} C_d$	$W_{26} = k_{J1} \times P_2 \times E_J / \Omega$
27	$C_d \xrightarrow{k_{d2}} P_2 + E_d$	$w_{27} = k_{d2} \times C_d$
28	$C_d \xrightarrow{k_{d3}} E_d$	$w_{28} = k_{d3} \times C_d$
29	$P_2 \xrightarrow{k_1} P_N$	$w_{29} = k_1 \times P_2$
30	$P_{N} \xrightarrow{k_{2}} P_{2}$	$w_{30} = k_2 \times P_N$

Parameter Ω (volume)

Number of molecules

Ω small

Small number of molecules, high noise

Ω large

Large number of molecules, low noise

Same concentration

Stochastic oscillations and limit cycle

Gonze D, Halloy J, Goldbeter A (2002) Robustness of circadian rhythms with respect to molecular noise. *Proc. Natl. Acad. Sci. USA* 99: 673-678.

Developed vs non-developed model

Reaction number	Reaction	Probability of reaction	Transition
1	$G \longrightarrow M_P + G$	$w_1 = (v_s \Omega) \frac{(K_I \Omega)^n}{(K_I \Omega)^n + P_N^n}$	$M_P \longrightarrow M_P + 1$
2	$M_{P} \!$	$w_3 = (v_m \Omega) \frac{M_P}{(K_m \Omega) + M_P}$	$M_P \longrightarrow M_P - 1$
3	$M_P \longrightarrow P_0 + M_P$	$w_2 = k_s M_P$	$P_0 \longrightarrow P_0 + 1$
4	$P_0 \longrightarrow P_1$	$w_4 = (v_1 \Omega) \frac{P_0}{(K_1 \Omega) + P_0}$	$P_0 \longrightarrow P_0 - 1$ $P_1 \longrightarrow P_1 + 1$
5	$P_1 \longrightarrow P_0$	$w_5 = (v_2 \Omega) \frac{P_1}{(K_2 \Omega) + P_1}$	$P_0 \longrightarrow P_0 + 1$ $P_1 \longrightarrow P_1 - 1$
6	$P_1 {\longrightarrow} P_2$	$w_6 = (v_3 \Omega) \frac{P_1}{(K_3 \Omega) + P_1}$	$P_1 \longrightarrow P_1 - 1$ $P_2 \longrightarrow P_2 + 1$
7	$P_2 \longrightarrow P_1$	$w_7 = (v_4 \Omega) \frac{P_2}{(K_4 \Omega) + P_2}$	$P_1 \longrightarrow P_1 + 1$ $P_2 \longrightarrow P_2 - 1$
8	$P_2 {\longrightarrow}$	$w_8 = (v_d \Omega) \frac{P_2}{(K_d \Omega) + P_2}$	$P_2 \longrightarrow P_2 - 1$
9	$P_2 {\longrightarrow} P_N$	$w_9 = k_1 P_2$	$P_2 \longrightarrow P_2 - 1$ $P_N \longrightarrow P_N + 1$
10	$P_{N} {\longrightarrow} P_{2}$	$w_{10} = k_2 P_N$	$P_2 \longrightarrow P_2 + 1$ $P_N \longrightarrow P_N - 1$

Developed vs non-developed model

Gonze D, Halloy J, Goldbeter A (2002) Deterministic versus stochastic models for circadian rhythms. *J. Biol. Phys.* 28: 637-653.

Effect of the number of molecules, Ω

Effect of the degree of cooperativity, n

Gonze D, **Halloy J**, **Goldbeter A** (2002) Robustness of circadian rhythms with respect to molecular noise. *Proc. Natl. Acad. Sci. USA* 99: 673-678.

Quantification of the effect of noise

Auto-correlation function

Effect of the number of molecules, Ω

Effect of the degree of cooperativity, *n*

Effect of a periodic forcing (LD cycle)

Light-dark cycle LD 12:12

light induces PER protein degradation, v_d

Effect of the proximity of a bifurcation point

Gonze D, Halloy J, Goldbeter A (2002) Deterministic versus stochastic models for circadian rhythms. *J. Biol. Phys.* 28: 637-653.

Effect of the proximity of a bifurcation point

Cooperative protein-DNA binding

Hill function

$$v_s \frac{K_I^n}{K_I^n + P_N^n}$$

$$\frac{dM_P}{dt} = v_s \frac{K_I^n}{K_I^n + P_N^n} - v_m \frac{M_P}{K_m + M_P}$$

$$\frac{dP_0}{dt} = k_s M_P - v_1 \frac{P_0}{K_1 + P_0} + v_2 \frac{P_1}{K_2 + P_1}$$

$$\frac{dP_1}{dt} = v_1 \frac{P_0}{K_1 + P_0} - v_2 \frac{P_1}{K_2 + P_1} - v_3 \frac{P_1}{K_3 + P_1} + v_4 \frac{P_2}{K_4 + P_2}$$

$$\frac{dP_2}{dt} = v_3 \frac{P_1}{K_3 + P_1} - v_4 \frac{P_2}{K_4 + P_2} - v_d \frac{P_2}{K_d + P_2} - k_1 P_2 + k_2 P_N$$

$$\frac{dP_N}{dt} = k_1 P_2 - k_2 P_N$$

Cooperative protein-DNA binding

We define γ :

$$a_i \rightarrow a_i / \gamma$$
 ($i = 1,...4$)
 $d_i \rightarrow d_i / \gamma$ ($i = 1,...4$)

Influence of the protein-DNA binding rate

Gonze D, Halloy J, Goldbeter A (2004) Emergence of coherent oscillations in stochastic models for circadian rhythms. *Physica A* 342: 221-233.

Developed deterministic model

$$\begin{split} &\frac{\mathrm{d}G}{\mathrm{d}t} = -a_1 G P_N + d_1 [G P_N] \;, \\ &\frac{\mathrm{d}[G P_N]}{\mathrm{d}t} = a_1 G P_N - d_1 [G P_N] - a_2 [G P_N] P_N + d_2 [G P_{N2}] \;, \\ &\frac{\mathrm{d}[G P_{N2}]}{\mathrm{d}t} = a_2 [G P_{N1}] P_N - d_2 [G P_{N2}] - a_3 [G P_{N2}] P_N + d_3 [G P_{N3}] \;, \\ &\frac{\mathrm{d}[G P_{N3}]}{\mathrm{d}t} = a_3 [G P_{N2}] P_N - d_3 [G P_{N3}] - a_4 [G P_{N3}] P_N + d_4 [G P_{N4}] \;, \\ &\frac{\mathrm{d}[G P_{N4}]}{\mathrm{d}t} = a_4 [G P_{N3}] P_N - d_4 [G P_{N4}] \;, \\ &\frac{\mathrm{d}M}{\mathrm{d}t} = v_s (G + [G P_N] + [G P_{N2}] + [G P_{N3}]) - k_{11} M E_m + k_{12} C_m \;, \\ &\frac{\mathrm{d}E_m}{\mathrm{d}t} = -k_m [M E_m + k_{m2} C_m + k_{m3} C_m \;, \\ &\frac{\mathrm{d}C_m}{\mathrm{d}t} = k_m [M E_m - k_{m2} C_m - k_{m3} C_m \;, \\ &\frac{\mathrm{d}P_0}{\mathrm{d}t} = k_3 M - k_{11} P_0 E_1 + k_{12} C_1 + k_{23} C_2 \;, \\ &\frac{\mathrm{d}E_1}{\mathrm{d}t} = -k_{11} P_0 E_1 + k_{12} C_1 - k_{13} C_1 \;, \\ &\frac{\mathrm{d}C_1}{\mathrm{d}t} = k_{11} P_0 E_1 - k_{12} C_1 - k_{13} C_1 \;, \\ &\frac{\mathrm{d}P_1}{\mathrm{d}t} = -k_{21} P_1 E_2 + k_{22} C_2 + k_{13} C_1 - k_{31} P_1 E_3 + k_{32} C_3 + k_{43} C_4 \;, \end{aligned}$$

$$\begin{split} \frac{\mathrm{d}E_2}{\mathrm{d}t} &= -k_{21}P_1E_2 + k_{22}C_2 + k_{23}C_2 \;, \\ \frac{\mathrm{d}C_2}{\mathrm{d}t} &= k_{21}P_1E_2 - k_{22}C_2 - k_{23}C_2 \;, \\ \frac{\mathrm{d}P_2}{\mathrm{d}t} &= k_{33}C_3 - k_{11}P_2E_4 + k_{12}C_4 - k_{d1}P_2E_d + k_{d2}C_d - k_1P_2 + k_2P_N \;, \\ \frac{\mathrm{d}E_3}{\mathrm{d}t} &= -k_{31}P_1E_3 + k_{32}C_3 + k_{33}C_3 \;, \\ \frac{\mathrm{d}C_3}{\mathrm{d}t} &= k_{31}P_1E_3 - k_{32}C_3 - k_{33}C_3 \;, \\ \frac{\mathrm{d}E_4}{\mathrm{d}t} &= -k_{41}P_2E_4 + k_{42}C_4 + k_{43}C_4 \;, \\ \frac{\mathrm{d}E_4}{\mathrm{d}t} &= k_{41}P_2E_4 - k_{42}C_4 - k_{43}C_4 \;, \\ \frac{\mathrm{d}E_d}{\mathrm{d}t} &= -k_{d1}P_2E_d + k_{d2}C_d + k_{d3}C_d \;, \\ \frac{\mathrm{d}C_d}{\mathrm{d}t} &= k_{d1}P_2E_d - k_{d2}C_d - k_{d3}C_d \;, \\ \frac{\mathrm{d}C_d}{\mathrm{d}t} &= k_{d1}P_2E_d - k_{d2}C_d - k_{d3}C_d \;, \\ \frac{\mathrm{d}P_N}{\mathrm{d}t} &= -a_1GP_N + d_1[GP_N] - a_2[GP_{N1}]P_N + d_2[GP_{N2}] - a_3[GP_{N2}]P_N \\ &+ d_3[GP_{N3}] - a_4[GP_{N3}]P_N + d_4[GP_{N4}] + k_1P_2 - k_2P_N \end{split}$$
 with $G_{tot} = G + GP_N + GP_{N2} + GP_{N3} + GP_{N4} = 1$.

Deterministic model: bifurcation diagram

Developed deterministic model: excitability

Mechanisms of noise-resistance

Mechanisms of noise-resistance in genetic oscillators

Vilar, Kueh, Barkai, Leibler, *PNAS* (2002) 99: 5988-5992

$$\begin{split} \frac{dR}{dt} &= \frac{\beta_R}{\delta_{M_R}} \frac{\alpha_R \theta_R + \alpha_R' \gamma_R \tilde{A}(R)}{\theta_R + \gamma_R \tilde{A}(R)} - \gamma_C \tilde{A}(R)R + \delta_A C - \delta_R R \\ \frac{dC}{dt} &= \gamma_C \tilde{A}(R)R - \delta_A C \end{split}$$

Effect of noise in more complex models

PER-TIM model for the *Drosophila* cicadian clock

Leloup JC and Goldbeter A (1998) A model for circadian rhythms in *Drosophila* incorporating the formation of a complex between the PER and TIM proteins. *J. Biol. Rhythms* 13: 70–87

Effect of noise in more complex models

Effect of noise in more complex models

Effect of noise on the chaotic behavior

Deterministic chaotic behavior

Stochastic chaotic behavior $(\Omega = 1000)$

Stochastic chaotic behavior $(\Omega = 100)$

Mutation and robustness to noise

Stochastic simulation of the mammalian circadian clock

Forger and Peskin, *PNAS* (2005) 102: 321-324

Model for the mammalian circadian clock (74 variables!)

Higher robustness if the binding rate is high

Differential effect of the mutations on the robustness

Stochastic resonance in circadian clock?

Internal noise stochastic resonance in a circadian clock system

Hou & Xin, J Chem Phys (2003) 119: 11508

Light-noise induced supra-threshold circadian oscillations and coherent resonance in *Drosophila*

Yi & Jia, *Phys Rev E* (2005) 72: 012902

Coupling circadian oscillators

Mammals: SCN

Neurospora crassa

Coupling circadian oscillators: Neurospora

Neurospora crassa

syncitium

Neurospora: molecular mechansim

Neurospora crassa: Molecular mechanism of the circadian clock

Aronson BD, Johnson KA, Loros JJ, Dunlap LC (1994) Negative feedback defining a circadian clock: autoregulation of the clock gene frequency. *Science*. 263: 1578-84.

Lee K, Loros JJ, Dunlap JC (2000) Interconnected feedback loops in the Neurospora circadian system. *Science*. 289: 107-10.

Neurospora circadian clock: single-cell model

$$\frac{dM}{dt} = \lambda v_s \frac{K_I^n}{K_I^n + F_n^n} - v_m \frac{M}{K_m + M}$$

$$\frac{dF_c}{dt} = k_s M - v_d \frac{F_c}{K_d + F_c} - k_1 F_c + k_2 F_n$$

$$\frac{dF_n}{dt} = k_1 F_c - k_2 F_n$$

Neurospora circadian clock: coupled model

Global coupling

Local coupling

Robustness of the coupled model

Robustness of the coupled model for the Neurospora circadian clock

Half-life of the auto-correlation function

Conclusions

- Robust circadian oscillations are observed for a limited number of molecules, i.e. some tens mRNA molecules and hundreds proteins molecules.
- Cooperativity increases the robustness of the oscillations.
- The periodic forcing of the oscillations (LD cycle) increases the robustness by stabilizing the phase of the oscillations.
- The proximity of a bifurcation point decreases the robustness of the oscillations. In particular, near an excitable steady state, highly irregular oscillations are observed.
- Coupling between cells increases the robustness of the oscillations.