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Wow! That’s amazing!
•  Circadian oscillators are 
supposed to be transcriptional.
•  A complete biochemical 
“circuit” in vitro.
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How does this oscillator 
work?

Related models:
Emberly and Wingreen, PRL 2006
Clodong et al., Mol. Sys. Biol. 2007
Mori et al., PLoS Biol. 2007
Yoda et al., PLoS ONE 2007

Other models:
Mehra et al., PLoS Comp. Biol. 2006
Miyoshi et al., JBR 2007
Takigawa-Imamura and Mochizuki, J. Th. Biol. 2006
 “  “            JBR 2006
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Cyanobacteria
• Photosynthetic bacteria (O2 producing)
• Oldest known fossils

 ~3.5 billion years
 Responsible for current oxygenic atmosphere
 Origin of chloroplasts

• “Blue-green algae”
• S. elongatus:  Genetically tractable model.



Circadian Rhythms
• Most eukaryotes, cyanobacteria,…
• Free-running oscillation, ~24 hours.
• Entrained by light, temperature, etc.
• Temperature-compensated.
• Textbook model:  Negative transcriptional feedback

gene X

XX
delay



…but no transcription needed in S. 
Elongatus

• Circadian rhythm in a test tube:

Oscillatory
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The Players
• KaiC

 Hexamer (AAA+ ATPase).
 Auto (de)phosphorylation activity.
 Transcriptional repressor in vivo.
 Phosphorylation level oscillates with 

24 hour period.
• KaiA

 Dimer
 Stimulates KaiC phosphorylation.
 Complexes w/KaiC and KaiB + KaiC.

• KaiB
 Dimer or tetramer
 Attentuates KaiA’s effects.
 Complexes w/KaiC and KaiA + KaiC.

Pattanayek et al., Mol. Cell 2004



Ye et al., J Biol. Chem. 2004

The Players
• KaiC

 Hexamer (AAA+ ATPase).
 Auto (de)phosphorylation activity.
 Transcriptional repressor in vivo.
 Phosphorylation level oscillates with 

24 hour period.
• KaiA

 Dimer
 Stimulates KaiC phosphorylation.
 Complexes w/KaiC and KaiB + KaiC.

• KaiB
 Dimer or tetramer
 Attentuates KaiA’s effects.
 Complexes w/KaiC and KaiA + KaiC.



The Players
• KaiC

 Hexamer (AAA+ ATPase).
 Auto (de)phosphorylation activity.
 Transcriptional repressor in vivo.
 Phosphorylation level oscillates with 
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 Dimer
 Stimulates KaiC phosphorylation.
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Tomita et al., Science 2005

In Vitro Data
• Different combinations of proteins

 Phosphorylation and dephosphorylation each slow 
and temperature-compensated.

( to 0 at 
long times)

(to 1 at 
long times)



In Vitro Data
• Varying concentrations

 Increasing all concentrations by same factor ⇒ No 
change.

Kageyama et al., Mol. Cell  2006



In Vitro Data
• Sizes of Complexes

 No evidence for interactions between KaiC hexamers.
 Almost no free KaiA.

Kageyama et al., Mol. Cell  2006

t = 24 hrs.

t = 0 (reference)
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• Kai proteins neither created nor destroyed.
• KaiC (de)phosphorylation = only driven (energy-

consuming) reactions.
 No other covalent modifications or enzymatic activities.
 Other reactions obey detailed balance (unless tightly coupled 

to phosphorylation cycle).

• KaiC hexamers don’t interact directly.
 Single KaiC hexamer can’t oscillate coherently.
 KaiC’s coupled only indirectly through KaiA and KaiB.

• Seriously constrained by biochemical data.

Modeling Challenges



Model, Part 1: Allosteric Cycles

• 2 KaiC conformations: 
 “U” favors phosphorylation
 “D” favors dephosphorylation

• KaiC alone cyclically adds & removes P’s:

U1U0 U2 U3 U4 U5 U6

D1D0 D2 D3 D4 D5 D6

(subscript indicates # phosphates)
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Thermodynamic Constraints
• What drives state transitions? 
 Nucleotide exchange.

 All obvious driven steps now “used up”.
 Further reactions should obey detailed balance.

• Must allow reverse, intermediate reactions.

U1U0 U2 U3 U4 U5 U6

D1D0 D2 D3 D4 D5 D6

Bind ATP Release ADP



Monomer States
• 8 KaiC monomer states:

 U or D conformation
 Phosphorylated or not
 Nucleotide (ATP/ADP) bound or not

• Energy levels

U-ATP

UD

D-ATP

Unphosphorylated
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 Phosphorylated or not
 Nucleotide (ATP/ADP) bound or not

• Energy levels

U-ATP

UD

D-ATP Up

Up-ADP

Dp

Dp-ADP

Unphosphorylated Phosphorylated



Single Hexamer: Noisy Oscillations

Must synchronize the different hexamers.



Monomer Exchange

• It happens during dephosphorylation phase.
• It is (probably) not enough to explain 

synchronization

Emberly & Wingreen
PRL 2006



Model, Part 2: Differential Affinity
• KaiA catalyzes KaiC phosphorylation.
• [KaiA] limiting.
• KaiA binds laggards (fewer phosphates) more 

strongly than leaders (more phosphates).

KaiCKaiC PKaiCP

P

KaiA
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Generic Differential Affinity
• KaiA and KaiC only.
• Oscillates:

• Does not agree quantitatively with experiments.



• Should include KaiB.
• Should agree with data on KaiC alone, KaiA + KaiC, 

abundance of different complexes,…
• Changes/Additions:

 Weak dephosphorylation in U conformation.
 U more stable than D:  AVOID OVERSHOOTS.
 KaiB binds to, stabilizes D conformation.
 KaiB-KaiC complexes sequester KaiA (differential affinity).

Full Model

U D KaiA
KaiB

KaiB

KaiB

KaiB
No KaiA, can’t add P’s Hogging KaiA



Full Model vs. Experiment

Model

Experiment

Oscillations



Full Model vs. Experiment

Tomita et al., Science 2005

1 or 2 Kai proteins

Experiment
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Temperature Compensation
• Recall

 Period insensitive to temperature.
 (De)phosphorylation rates separately insensitive to 

temperature.

Nakajima et al., Science 2005
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Temperature Compensation

Kageyama et al., 
Mol. Cell 2006

t = 0 (reference)

t = 36 hrs.



Temperature Compensation
• Mechanism makes predictions

 No free KaiA
 Period unchanged when increase all 

concentrations.
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Predictions
• KaiC has 2 conformations

 Transitions between coupled to ATP hydrolysis/
phosphorylation.

 This limits choice of rates, irreversibility,…
• Binding reactions driven to completion.



Predictions
• Increasing [KaiB] leaves oscillations unaffected.
• Increasing [KaiA] destroys oscillations.
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Predictions
• Increasing [KaiB] leaves oscillations unaffected.
• Increasing [KaiA] destroys oscillations.

Kageyama et al., Mol. Cell  2006



Summary
• Challenge:  Mechanism for “minimal” protein 

oscillator.
 Only 3 purified proteins.
 Only 1 reaction cycle driven out of equilibrium.

• Proposal:  Synchronization of molecular cycles via 
differential affinity.

• Predict:  Increasing [KaiA], but not [KaiB], destroys 
oscillations.

• Outlook.
 In vivo?  Lower [KaiA], transcriptional feedback.
 Evolution:  No KaiA in ~50% of cyanobacteria!




