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My history
• PhD: University of Toronto engineering

–Gabe D’Eleuterio, Space Robotics group 
(aerospace)

–Models of coupled neural oscillators to 
control a walking robot

• Postdoc: Center for BioDynamics, 
Boston University
–Neural/genetic oscillator synchronization 

with Nancy Kopell
–Gene modelling with Jim Collins

• Faculty: Chemistry/Physics,Toronto 
(since July 2003)
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The cell
• A little package of goo, in a wrapper
• Key molecules:

–Proteins: do most of the work
–DNA: codes for proteins



Genome sequencing projects



Genome sequencing projects

• Why is this not true?
• Having the pieces doesn’t mean we know 

how they function and fit together 
(dynamics, network behaviour)

Secret of Life Solved!

Cells fully understood!
Molecular biology finished!



Questions

• Big Question #1: How do we predict 
cellular behaviour?
– Sequence data gives us the components, 

now how do we understand the system?

• Big Question #2: How can we control 
cellular behaviour?
– Diseases, pathogenic invasions: involve 

alterations of natural dynamics
– Can we reestablish normal function?



Dynamics of the cell

• Dynamics: How a system’s state evolves 
over time

• State of a cell: 
– Numbers of biomolecules/complexes
– Proteins, mRNA, DNA-protein complexes ...

• Time evolution:
– Driven by biochemical reactions
– Transcription, translation, binding ...



If cells were beakers ...
1. Use standard kinetics to form models
2. Identify the set of relevant 

biochemical reactions
• List all species of interest
• Include all reactions that affect those 

species

3. Determine rate constants
• Production, degradation, binding

4. Derive dynamics from the chemical 
kinetics

5. Main problem: sheer scale



Formulating models
• Represent production, binding, degradation as a 

set of reactions

• Use chemical kinetics to turn reactions into a 
mathematical model
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Formulating models
• Translate reactions into rate equations 

for each species
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Autoregulation in BioNetS

Adalsteinsson, McMillen, and Elston.  BMC 
Bioinformatics 5:24 (2004).



But cells differ from beakers ...
1. Hard to reach into and control

• Design of synthetic network controllers

2. Small size / small numbers
3. Growth and division

• Cells double, cut in half

4. Individual histories and identities
• Cell-to-cell variation

5. High complexity
• Model reduction methods are valuable

6. Crowded molecular environment
• How do crowded kinetics change?



1. Cells are stubborn

• By “stubborn,” we mean: hard to 
control (fiendishly uncooperative!)

• Want to be able to exert control over 
cells from the inside
– “Killer app”: the in-cell cancer detector that 

kicks cell into apoptosis

• Hope is to learn to design synthetic 
regulatory networks capable of this
–We’re working on a system that cures 

disease - but only in bacteria



Control systems
• The “game” in control systems is to 

alter a system’s dynamics so that it 
has desired properties

θ
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Designing synthetic networks
• Node in the network = a promoter/gene pair
• Choice of promoter = choice of input(s)

– Sets which proteins affect the node

• Choice of gene = choice of output(s)
– Sets which genes are affected by the node

Promoter gene x

Protein X

Protein Y



Bacteriophage lambda

 



Lysis prevention

• Use a cell-resident network to prevent 
a fatal disease
–Currently in bacteria, but looking to the 

future, and human medical applications

• Prevent lysis in E. coli infected by λ 
– Protein CI: maintains lysogeny, prevents 

lysis; SOS response causes RecA to cleave 
CI monomers, CI drops

–Protein Cro: expression leads to lysogeny



Lysis prevention
• Sense onset of lytic pathway using a 

CI-repressed promoter
• When CI level drops, (lysis coming!), 

produce extra CI to maintain 
lysogeny

• Status: Working towards it

Sangram Bagh



2. Cells are small
• Chemical kinetics:

– Random interactions of molecules
– For moles of particles, rates effectively 

deterministic

• But for small numbers of molecules, 
fluctuations become significant

• Inside a cell:
– Small numbers of molecules, not moles

• Question: What are the actual numbers?
• Recent work: Swain and Elowitz 

(binomial division); Ghaemmaghami 
(blotting); Barkai (fluorescence)



Unregulated system
• Constructed a simplified system:

–Promoter with no (known) regulatory 
feedback present, PLtetO1

–Expressing EGFP directly

• Inserted into E. coli cells on plasmids 
with two different replication patterns:
–High copy number plasmid: replicates as 

rapidly as it can, circa 400 copies/cell
–Medium copy number plasmid: feedback 

reduces replication, circa 40 copies/cell

• Examined four strains of bacteria



Plasmids
!

"



Strains

Strain Characteristics

DH5a F- endA1 glnV44 thi-1 recA1 relA1 gyrA96 deoR 
nupG 80dlacZΔM15 Δ(lacZYA-argF)U169, hsdR17
(rK

- mK
+), λ–

Top10 F- mcrA  (mrr-hsdRMS-mcrBC) 
80dlacZM15 lacX74 recA1 ara139 (ara-leu)7697 
gal/U gal/k rpsL (strR) endA1 nupG

B/r F26 his thy

BL21* (rk
-, mk

+) phoA supE44 - thi-1 gyrA96 relA1



Measurement/calibration

• Measure the “output” (protein 
expression) by quantifying fluorescence, 
through flow cytometry and microscopy

• Calculate mean number of EGFP per cell 
using bulk fluorimetry:
–Calibrate against known numbers of EGFP in 

PBS solution (matches cellular pH): yields 
equivalent # of EGFP in cell culture

–Use optical absorbance to get cells/ml 
–Divide one by the other to get <EGFP>/cell



Protein numbers
Cell strain Plasmid <EGFP>/cell Div time

(min)

Proteins
/min

DH5a High 156,000 36.8 2900

Medium 23,400 30.5 530

Top10 High 119,000 29.5 2800

Medium 17,400 29.8 400

B/r High 144,000 27.9 3600

Medium 11,000 33.1 230

BL21* High 46,400 49.9 640

Medium 5,800 31.6 130

• Order of magnitude: tens to hundreds of 
thousands of proteins/cell

• Substantial differences across strains
Sangram Bagh, Mostafizur Mazumder



3. Cells grow and divide
• Unlike beakers, our bacteria double in 

size every 20-40 min, then cut 
themselves in half

• Implications for kinetics
–May need to work in number space rather 

than concentration space
–Rates are volume-dependent
–Differential equations --> maps (maybe?)

• Range of cell sizes complicates 
matters if you can’t reliably scale away 
cell size (as in flow cytometry)



“Sawtooth” gene expression
• For high rates of expression, the 

process of gene expression 
becomes near-deterministic
– (In simple-ish models)

• Growth and division induces a 
sawtooth pattern of protein vs time

• If you see only total fluorescence 
intensity rather than intensity/size, 
there’s a contribution to “variability” 
from the size range 



Very simple model



Simple model outputs



Experiments: Flow cytometry
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Protein distributions

• By flow cytometry and microscopy:

Sangram Bagh, Mostafizur Mazumder



Distributions: all strains



Comparing to model

• Simple cell growth picture (V->2V) doesn’t suffice to 
reproduce actual cell size distributions



Fluorescence vs size

• Strong correlation
• Stronger for medium-copy than high-
• Effect of cell division



Size-scaled histogram



Variability of gene expression

• Substantial drop in CV (std dev/mean) when size is 
scaled away; note also the consistently lower CVs for 
the medium plasmid (fewer proteins, but less variable!)

Cell strain Plasmid %CV (cytom.) %CV (micro.) %CV (micro.) 
(size scaled)

DH5a High 55.0 58.4 20.2

Medium 52.9 56.0 12.6

Top10 High 55.7 76.4 25.0

Medium 57.7 74.1 12.8

B/r High 51.5 66.8 24.2

Medium 58.5 61.0 12.4

BL21* High 86.0 78.4 29.0

Medium 75.2 51.7 12.1



Negative feedback in 
plasmid copy number

• High-copy plasmid (pUC ORI) replicates as 
fast as it can, constrained only by 
resources

• Medium-copy (ColE1 ORI) plasmid 
incorporates negative feedback: interferes 
with its own replication

• Lower size-scaled CVs for the medium-
copy plasmid suggest that the negative 
feedback keeps copy number less 
variable, and that shows up in protein CV



Size from cytometry?

Movie done in DataTank (Visual Data Tools)

• Restricting forward/side scatter region 
does not have same size-scaling effect 
as in microscopy



“Dark proteins” I

• A problem affecting all studies using 
fluorescence as a measure of gene 
expression:
–You can (of course) only see the 

proteins that have become fluorescent

• Proteins may be invisible (“dark”):
– If they are misfolded
– If they have yet to mature



Inclusion body formation
• Many studies (including ours) use 

plasmid-based expression
–Useful as a means of inserting tailored 

gene networks, to study gene dynamics 
or as control mechanisms

• High expression levels from 
plasmids can lead to formation of 
inclusion bodies
– Insoluble aggregates of misfolded, non-

functional proteins
– Fluorescent proteins caught in these 

bodies will not fluoresce
Marco Iafolla



Varying growth rates

• Bremer and Dennis (1996): a very 
handy paper with many cellular 
parameters - all vary with growth rate



Extraction/quantification of 
inclusion bodies

Marco Iafolla



Ratios of IB to active EGFP



“Dark proteins” II: The Return
• Proteins are also “dark” in the transient 

period before they mature and start 
fluorescing
–Folding, cyclization, oxidation
–Maturation rates vary from minutes to days

• Modelling work:
–At small numbers of proteins expressed, 

maturation effect increases observed 
variability (just by reducing numbers)

–At large numbers, maturation can actually 
decrease observed variability 

C. Guangqiang Dong
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CV vs <number>
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Noise power spectrum

10−6 10−5 10−4 10−3 10−2 10−1 100
10−10

10−8

10−6

10−4

10−2

100

102

Frequency S−1

Po
we

r

Transcription Rate:0.46s−1,Translation Rate:4.8s−1

 

 
No Maturation
Maturation Time:6mins
Maturation Time:26mins
Maturation Time:2hours
Maturation Time:7hours
Maturation Time:27hours

10−6 10−5 10−4

100.63

100.65

100.67

• Coming soon: experiments! Vary: maturation rate (proteins), 
transcription rate (promoters), translation rate (RBS) (Sangram 
Bagh, C. Guangqiang Dong)



4. Cells are “individuals”

• Cells even in an apparently 
homogeneous population can have 
varying individual histories (growth/
division events, nutrient exposure, 
cumulative effects of fluctuations)
–Different histories lead to different states
–Plasmid copy number and cell size: can be 

viewed as extrinsic or intrinsic noise sources

• We’re interested in the effects of various 
perturbations on cells’ behaviour



Changing growth conditions
• Using a “baby machine” to examine 

synchronized cells
–Early results: synchronized cells (all in nearly 

same phase of “cell cycle”) are less variable 
than asynchronous cells

–More than just a size effect: reduction is in 
the size-scaled variability levels

• Investigating effect of varying nutrient 
levels by growing cells in a chemostat
–Early results: chemostat (“continuous 

culture”) cells are more variable than 
exponentially growing cultures

Luke Jakobowski



The baby machine



Perturbation by cell sorting
• Cell sorting: can use the flow 

cytometer to select cells based on 
any optical output, divert desired 
cells into a tube

• We’re using this to sort out 
subpopulations based on brightness 
(related to EGFP expression level)
–Observe the distribution of the 

perturbed population over time, see 
how (or if) it relaxes back to original 
distribution



Early cell-sorting results

• Sorted top 10% brightest cells
• Population stays bright over 3 hours
• Grow overnight: back to original dist.(?)

Tharsan Velauthapillai, Mostafizur Mazumder



5. Cells are complicated

• Many species and reactions are involved 
in even a moderately complete 
description of any biological system
–Complete model may require dozens (or 

literally millions!)

• Model reduction methods have been 
explored for deterministic ODEs
–Based on time scales, quasi-steady states...

• We’re working on methods that can be 
applied to stochastic systems as well



Stochastic model reduction
• Use a known deterministic ODE 

reduction method:
–Partition reactions into fast/slow
–Form reduced system by approximating fast 

steps as near-instantaneous

• Translate reduced system back into a 
reaction scheme

• Use stochastic simulator to run it, 
generate fluctuations

• Result: highly reduced systems still 
match statistical behaviour of original



Signal cascade model



Reduced vs original

• Original: 63 reactions, 41 species

• Reduced: 34 reactions, 27 species

• Dong et al, J Biol Phys 32: 173 (2006)
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Gene expression model

• Original: 71 reactions, 47 species [Iafolla and McMillen, 
J Phys Chem-B 110: 22019 (2006)]

• Reduced to two different levels:

– 28 reactions, 29 species

– 10 reactions, 10 species



Reduced vs original
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Caveats
• Works near-perfectly for cascades 

(feed-forward)
• Still works well for “moderate” feedback

–But as you crank up feedback strength 
enough, will eventually break down

• Method can fail with an non-invertible 
matrix in one of the steps
–So far, we can’t precisely identify the 

conditions for this to occur

• May need to adjust parameters to 
achieve an optimal fit



6. Cells are crowded
• Interior of a cell is far from being a dilute 

solution; more like a paste/gel
• Standard modelling methods tend to 

assume a well-mixed system
–Don’t keep track of locations of individual 

molecules, just total concentration or #
–Crowded environment can have impact on 

kinetics, and on variability

• We’re working on experiments in vitro, to 
vary crowding level and observe effects
–Collaboration with Ray Kapral (elegant, fast 

method of simulating spatial behaviour)



Issues with biochemical 
kinetic models

• Sometimes I ponder the following 
two facts:

• Fact #1: Biochemical kinetic models 
yield useful results
–Predictive abilities have been 

demonstrated

• Fact #2: Biochemical kinetics 
seemingly cannot be right, as 
usually written



Conclusions
• I have no Conclusions
• But some things to note:

–Biology is interesting, even for physical 
scientists and mathematicians

– It’s a huge challenge: everything in biology 
is the least-tractable example of its class
• Nonlinear, stochastic, far from equilibrium, 

nonideal, messy, actively uncooperative

– Fortunately, we tend to love a challenge
–There’s something to be said for working 

closely with living cells: the daily weirdness 
tends to promote humility 
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Turn back! Extra slides 
past this point



Expression noise
• Gene expression noise is parcelled into 

two sources:
– Intrinsic: from small-number effects on the 

gene itself
– Extrinsic: everything else (cell-to-cell 

variation in components outside gene, e.g. 
numbers of the enzymes that drive 
transcription/translation)

• Extrinsic noise: individual cellular 
environments cause different behaviour
–Different histories lead to different states
–Plasmid copy number and cell size: can be 

viewed as extrinsic or intrinsic noise sources


