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Early Events

-1828 Fechner publishes the observation of an oscillating electric current in an
electrochemical cell.

-1899 Ostwald observes that dissolution of chromium in acid is periodic.

-1916 Morgan discovers that CO production from formaldehyde can occur
periodically.

-1921 Bray discovers periodic H,O, decomposition in the presence of iodate.

-1951-1958 Belousov tries to publish his observation of what we know today is
the Belousov-Zhabotinsky reaction.

- 1961 Zhabotinsky’s starts to publish studies on Belousov’s oscillatory reaction.
- 1968 Prague conference on chemical and biological oscillators.

- 1972 FKN mechanisms of the Belousov-Zhabotinsky reaction.



nd@;.

-

’j

B. P. Belousov
ca. 1950
(from: Oscillations and Traveling Waves in Chemical Systems by Richard J. Field and Méria Burger; © 1985 by John
Wiley & Sons, Inc)

The modem history of the study of oscillating chemical reactions in the liquid phase began in Russia in 1951, when B. P.

Belousov discovered temporal oscillations in the ratio [Ce(IV)]/[Ce(III)] during the cerium-ion-catalyzed oxidation of citric
acid in acidic bromate.

However, Belousov was not able to get his discovery published until 1958. The first English translation of Belousov’s
original manuscript appeared in Oscillations and Traveling Waves in Chemical Systems a book edited by Richard J. Field
and Miria Burger (Wiley, 1985, ISBN 0-471-89384-6).

A.M. Zhabotinsky
Summer 1983
Photo by A. T. Winfree
(from: Oscillations and Traveling Waves in Chemical Systems by Richard J. Field and Méria Burger; © 1985 by John
Wiley & Sons, Inc)

A. M. Zhabotinsky continued Belousov’s initial work. During the 1960°s the oscillations were characterized for a variety of
different organic substrates. A review by Zhabotinsky of the early period has appeared in Oscillations and Traveling Waves
in Chemical Systems by Richard J. Field and Méria Burger (Wﬂey, 1985, ISBN 0-471-89384-6).




The Belousov-Zhabotinsky Reaction
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« 1M H,SO,
e organic subsrate
= KBrO; or NaBrOg4
P Ce3+, Ce4+ (Mn2+,
Fe(phen),?*

or Ru(bpy)s®*)

Oscillatory fluorescence in the Ru-catalyzed system
(which is also light-sensitive)




The Belousov-Zhabotinsky Reaction
LS (unstirred thin layer in a Petri-dish)
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Traveling oxidation waves



The FKN mechanism
(1972)
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3 overall reactions in the BZ reaction

BrO;~ 4+ 2Br~ + 3CH~_(OOOH)2 + 3H —>
3BrCH(COOH): + 3H:O (A)

BrO;~ + 4Ce?* + CH3(COOH): + SHT —>
BrCH(COOH); + 4Ce** + 3H,O (B)

4Ce*™ <+ BrCH(COOH): + 2H:0 —>
Br~ + 4Ce** 4+ HCOOH + 2CO; - 5H™ (R10)

Each one of these reactions is virtually irreversible.

Process B occurs when the concentration of Br-ion has
moved below a critical concentration.



Relaxation type of oscillations
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The Oregonator

g (Field & Noyes 1974)
u
s :
AryY=X Species:
X i Y<P X = HBrO,
B+X<2X4+7Z Y=Br
2% <= Q Z = Ce(IV)
A, B =BrO;-
Z=fY.
P = HOBr
dX/dt = Ry AY — by XY + by BX — 2k X 2, (Ta)
dY/dt =~ kgAY — kyp XY +fRysZ, (Th)
AZ /At =k BX - kysZ . (Ic)

The Field-Noyes equations show close analogy
to the Huxley-Hodgkin equations.
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The Oregonator
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FIG. 1. Traces of log[Cel(lV}] (p), loglBr7]
{n) and log[HBrO,] (o} vs time (7) obtained
by numerical integration of Eqs. III, which
result from the Field, Korés, and Noyes
mechanism for the Belousov reaction. The
integration used f=1. Process A is occur-
ring during the long siretches when HBrOq
{@) is low and Process B is occurring when
the sharp spikes of HBrQy (o) appear.
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Excitability in the BZ reaction
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Silver lon Induced Oscillations
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Fig 4 When the excitable state is treated with an evcess of
AgND;, Ce** osaillations appear. [ =5 0 X 10 mol/dm?, I1 =

1.0 % 10% mol/dm3.
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Fig. 1. Generation of high frequency oscillations when inserting
the Ag-coil. Inital concentrations: [HESUJ'],} = 1.5 M,
[CelSO, 0o =1x107° M, [NaBrO,], = 4% 107" M. [malonic
acid], = 0.1 M.
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Oxidation pulse propagation
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Fig. 1. Propagation experiment in the excitable BZR. Dimensions of tube: L=60cm,
@=Tcm, and 4 (thickness of wall)=0.5cm. R and § are variable distances. The total
reaction volume is 11
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Fig. 3. Propagating wave initiated 10 cm
from detecting electrode. Insert: amplitude
¥, half-width 4 and time integral J as a
function of §. Same amount of AgNOQO ; used
as in Fig. 2
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Fig. 4. A) Dynamic behaviour of an aged ex-

citable BZR. 370 min after the reagents have

been mixed, 0.3 ml of an 0.025 M AgNO,

solution was added (1 =0). Initial concentra-

tions: malonic acid 028 M, Ce(IV)

21-107* M, KBrO,01M and H,80, 10 Katz, B.: Nerve, Muscle and Synapse,
1 M. B) Facilitation phenomena in curar- p. 140, New York: MeGraw-1ill 1966
1zed frog muscles (see [10])
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Figure 1. Oscillatory behavior of a ferroin-catalyzed methylmalonic acid
BZ system. Initial concentrations: [H,S80,], = 0.5 M; [MeMA]y = 0.3
M: [NaBrO;]p = 0.1 M; [KBr]p = 0.1 M, Parts A and B represent a
continuation of the same run with an overlap of one “spike™ (A) 1:
addition of KBr; 2: after bromine color has disappeared, the ferroin is
added; 3: after staying for a while in the reduced state, the system goes
spontaneously into the oxidized state; The color of the solution changes
from red to blue; 4: at the beginning of the oscillating period, cscillations
of high frequency and increasing amplitude are observed in the oxidized
state; 5: train of small-amplitude oscillations in the oxidized state; 6:
oxidizing excursions or “spikes”. MNote also the considerable “noise”™
which is observed in the reduced state. (B) 6 and 8: oxidizring excursions;
T: train of small-amplitude oscillations in the oxidized state, Period
length in the expanded region is 20 5; 9: at the end of the oscillating
region, small-amplitude damped oscillations in the oxidized state are
observed (period length in the expanded region is 19 5).
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Figure 2. Bistability at the end of the oscillating region in the ferroin-
catalyzed methylmalonic acid BZ reaction. The composition corresponds
to that at the end of the time in Figure 1. (A) The system starts in the
oxidized state. 1; one drop (31 L) of a 0,004 M KBr solution (2.5
107 M in 50 mL) shows that the steady state is stable. 2: two drops
of a 0.004 M KBr solution drive the system to the reduced state. The
color of the solution changes from blue to red. (B) The system starts in
the reduced state. 1 five drops of 0.004 M AgNO, solution (1.3 % 1075
M) shows that the steady state is stable. 2: eight drops of 0,004 M
AgNO; solution (2.0 x 107* M) drives the system to the oxidized state.
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SCHEME 1. Pseudoelementary processes selected for model representa-

tion.,
BrO;" + Br~ +2H* — HBrO, + HOBr (P1)
HBrO, 4+ Br~ + H* — 2HOBr (P2)
BrO, + HBrO, + H* = 2BrO, + H,0O (P3a)
BrO2+M(n}+ +H+ZEIIB1'02+M“+”+ (P?’b)
2HBrO, —» BrO; + HOBr + H* (P4)
HOBr + Br~ + H* £Br, + H,0 (P5a)
RH+Br, - RBr4+Br— +H™* (P5b)
HOBr+ R .- —ROH + Br- (P6a)
RH4+Br-—Br +H*+R. (P6b)
RH+M{n+I}+_,_Mlnl+ +H+ +R~ (PT&)

2R - + H,O — RH + ROH (P7b)
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A+Y->X+P (01)
v, =k, [A][Y]
X+Y—2P (02)
v, =k, [X][Y]
A+X+Co2X+1Z (03)
vy =k, [A][X]
2X A 4P (O4)
Uy = k,‘l}{]l
P—L (O5)
vs = ks[P][Y]
P—-Y (O06)
vs = ke[ Z]'*[P]
Z—C (O7)
vy =k;[Z]
A =BrO; X = HBrO,
L =RBr Y =B8r"
P = HOBr Z=2M"+1+

C=2M®™+
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Bromide-lon Induced Excitability
g (Reduction Spikes)
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Oxidation and Reduction Spikes In the
g Amplified Oregonator
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Regions of oscillations, bistability, and Ag* and Br-
excitable steady states of amplified Oregonator In
ks -ks Space
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Phase response curves in the BZ reaction
(oxidation spikes)

Phase shift = peak time (after perturbation) - peak time (no perturbation)
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Circadian rhythms are

adaptations of organisms
to their environments

o ¢
important in daily and seasonal ©
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History of Circadian Rhythms. 325 BC:
Androsthenes (from Thasus) observes that plants ”sleep”
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The French astronomist De Mairan finds in 1729 that leaf
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movements in Mimosa plants continue in darkness
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CARL von LINNE

Linné’s flower clock (1707-1778)
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Leaf movements under free-running conditions

Phaseolus coccineus. Typical course of the circadian
leaf movements under constant light (weak intensity).
The phase shifts within six days by roughly 17 hours
compared to the normal day. The length of one period
is thus about 27 hours (circles in 24-hour-intervals; E.
BUNNING and M. TAZAWA, 1957).

Time lapse movie of leaf movements in
bean (Phaseolus) seedlings by Roger P.
Hangarter, Indiana University.




Flashing and glow circadian
rhythms in Gonyaulax polyedra

Ao e Rl T | (von der Heyde et al. (1992) JBR 115-123)
Fu, G, b fﬁi_ é‘. i N i Pl .s‘-"::". -_,H-:I v o3, . . .‘:;;: -

With increasing temperature
flashing and glow rhythms
change their amplitudes in
opposite directions.
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FIGURE 2. Bioluminescence rhythms at different termperatures (dim LL 1000 lux). Vertical lines 10 Hm
indicate circadian glow and flashing maxima fitted by eye; for other details, see Figure 1. Ed

Gonyaulax polyedra
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Circadian variation in blood pressure
and heart attacks
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Properties of circadian rhythms

e circadian rhythms are generated already within a single cell and can
occur under constant environmental conditions (free-running
conditions). We call these rhythms for endogeneous rhythms.

 they can be phase shifted by sudden changes in light, temperature,
drugs, etc.

e they can track external periodic variations such as “lights on/off” or
temperature variations. This property is called entrainment.

e the circadian period is unaffected by different (but constant)
temperatures. This property is called temperature compensation.
Chronobiologists require this property for calling an oscillator ‘a
clock’.



Examples of temperature compensated rhythms

(from E. Biinning: The Physiologcal Clock, Berlin, 1964)

Table 2. Periplaneta americana,
Running Activity
(BUNNING, 1958a)

Table 3. Gonyaulax polyedra,
Rhythm of Luminescence
(HAsTINGS and SWEENEY)

Temperature Length of Periods
°C hrs.
18 24 —25
19—20 24.4 + 0.1
2223 245 + 0.1
27—28 25.0 4 0.3
29 25.8 + 0.7
31 24 —27

Table 4. Phaseolus multiflorus,

Temperature Length of Perloda
°C hrs.
15.9 22.5
19 23.0
22 25.3
26.6 26.8
32 25.5

Table 5. Lizards (Lacerta sicula),

Leaf Movements

Running Activity
(HorFMANN, 1957)

(LEINWEBER)
Temperature Length of Periods
°C hrs.

15 28.3 + 0.4
20 28.0 4- 0.4
25 28.0 4 1.0

Temperature Length of Periods
°C hrs.
16 25.20
25 24.34
35 24.19
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The 1957 suggestion by Hastings and Sweeny
how temperature compensation may occur

Practically all physiological reactions, enzyme catalyzed
reactions, elementary reactions, etc. are quite
dependent upon temperature. Their rates increase by a
factor of 2-3 when temperature is increased by 10°C
(“Van’t Hoff’s rule”).

This makes it difficult pinpointing a certain process as
the candidate how temperature compensation may
arise.

Hastings and Sweeney proposed in 1957 a general
mechanism based on opposing reactions, suggesting
that temperature compensation IS a systemic
property.
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Importance of genetics to study
the mechanisms of the circadian clock

* In the beginning of the 1970’s reseachers showed

using the fly Drosophila and the fungus

Neurospora crassa that circadian properties such as# =
period length, temperature compensation, and T
entrainment behavior are inherited and determined

by genes.

e Genes were 1dentified, where alleles of these
genes showed different properties of the circadian
clock.

Examples of these genes are period and timeless in
Drosophila and frequency in Neurospora.

e This was the start of using model organisms in



Circadian clock properties are inherited

RESEARCH NEWS

-Fi\rSt Human Circadian Rhythm
Gene Identified

Researchers exploring the genetic basis of a rare syndrome
that causes people to fall asleep and awaken earlier than
normal have pinpointed the first human gene that controls
circadian rhythm. The finding establishes a link between the
human circadian system and that of animal models such as
Drosophila, mice and hamsters, say the researchers. It also
raises the possibility of treating jet lag, as well as sleep
problems in adolescents, the elderly and shift workers.

A research team that included Howard Hughes Medical
Institute investigator Louis J. Ptacek reported that a
mutation in a gene called hPer2 is responsible for familial
advanced sleep-phase syndrome (FASPS) in members of a
Utah family. This syndrome typically causes sleep onset
around 7 p.m., and spontaneous awakening around 2 a.m.,
in affected family members. The research was published
online by the journal Science on January 12, 2001. The
article will also appear in print in a future issue of Science.
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Model organisms in circadian rhythm research

Brown Alg;
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Neurospora crassa:
A model organism to study genetics and circadian
rhythms

e cukaryotic filamentous fungus
e growths rapidly

* nonpathological

e casy to handle

* many mutants available

e circadian (conidiation)

= 5--~ - rhythm is easy assayable

3
M%"

- - &JJ =~was Fungal Genetics Stock Center

web resource:




Neurospora in nature

e grows in the tropics/subtropics
e has also been found In
New Mexico, Alaska, Spain,
Portugal, Switzerland.

e Genome sequenced in 2003
e 39,225,835 bp

e 9,826 genes

e 7 chromosomes




Neurospora’s three main cell types
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ascospores photo: I. W. Jolma, UiS

THE THREE MAIN CELL TYPES

DAPI stain of nuclei

(from Fungal Genetics Stock Center) for more pictures or videos, click here
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Nuclei stained
with DAPI




Conidia
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Period length = 22 h

Rhythm shows
temperature and pH
compensation




the circadian rhythm

IS easily seen In so

In Neurospora

called “race tubes”
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Race tube assay of Neurospora's circadian rhythm
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Jason C. Thoen and Van Gooch:
“Time Lapse Video Showing an Internal
Circadian Clock in Mold (Neurospora) Growth”




Temperature Compensation in different frg mutants
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pH Compensation compared to temperature compensation
In different frg mutants
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FREQUENCY (FRQ) protein

>splP19970IFRQ_NEUCR FREQUENCY CLOCK PROTEIN - Neurospora crassa.

MADSGDKSQGMRPPPFDSRGHPLPRRASPDKSITLENHRLARDTSSRVTS
SSALGVTESQPQLKSSPTRRNSSGESEPTNWFNQSNRNPAAAFHDESHIM
EVDPPFYQKETDSSNEESRYPPGRNPVHPPGGVQLPGFRPVAAHSTAADD
YRSVIDDLTVENKRLKEELKRYKQFGSDVMRKEKLFEIKVHGLPRRKKRE
LEATLRHFAASLGDSSESTSQRRKTGRHGTAVYSSGVSLSKHDSSSSSRS
RPVDSAYNSMSTGRSSHAPHSSGPSLGRPSLTRAKSVGTQKVENYLRDTP
DGLLPHHIVMTDKEKKKLVVRRLEQLFTGKISGRNMORNQSMPSMDAPLA
PEGTNMAPPRPPPEGLREACIQLODGDNPRKNRSSKDNGSASNSGGDQTE
LGGTGTGSGDGSGSGGRTGNNTSPPGAIAPDORPTRPRDLDPDRVQIPSE
NMDYIRHLQLVSPEFLQGSRTSYQDVAPDAEgWVYLNLLCNLAQLHMVNV
TPSFIRQAVSEKITKFQLSADGRKIRWRGGTDGTKFSSDSSEDKSQQSPM
TEDTEDGSDKNGRRKKRKTQOASSEIGRFGPSRSPSDTFHYKPMFVHRNS
SSIETSLEESMSQGSEDAVDESNMGNSKWDFSGSGTTQORRKRRYDGAIV
YYTGAPFCTDLSGDPGDMSPTAQMTAGREVEGSGSGDEVEHVLORTLSGS
SLPIRPLSDDRARVAEVLDFDPGNPPELVADDGSSPNDEDFVFPWCEDPA
KVRIQPIAKEVMEPSGLGGVLPDDHFVMLVTTRRVVRPILORQLSRSTTS
EDTAEFIAERLAATIRTSSPLPPRSHRLTVAPLOQVEYVSGQFRRLNPAPLP
PPATFYPPFSTDSSWDDGDDLASDDEEVEEVEEDSYSEGQISRRANPHFS
DNNTYMRKDDLAFDTETDVRMDSDDNRLSDSGHNMRAMMPRAEAVDGDDS
PLAAVTGKEVDIVHTGSSVATAGGAESGYSSSMEDVSSS

start of long FRQ
start of short FROQO

coiled-coil

potential GSK-3 P-site

frq[l]:G—S
PEST-1

PEST-1 NLS

PEST-2
PEST-2



Minimal Model of the Circadian Rhythms
iIn Neurospora crassa
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A theory for temperature compensation:
The antagonistic balance equation
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Multiplying Eq. 12 by 1/P and observing that d P/P = alnP, Eq.
12 can be written as

1oP  olnP JlnP )
PaT  aT T? E ( anur.;l) T RT? 2 CiE:

This approach suggests that temperature compensation is a systemic property
as suggested by Hastings and Sweeney in 1957.




Table 1. Rate constants, control coefficients, and activation
energies used in the model calculations

g Rate constant CF (15% variation
u Reaction i ki, h=1 of the ks) E, kJ/mol CFE, kl/mol
“Stavanger 1 0.3 0.131 190 24.9
2 0.3 0.093 190 17.7
3 0.3 —0.040 190 —7.6
4 0.27 —0.470 30 —14.1
G 0.2* —0.131 307 —3.9
& 0.2% —0.628 3071 —18.8
SiCF = —1.045 YiCFE = —1.8

The given rate constant values are defined for Tie; = 292 K. Rate constants
ke and kg (with asterisk) differ for the various frg mutants. Initial concentra-
tions (a.u.) used in all calculations: X = 6.124 = 1072, ¥ =8.452 = 107¢, 7 =
L.245 X 1071 Threshold for frg transcription inhibition, Zpa = 0.1 a.u;
threshold for reactivating frg transcription, Zyn = 0.05 a.u. (used in all
calculations).

*ke, kg values for frgt at Tres = 292 K. The following ks, kg values (defined at
Trei = 292 K) have been used in the calculations for the other mutants: frg’,
0.320 h=Y; frg’, 0.124 h=T; frgs>131, 0.080 h—1,

TEg and Egvalues for frg*. The following Es, Eg values (Es = Eg) have been used
in the calculations for the other mutants (see also Table 2): frg®, 29 kJ/mol;
frq?, 46 kJ/mol; frg®=131, 59 kJ/mol.




FRQ levels, a.u.

S
Ll

hours in DD
0 2 4 6 8 1012 14 16

L] il
L L el
C L LA

20°C

{ll

sad s g alyaalaag
2 4 6 8B 10 12 14 16
hours in DD

b hours in DD
0 2 4 6 8 10 12 14 16

FRQSHS] .. .nﬁ_ '
FRQ' ‘...F

FRQ" M-
FRQ' “"‘“‘ -
EENSAEE RER RN AR AN RARS LR
4% Qx'a-:}-
“}: .h.h-""‘-ﬁ. . -
3 NN
% i ‘\M\\* ’ 1"‘%{}& &
o \\\x h“““m
A *
o SR R
ﬁ frg' S
107 L N
25°C irg’ N
= ﬂq?'-\,__‘:
|||||||||||||||14|-|||||||||||||T
0 2 4 6 B 10 12 14 16
hours in DD



Estimation of activation energy for k; and kg
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Table 2. Experimental (Exp) and theoretical (Theor) FRQ degradation rate constant values at
20°C and 25°C

FRQ! FRQ* FRQ7 FROS5131

Exp Theor Exp Theor Exp Theor Exp Theor

k (20°C)*, h—1 0.27 0.33 0.22 0.21 0.16 0.13 0.08 0.09

k (25°C)*, h—1 0.33 0.41 0.27 0.26 0.22 0.18 0.12 0.13
E; (kl/maol) 29 30 46 59

*The theoretical &k values at 20°C and 25°C are calculated from the (theoretical) ks (=kg) FRQ degradation rate
constants given in Tabkle 1 by using the experimentally determined activation energies £; and Eq. 1.




Model shows relaxation type of oscillations in frg-mRNA:
Short transcription phase
LS long FRQ-protein degradation phase
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Temperature Compensation in different frq alleles
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Applying the antagonistic balance equation:

The Oregonator

k
A+Y->X+P (01)
-
X+Y—-2P (02)
k
A+X—=2X+2Z (03)
ks '
2X—A+P (04)
Z—fY (05)
Tahle 3
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The (closed) Belousov-Zhabotinsky reaction is not
temperature compensated
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- The Arrhenius plot to the
1 left shows that the BZ
reaction 1s not

1 compensated. The overall
E, for the period is ca. 73
1 kJ/mol.

0.6

0.4 =

log (frequency, min™)

x 107
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Fig. 1. Arrhenius plot (here: natural logarithm of inverse of
period length versus inverse of absolute temperature) of a
batch Belousov-Zhabotinsky reaction. Reaction volume is
100 mL. Initial reagent concentrations: malonic acid 0.3 M,
potassium bromate 0.1M, (NH,),Ce(NO,), 2.1 x 107> M,
sulfuric acid 1.0 M. The calculated @, = (P,/P,)'* 71772 jg
2.5, where P, and P, are period lengths at temperatures T
and T,, respectively. The calculated activation energy is
73 kJ/mol.
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Temperature Compensation in the Oscillatory Bray Reaction

Klara Kovacs,' Linda L. Hussami,* and Gyula Rabai*
Institute of Physical Chemistry, University of Debrecen, P.O. Box 7, H-4010 Debrecen, Hungary

Received: July 12, 2005; In Final Form: September 16, 2005

The influence of temperature on the oscillatory frequency of the hydrogen peroxide—iodate ion reaction is
found to be two-sided: (i) the period length decreases with increasing temperature in most of the instances
studied, (11) or in some cases an opposite change i1s observed. A temperature-independent period length
(temperature compensation) is also discovered experimentally in a rather wide temperature interval at a narrow
concentration range of reactants both in a batch configuration and under flow conditions. A simple model
was considered to simulate this behavior. Opposing effects of the composite reactions of the model on the
calculated period length with changing temperature are shown to be responsible for temperature compensation
or overcompensation.




Temperature-compensation in pH-oscillators

Klara M. Kovacs and Gyula Rabai*
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Temperature independent period length (temperature-compensation) in pH-oscillators has been simulated with
a simple general model. Opposing effects of the composite reactions on the period length with changing
temperature have been shown to be responsible for this peculiar phenomenon. Experiments have shown that
temperature-compensation exists in the oscillatory hydrogen peroxide-sulfite ion—thiosulfate ion flow system in
a narrow range of conditions. A simple mechanism with estimated activation energies of the steps was used
successfully to simulate the phenomenon.
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