Promoter unwinding and promoter escape by RNA polymerase: analysis by single-molecule DNA nanomanipulation

Andrei Revyakinand Richard H. Ebright Howard Hughes Medical Institute, Rutgers University

> Terence Strick Institut Jacques Monod

background transcription

- synthesis of an RNA copy of genetic information in DNA
- first step in gene expression
- primary regulated step in gene expression
- target of ansamycin-class antibacterial agents (e.g., rifampicin)

background transcription

• transcription initiation

RNA polymerase binds to DNA and begins synthesis of an RNA molecule

transcription elongation

RNA polymerase translocates along DNA and extends the RNA molecule

transcription termination

RNA polymerase dissociates from DNA and releases the RNA molecule

background transcription initiation

experimental approach

experimental approach experimental setup (see Strick et al., 1996)

Computer

experimental approach experimental setup (see Strick et al., 1996)

experimental approach monitoring DNA unwinding by monitoring bead movement

experimental approach monitoring DNA unwinding by monitoring bead movement

promoter unwinding

promoter unwinding detection

promoter unwinding control experiments

- No unwinding is observed in the absence of a promoter.
- No unwinding is observed in the absence of RNAP.
- No unwinding is observed in the absence of σ .
- No unwinding is observed at low temperatures.
- Unwinding is prevented by prior addition of heparin.
- Unwinding is not affected by subsequent addition of heparin.
- The number of unwinding events observed equals the number of promoters. (One unwinding event is observed on a DNA template having one promoter. Two unwinding events are observed on a DNA template having two promoters. Three unwinding events are observed on a DNA template having three promoters.)

Ifetime of unwound complex (T_{unwound})→ stability of unwound complex k₋₂: 0.025 s⁻¹

promoter unwinding: effects of supercoiling rate of formation of the unwound complex (T_{wait})

promoter unwinding: effects of supercoiling stability of the unwound complex (T_{unwound})

promoter unwinding: effects of promoter sequence

consensus

rrnBP1

promoter unwinding: effects of ppGpp

promoter unwinding: effects of initiating nucleotide

promoter unwinding summary

- We have developed a DNA-nanomanipulation assay for promoter unwinding
- The assay permits determination of the number of unwinding intermediates, extent of unwinding, extent of compaction, and kinetics (K_B, k₂, k₂)
- We have applied the assay to assess effects of supercoiling, sequence, effectors, and nucleotides
- Supercoiling influences promoter unwinding through mechanical effects (torque), not through structural effects (position or number of supercoil plectonemes)

promoter escape

detection of promoter escape rationale

detection of promoter escape data

detection of promoter escape observables, results

k_{clear}

- number of states in unwinding event 2
- amplitude of change in DNA extension in unwinding event 2
- time interval between unwinding event 1 \rightarrow T_{clear} + T_{wait} and unwinding event 2 (T_{wait-2})

- number of unwinding intermediates in unwinding event 2
- → extent of unwinding and compaction in elongation complex

$$\begin{array}{c|c} \mathsf{K}_{\mathsf{B}} & \mathsf{k}_{\mathsf{2}} & \mathsf{k}_{\mathsf{clear}} \\ \mathsf{R} + \mathsf{P} \rightleftarrows \mathsf{RP}_{\mathsf{c}} \rightleftarrows \mathsf{RP}_{\mathsf{c}} \xrightarrow{\simeq} \mathsf{RP}_{\mathsf{o}} \xrightarrow{\rightarrow} \mathsf{RD}_{\mathsf{e}} \\ \mathsf{k}_{\mathsf{-2}} \end{array}$$

detection of promoter escape summary

- We have developed a DNA-nanomanipulation assay for promoter escape
- The assay permits determination of the number of unwinding intermediates in promoter clearance, extent of unwinding in elongation, extent of compaction in elongation, and kinetics (k_{clear})

applications

- systematic analysis of effects of activators
- systematic analysis of effects of small-molecule inhibitors
- systematic analysis of ATP-dependent, TFIIH-dependent promoter melting and promoter clearance by eukaryotic RNA polymerase II

methods development

- optimization of DNA-nanomanipulation assay for promoter escape
- development of DNA-nanomanipulation assay for elongation
- development of DNA-nanomanipulation assay for termination
- improvement of temporal resolution
- integration of DNA-nanomanipulation and single-molecule-fluorescence assays

DNA-nanomanipulation and single-molecule fluorescence

 simultaneous monitoring of DNA unwinding and RNAP binding (RNAP* imaging)

DNA-nanomanipulation and single-molecule fluorescence

- simultaneous monitoring of DNA unwinding and RNAP binding (RNAP* imaging)
- simultaneous monitoring of DNA unwinding and NTP binding (RNAP*-NTP* FRET)

DNA-nanomanipulation and single-molecule fluorescence

- simultaneous monitoring of DNA unwinding and RNAP binding (RNAP* imaging)
- simultaneous monitoring of DNA unwinding and NTP binding (RNAP*-NTP* FRET)
- simultaneous monitoring of DNA unwinding and RNAP position (RNAP*-DNA* FRET)

DNA-nanomanipulation and single-molecule fluorescence

- simultaneous monitoring of DNA unwinding and RNAP binding (RNAP* imaging)
- simultaneous monitoring of DNA unwinding and NTP binding (RNAP*-NTP* FRET)
- simultaneous monitoring of DNA unwinding and RNAP position (RNAP*-DNA* FRET)

 simultaneous monitoring of DNA unwinding and RNAP conformation (RNAP*/* FRET)

Promoter unwinding and promoter escape by RNA polymerase: analysis by single-molecule DNA nanomanipulation

Andrei Revyakin and Richard H. Ebright Howard Hughes Medical Institute, Rutgers University

> Terence Strick Institut Jacques Monod

calibration curve: DNA extension versus number of turns