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background
transcription

synthesis of an RNA copy of genetic information in DNA

first step in gene expression
primary regulated step in gene expression

target of ansamycin-class antibacterial agents (e.g., rifampicin)



background
transcription

e transcription initiation
RNA polymerase binds to DNA and begins synthesis of an RNA molecule

e transcription elongation
RNA polymerase translocates along DNA and extends the RNA molecule

e transcription termination
RNA polymerase dissociates from DNA and releases the RNA molecule
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promoter unwinding promoter escape
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R+P == RP¢ — RPo — RPj;c — RDe

abortive synthesis
(short RNA products released)
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experimental approach
experimental setup (see Strick et al., 1996)

Rotation motors

< f | >
Translation

motors N \ | / S

Magnets _--
Solutions - s

— Y

) — | ! )

- - ~
Glass capillary
Objective AN
ol N promoter //
\\ \
Inverted oo\ /
. ~ /
microscope AN L
\ * a Y t_°* a Y el ) /
“~Bottom of capillary-~
( o \ S~ ___- -
o
o
o
beads o
o
\Q J/

Videocamera

Computer



experimental approach
experimental setup (see Strick et al., 1996)




DNA extension, um

experimental approach
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experimental approach
monitoring DNA unwinding by monitoring bead movement

Lk = Tw + Wr = constant

paramagnetic bead

AN
S
ﬁ(.)

formation of
n positive supercoils

unwinding of DNA double helix
by nturns

change in position of bead by
by n60 nm

glass surface LN




experimental approach
monitoring DNA unwinding by monitoring bead movement
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promoter unwinding



promoter unwinding promoter escape
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R+P == RP¢ — RPo — RPj;c — RDe

abortive synthesis
(short RNA products released)



positively supercoiled DNA

negatively supercoiled DNA

promoter unwinding
detection
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promoter unwinding
control experiments

No unwinding is observed in the absence of a promoter.

No unwinding is observed in the absence of RNAP.

No unwinding is observed in the absence of c.

No unwinding is observed at low temperatures.

Unwinding is prevented by prior addition of heparin.
Unwinding is not affected by subsequent addition of heparin.

The number of unwinding events observed equals the number of promoters.

(One unwinding event is observed on a DNA template having one promoter.

Two unwinding events are observed on a DNA template having two promoters.
Three unwinding events are observed on a DNA template having three promoters.)



promoter unwinding
observables, results
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e number of states — number of intermediates: no detectable intermediates

* amplitude of change in DNA extension — extent of unwinding and compaction
unwinding: 1.3 turn =14 bp
compaction: 15 nm

* time interval between events (T,,,;)  — rate of formation of unwound complex
Kg: 1x 107 M1
ky: 157 Kg ko
o 3 R+P = RP, < RP,
* lifetime of unwound complex (T, wouna) — stability of unwound complex k.o

ko 0.025s
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promoter unwinding: effects of supercoiling

1 consensus promoter
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Positive supercoiling
decreases the rate of
formation of the unwound
complex.

Effect is due to torque.



DNA extension, um DNA extension, um

DNA extension, um

promoter unwinding: effects of supercoiling
stability of the unwound comple
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Positive supercoiling
decreases the stability
of the unwound complex.

Effect is due to torque.



promoter unwinding: effects of promoter sequence
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integrated probability

promoter unwinding: effects of ppGpp
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Integrated probability

promoter unwinding: effects of initiating nucleotide
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promoter unwinding
summary

We have developed a DNA-nanomanipulation assay for promoter unwinding

The assay permits determination of the number of unwinding intermediates,
extent of unwinding, extent of compaction, and kinetics (Kg, ks, k_5)

We have applied the assay to assess effects of supercoiling, sequence,
effectors, and nucleotides

Supercoiling influences promoter unwinding through mechanical effects (torque),
not through structural effects (position or number of supercoil plectonemes)
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detection of promoter escape
rationale
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DNA extension, um
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detection of promoter escape
observables, results
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* number of states — number of unwinding intermediates
in unwinding event 2 in unwinding event 2

e amplitude of change in DNA extension — extent of unwinding and compaction
in unwinding event 2 in elongation complex
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detection of promoter escape
summary

* We have developed a DNA-nanomanipulation assay for promoter escape

* The assay permits determination of the number of unwinding intermediates in

promoter clearance, extent of unwinding in elongation, extent of compaction in

elongation, and kinetics (K;joqy)
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objectives

applications

systematic analysis of effects of activators
systematic analysis of effects of small-molecule inhibitors

systematic analysis of ATP-dependent, TFIIH-dependent promoter melting and
promoter clearance by eukaryotic RNA polymerase Il

methods development

optimization of DNA-nanomanipulation assay for promoter escape
development of DNA-nanomanipulation assay for elongation
development of DNA-nanomanipulation assay for termination
improvement of temporal resolution

integration of DNA-nanomanipulation and single-molecule-fluorescence assays



objectives

DNA-nanomanipulation and single-molecule fluorescence

e simultaneous monitoring of DNA unwinding
and RNAP binding
(RNAP* imaging)
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objectives
DNA-nanomanipulation and single-molecule fluorescence

e simultaneous monitoring of DNA unwinding
and RNAP binding

(RNAP* imaging) @

e simultaneous monitoring of DNA unwinding
and NTP binding
(RNAP*-NTP* FRET)

g)FRET

confocal excitation
volume




objectives
DNA-nanomanipulation and single-molecule fluorescence

e simultaneous monitoring of DNA unwinding
and RNAP binding

(RNAP* imaging) @

e simultaneous monitoring of DNA unwinding
and NTP binding
(RNAP*-NTP* FRET)

")FRET
confocal excitation

volume

e simultaneous monitoring of DNA unwinding
and RNAP position
(RNAP*-DNA* FRET)




objectives
DNA-nanomanipulation and single-molecule fluorescence

simultaneous monitoring of DNA unwinding
and RNAP binding

(RNAP* imaging) @

simultaneous monitoring of DNA unwinding
and NTP binding
(RNAP*-NTP* FRET)

FRET
simultaneous monitoring of DNA unwinding

and RNAP position
(RNAP*-DNA* FRET)

confocal excitation
volume

simultaneous monitoring of DNA unwinding
and RNAP conformation
(RNAP** FRET)
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