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AFM mechanical testing of CCMV
(C. Knobler, et al.)

• Linearly elastic                   
(even for large deformation)

• Slope changes with pH

• Irreversible damage at lower pH
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Questions: 

• Why is force response linear?

• What is responsible for damage?

• Why does damage occur only at lower pH?

• Hypothesis: (nonlinear) elasticity has 
something to do with this.



The Strategy: coarse-grain

Throw away as many DOF as possible while retaining a model 
which has the right Physics (and Biology?).

• Continuum elasticity in 3-D and 2-D

• Multi-scale simulation



3-D Continuum Model:  Thick Spherical Shell
After all, aren’t capsids more spherical than horses?
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The Finite Element Method (FEM)

Quarter capsid w/ 
symmetry boundary 

conditions

Rigid spherical 
indentor

Rigid plate

• Discretize shape into simple polyhedral elements

• Approximate unknown field (displacements, 
deformed shape) locally on element domains by 
interpolation simple polynomial basis functions

• Minimize energy with respect to nodal field values 
(Ritz Method)
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Melissa Gibbons’ simulation



Melissa Gibbons’ simulation



linear for small 
deflections

Melissa Gibbons’ simulation



Constitutive models
• (Linear) Hookean:

• Compressible Neo-Hookean 
(rubber elasticity): 0 2 4 6 8 10
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Thickness Variation

1.5nm ≤ t ≤ 7nm
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E ≈ 250MPa
t ≈ 3nm

Fit to experiment:
“Most” linear at (average physical thickness)



“Buckling”-type separation from tip

Separation is associated with 
a softening of force response



Insensitivity to Tip-size
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Lessons from 3-D models

• Thickness affects linearity

• Results insensitive to tip size, constitutive 
model

• Signs of buckling observed

• No explanation of failure



2-D Continuum Model: Thin Icosahedral Shell
considering structural symmetries

• Lidmar, Mirny, Nelson, PRE (2003)

• Energy is a balance of bending and stretching

• Faceting controlled by Föppl - von Kármán 
number

• 5-fold sites are Disclinations 
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Thin-shell Finite Elements
2562 vertex (T=256) mesh

γ = 100 γ = 1200



Thin-shell Finite Elements
2562 vertex (T=256) mesh

γ = 100 γ = 1200
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Local Polynomial Approximation

Pixar Studios Geri’s Game
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Local Polynomial Approximation

Pixar Studios Geri’s Game

C1-conforming  shell elements
Cirak, et al., IJNME (2000)



Icosahedral imperfections facilitate Buckling



Icosahedral imperfections facilitate Buckling



Icosahedral imperfections facilitate Buckling

0 2 4 6 8 10 12 14 16 18 20
0

200

400

600

800

1000

1200

1400

1600

1800

2000

 ! [nm]

 F
 [p

N]

"=100, icosahedral
"=100, spherical
"=900, icosahedral
"=900, spherical

shells compressed 
between two flat plates 

along 5-fold axis 

Dashed lines: ref. state is spherical



Scaled Force-deflection response vs FvK number

shells compressed 
between two flat plates 

along 5-fold axis 



Critical force and deflection vs FvK number
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Influence of Tip Shape
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Simulating AFM experiments

γ = 100 γ = 1200
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Quake-Phillips retreat 2006

Orientation Dependence

2-fold/“edge”

3-fold/“face”

5-fold/ “vertex”

Bacteriophage
HK97 



A small virus free to rotate



Lessons from 2-D models

• 5-fold sites can act like structural 
imperfections, triggering instabilities

• Critical force/displacement varies with FvK

• Orientation stability varies with FvK



Strategy for multi-scale 
modeling 



Strategy for multi-scale 
modeling 

High resolution
(atomic coordinates)

Low resolution
(cryo-EM-like density)

Finite Element mesh



Acknowledgements

• Melissa Gibbons (UCLA MAE): FE modeling of 
viruses.

• Chuck Knobler, Bill Gelbart, Jean-Philippe Michel 
(UCLA Chemistry): AFM nanoindentation 
experiments on CCMV.

• Robijn Bruinsma (UCLA Physics):  Capsid buckling.


