I. What controls viral size?

II. Reconstituting an animal virus

Two not totally unrelated topics

GELBART-KNOBLER GROUP

Odisse Azizgolshani Li Tai Fang Aron Yoffe Ajay Gopal Yufang Hu

Adriana Anavitarte

Mauricio Comas

Serge Dmitrieff

COLLABORATORS

Laurence Lavelle (UCLA) A. L. N. Rao (UCR) Jim & Ellen Strauss (Caltech) Marlene Biller (Caltech)

Connie Chang (Tom Mason)

WHAT DETERMINES THE SIZE OF A VIRUS? WHAT IS THE RELATIONSHIP BETWEEN CAPSID SIZE AND GENOME SIZE?

GENOME SIZE PLAYS A ROLE...

THE CAPSID PROTEIN AND ITS SPONTANEOUS CURVATURE MUST PLAY A ROLE

In the absence of RNA, CCMV capsid protein has many polymorphs

- Capsid protein can assemble into different structures
 - -Icosahedral
 - -Tubular
 - -Planar hexagonal
 - -Multishell

PACKAGING EXPERIMENTS

Materials

- -Purified CCMV capsid protein
- -Sodium polystyrene sulfonate (PSS)

- Techniques
 - Negative staining transmission electron microscopy (TEM)
 - -Analytical ultracentrifugation

Properties of PSS

- Highly negatively charged (>95%), flexible polymer
- Linear charge density is ~1e/3Å, comparable to RNA
- Wide range of molecular weights available:

400 k, 700 k, 1 M, 2 M, 3.4 MDa

Hydrodynamic radius of PSS Laser light scattering

Assembly buffer: 50 mM NaCl, 50 mM Tris-HCl, pH 7.2, 10 mM KCl, 5 mM MgCl₂

Hydrodynamic Radius of PSS

Assembly buffer: 50 mM NaCl, 50 mM Tris-HCl, pH 7.2, 10 mM KCl, 5 mM MgCl₂

Negative Staining TEM

- Presence of sample excludes stain
- Contrast is provided by stain
- Direct visualization of VLP structure
- Sample is dehydrated so dimensions differ from those in solution

VLPs Formed in Assembly Reactions

VLP 700k

VLP 2M

wt CCMV

Scale bars are 50 nm

Morphology of VLPs

Scale bars are 50 nm

- No stain penetration into interior of VLPs
- Interior of VLPs are filled with material
- VLP formed via encapsidation of PSS

Sizing the VLPs

Capsid Size Distribution

Capsid size converges to two discrete values: 22, 27nm

The Capsid Sizes are Discrete

Estimation of T Numbers

Capsid surface area is equal to 60T x surface area per capsid protein

$$\frac{D_{T1}}{D_{T2}} = \sqrt{\frac{T_1}{T_2}} \qquad \longrightarrow \qquad \frac{D_{T1}}{D_{T2}} = \frac{22}{27} = \sqrt{\frac{2}{3}}$$

Estimation of T Numbers

The observed capsid diameters of 22 and 27 nm correspond to T=2 and T=3 triangulation numbers Higher MWs of polymer give larger protein shells...

Equilibrium Centrifugation

 VLPs are loaded onto cesium chloride density gradient and centrifuged

 Particles are separated by density at equilibrium

 Particle molecular weight can be calculated from its equilibrium distribution profile in the gradient

Molecular Weight Estimation for VLP 1M

 The molecular weight of a Gaussian band is

$$M_{w} = \frac{RT}{\omega^{2}r\overline{\upsilon}(d\rho/dr)\sigma^{2}}$$

 The estimated molecular weight of the species in the band is 3.7x10⁶

 The molecular weight of anhydrous VLP 1M with 120 proteins and 1 PSS inside is 3.4x10⁶

```
    VLP 1M has T=2
capsid
```

What determines the size and shape of an RNA in solution under the conditions of assembly?

What is the 3D size and shape of a (viral-length) RNA molecule?

3D coarse-grained model fit to CCMV RNA2 scattering [I(q)] data

D. Svergun, S. Doniach

Real-space image reconstruction of CCMV RNA2 from small-angle synchrotron X-ray scattering I(q)

 $R_{RNA} \ge R_{capsid}$

Comparison of Percent Base Pairing and Average Duplex Length in Viral, Random, and Ribosomal RNA

- Viral genome sequences have evolved *not only* to yield optimal gene products, *but also* to have a size and shape that ensures they will be encapsidated.
- Therefore, if the above coarse-grained characteristics are predictive for size, their values for random, viral, and ribosomal RNA should differ markedly.
 BUT THEY DON'T. E.g., base pairing essentially always 60%.
- The distributions of duplex lengths are also the same for all three RNAs.

CHARACTERISTIC	AVG. OF 25 2800-BASE RANDOM RNAs	AVG. OF 4 VIRAL RNAs (CCMV& BMV RNAs 1+2)	<i>E. Coli</i> ribosomal RNA, 2825 BASES
% OF BASES IN PAIRS	60.8 ± 1.1	63.5 ± 1.9	62.0
AVERAGE DUPLEX LENGTH	4.4 ± 0.1	4.7 ± 0.1	4.4

Distribution of Duplex Lengths Does Not Differ Markedly Between Random and Biological RNAs

DISTRIBUTION OF DUPLEX LENGTHS IN RANDOM AND BIOLOGICAL RNAs

There is a Large Difference in Maximum Ladder Distance (MLD) Between These Random and Viral RNAs

- Bundschuh and Hwa have introduced the "ladder distance" as a quantitative measure of size in RNA secondary structures; *h_{ij}*, is the number of base pairs that are crossed by the shortest path connecting bases i and j.
- To characterize the size of RNA secondary structures using a single quantity, we calculate the "maximum ladder distance"
 -- the largest value of h_{ij} for all combinations of i and j -- it is the longest path across the secondary structure.

The MLD in this structure is 23, the number of base pairs crossed by the path connecting the two green dots.

CHARACTERISTIC	AVG. OF 25 2800-BASE RANDOM RNAs	AVG. OF 4 VIRAL RNAs (CCMV RNAs 1+2, BMV RNAs 1+2)	<i>E. Coli</i> RIBOSOMAL RNA, 2825 BASES
MAX. LADDER DISTANCE	291.0 ± 38.1	206.4 ± 8.3	235.9

Determine Sequence-Dependence of RNA Size and Shape

BMV RNA3, 2117nt (packages)

BMV RNA3Rev, 2117nt (does not package)

BMV RNA3Neg-sense, 2117nt

COMPARE AND CONTRAST TO

Control Sequences, 2117nt ("random" Yeast RPS22B)

CHARACTERISTICS OF 2117 nt RNAs

	MLD	% Pairing	% GC
BMV3	183	62	48
BMV3REV	185	64	48
BMV3NG	207	59	48
YEAST182	182	59	43
YEAST266	266	61	35
YEAST368	368	62	32
AV. 509 YEAST RNAs	239	58	38
RANGE 509 YEAST RNAs	139 - 368	44 - 65	
AV. 509 RAND. RNAs	239		50
RANGE 509 RANDOM RNA	149-358		50

Experimental program for determining RNA genome size and its effect on packaging efficiency and viral infectivity

USING "PHYSICAL MUTANTS" OF 2117-nt, wild-type, BMV RNA (I.E., SEQUENCE-SCRAMBLED, AND LENGTHENED):

1) Measure RNA $\mathbf{R}_{\mathbf{g}}$ as function of nucleotide sequence and of overall length

2) In buffer with purified capsid protein, measure *in vitro* packaging efficiency as function of same

3) Transfect host cells and measure *in vivo* yields of: replicated RNA infectious nucleocapsids

PUTTING IT TOGETHER HOW TO MAKE AN ENVELOPED VIRUS

E.g., Semliki Forest Virus (SFV)

single molecule of ssRNA inside

Baker et al. (1999)

The "parts list" of an enveloped virus...

(glycoproteins)

Spike proteins

Capsid proteins

ssRNA or ssDNA

Sindbis: Virus of Choice

- Arguably the simplest animal virus: *two-stage assembly* life cycle
- •Its nucleocapsid has been selfassembled *in vitro*

•One-to-one correspondence between each capsid protein and spike protein

- •Strong interaction between capsid and spike proteins established *in vitro*
- •Relatively benign

Sindbis reconstruction from cryo EM images (R. Kuhn)

Sindbis cross-section

Zhang et al. (2002)

We "peel off" envelope from nucleocapsid using detergent; then re-assemble it around the NC by removing detergent

Peeling off the membrane is possible!

Dissociation of the viral envelope from the nucleocapsid is stepwise (for SFV and Triton X-100 system)

Helenius and Söderland, Biochimica et Biophysica Acta, 307 (1973), 287-300.

[Triton X-100]

Physical separation of nucleocapsids and viral membranes after detergent treatment

- Can also separate the viral envelopes from nucleocapsids
 by equilibrium sedimentation
- Mix the purified components on centricons, to rid of detergent and allow intact virions to reform
- Show that infectious particles have been reconstituted from *non*-infectious components

Determine number of infectious virions before and after detergent treatment, and then after detergent removal

Plaque assay: allows us to count individual infectious virions

Plaque: a region of infected cells, detectable by naked eye

Substrate: a monolayer of host (2-day-old BHK) cells

Need to be able to count the cells that are infected: serial (powers of ten) dilutions lead to small (distinct, and hence countable) numbers (1's, 10's, 100's) of infectious virions (hence infected cells: plaques) per plate

Only interested in the number of infected cells that were *initially* infected by the virus: agarose is added to decrease the mobility of the virions in the medium

Plaques are visualized by a stain

Future experiments

- Structural studies of the infectious particles by EM
- Sedimentation studies of infectious particles formed after Centricon experiment
- Increase the yield of recovery by concentrating the components:

Make NCs in vitro and add them to the reaction (taking advantage of the special Sindbis genome...)

Selected 2117nt-long sequences from 500 chosen at random from 1M bps of the yeast (S. cerivisiae) Chromosome 12, some including no coding regions, some fully coding, and most mixed (i.e., introns + exons from different genes)

RNA	First nt# (ChrXII)	Last $nt#$	GC Fraction	Max. Ladder Dist.	%nt paired
R22	GG+855700	857814	0.351	266	60.56
LD326	688026	690142	0.324	368	61.88
SC326	687701	689817	0.326	347	63.01
LD414	874322	876438	0.427	148	58.10
SC414	874269	876385	0.427	182	59.04
NC1	449324	451440	0.342	236	56.49
NC2	390695	392811	0.402	197	59.23
FC1	352947	355063	0.368	215	57.81
B3E	$\mathbf{n}\mathbf{a}$	$\mathbf{n}\mathbf{a}$	0.478	183	61.69
B3R	$\mathbf{n}\mathbf{a}$	$\mathbf{n}\mathbf{a}$	0.478	185	64.45

Length-(Nucleotide-)Dependence of RNA Size and Shape

Make "added-length" mutants of 2117 nt-long BMV genes 3 + 4

Measure R_g (and *in vitro* and *in vivo* packaging efficiencies...)

YEAST SEGMENTS WITH MIN. MAX LADDER			
DISTANCE			
position	max ladder	%pairing	
325	139	49.60	
378	141	52.05	
219	142	54.61	
414	148	58.10	
210	153	55.08	
274	154	51.68	
6	156	44.40	
YEAST SEGMENTS WITH MAXIMUM MAX.			
LADDER	DISTANCE		
position	max ladder	%pairing	
326	368	61.88	
319	335	59.42	
440	335	58.57	
199	325	58.48	
63	324	60.46	
	max. ladder	stdev	
AVERAGE YEAST	239.0	38.9	
position	max ladder	%pairing	
BMV3-ENGINEERED	183	61.69	
BMV3-REVERSE	185	62.45	
RANDOM-2117	266	60.56	
AVERAGE RANDOM	236	~61	
(calc'd)			

maximum ladder distances (MLDs) of selected 2117-nt sequences from Yeast Chromosome 12

average yeast MLD \approx

average random MLD

