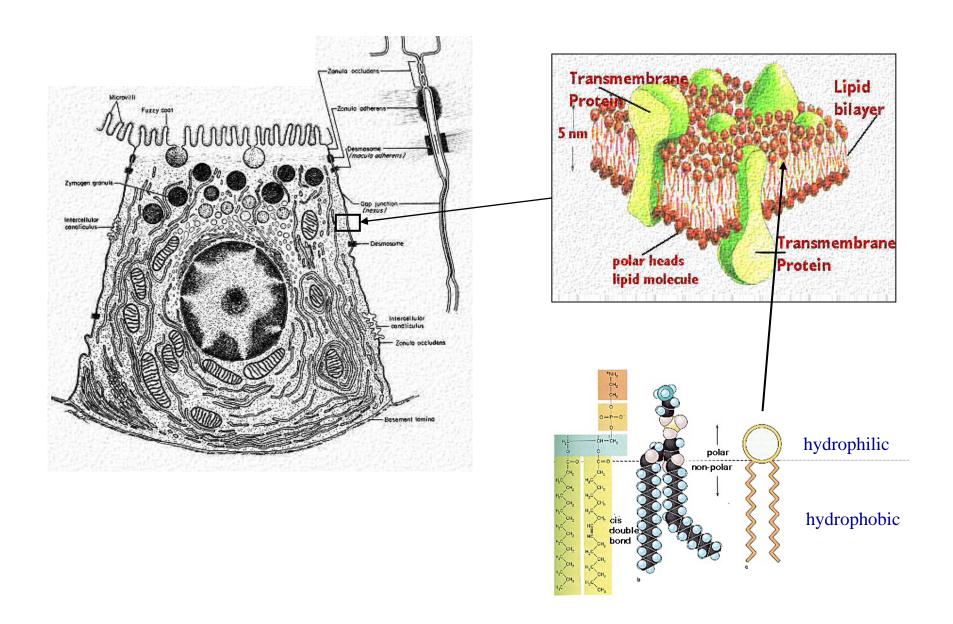
Ordering of living membranes - how the cell maintains lipid 'rafts'

Matthew Turner Warwick, UK

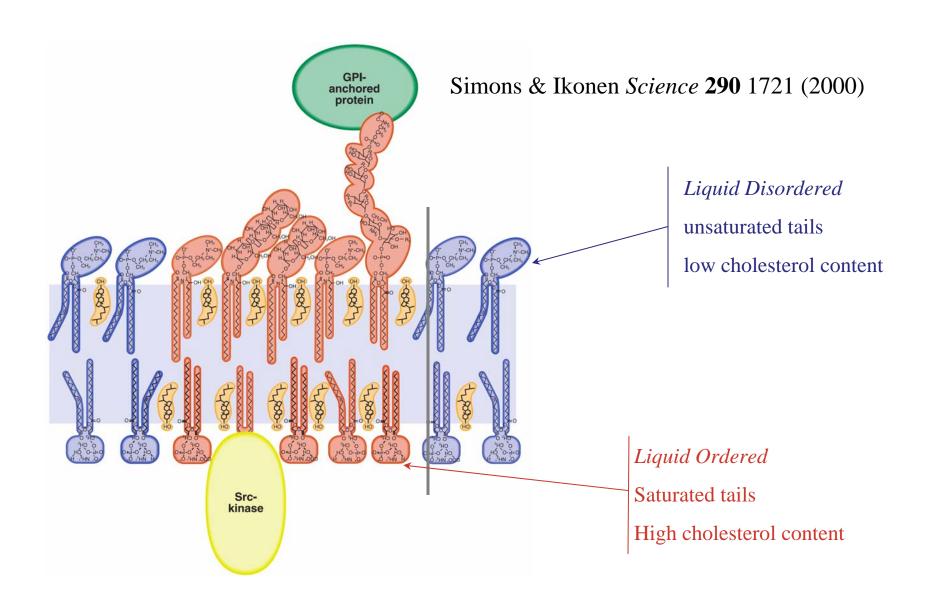
Pierre Sens
Institut Curie, Paris

Nick Socci

http://www.warwick.ac.uk/~phscz m.s.turner@warwick.ac.uk



PHASE SEPARATION IN BIOLOGICAL MEMBRANES: Lipid Rafts

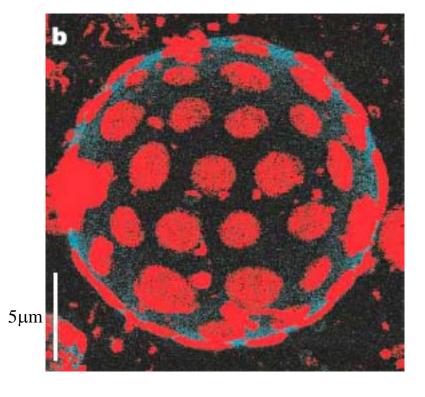


in vitro experiments reveal large "rafts"

in vivo the rafts are much smaller

- Consensus is tens of nm 100nm
- e.g. 26 +/- 13 nm (Pralle *et al.* JCB 2000)

Would be almost invisibly small here



Baumgart et al. Nature 2003

Equilibrium: dilute, circular rafts

$$G/k_{\rm B}T = \sum_{n=1}^{\infty} c_n \left(\log c_n / e + \gamma \sqrt{n} - \mu n \right)$$

$$\frac{\partial G}{\partial c_n} = 0 \Rightarrow c_{\text{eq}} = e^{-\gamma\sqrt{n} + \mu n}$$

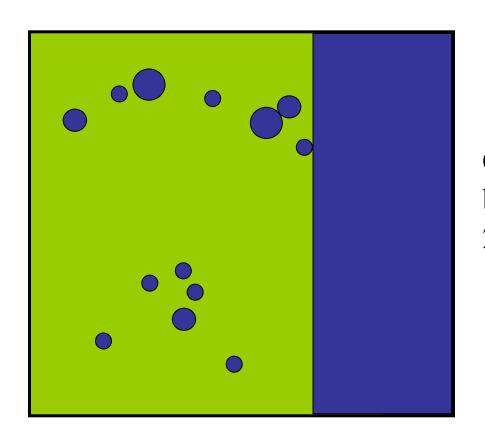
$$\phi = \sum nc_n \underset{\text{adding mass}}{\longrightarrow} \phi_c = \sum ne^{-\gamma\sqrt{n}} \approx e^{-\gamma}$$

When
$$\phi > \phi_c$$
 an area $\phi - \phi_c$

phase separates into "infinite" raft

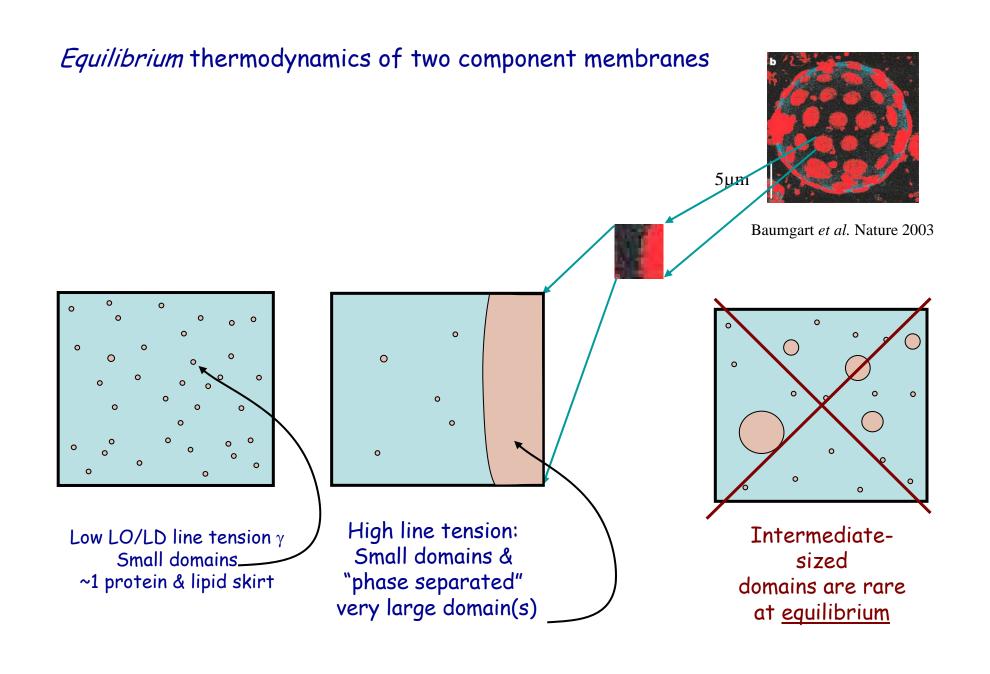
Highly bimodal distribution: ~monomers + very large raft(s)

On adding material...



Crossed phase boundary into 2-phase region

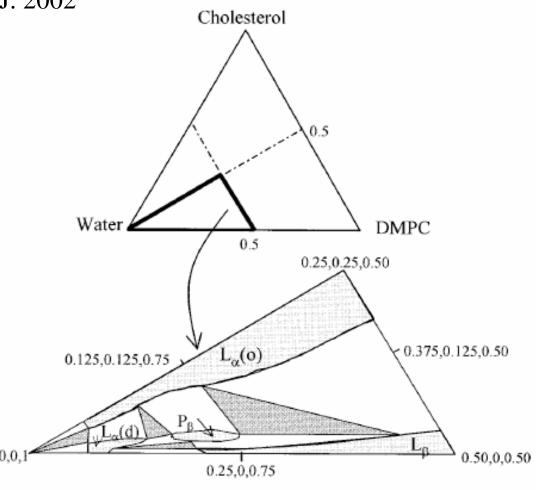
$$\phi > \phi_c$$



Typical (ternary) phase diagram

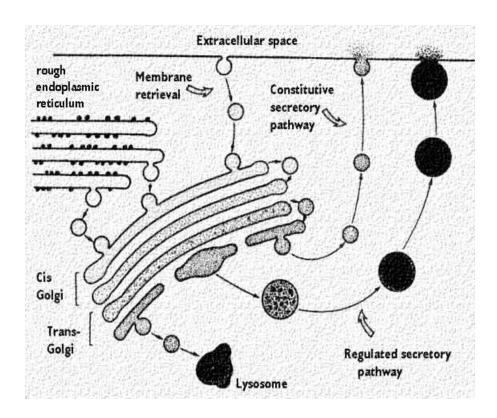
e.g. Sparr et al. Biophys J. 2002

FIGURE 5 Schematic partial ternary composition phase diagram of the water-rich corner for DMPC-cholesterol-water at 27°C. The phase diagram is outlined from the microcalorimetric data and the ²H-NMR spectra. The phase diagram contains four three-phase triangles (dark gray), four one-phase regions (light gray), and several two-phase regions (white). The exact positions of triangle corners and the phase boundaries are not determined, and the figure only provides the main features of phase diagram.



DMPC,Cholesterol,Water molar ratio

But... cell membranes are alive!

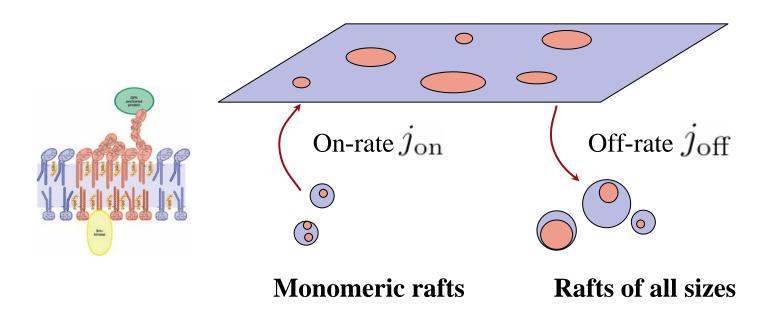


Longer timescale (>1/2 hour):

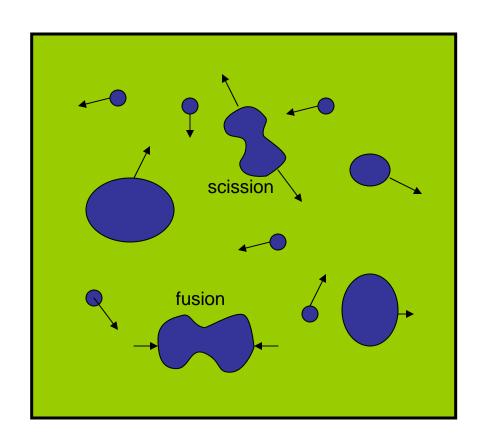
Synthesis of membrane material

Non-equilibrium: recycling

e.g. scheme #1: monomer deposition / raft removal

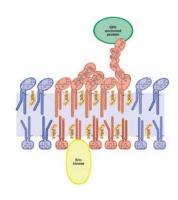


Raft dynamics



Discrete model

Introduce a 'monomeric' raft



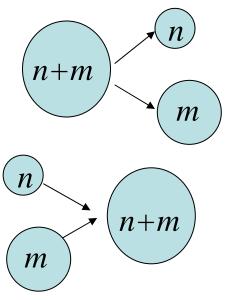
One raft-resident protein and its lipid 'skirt'

Mean field master equation

$$\dot{c}_n = \sigma(n) + \sum_{m=1}^{\infty} k_{n,m} c_{n+m} - k'_{n,m} c_n c_m + \frac{1}{2} \sum_{m=1}^{n-1} k'_{m,n-m} c_{n-m} c_m - k_{m,n-m} c_n$$

 $k_{n,m}$ is scission rate

 k'_{nm} is fusion rate



See also *Turner & Cates* '90 for a similar treatment of wormlike micellar systems

Raft kinetics

- Simplified diffusive collisions $D \neq D(n)$
 - Can set k'=1
 - defines timescale in terms of a microscopic time $\tau_{\rm D} = b^2/D > \sim 10^{-5}~s$
 - At equilibrium (no recycling)

$$c_{\rm eq} = e^{-E(n) + \mu n}$$

• eg

$$c_{\rm eq} = e^{-\gamma\sqrt{n} + \mu n}$$

Detailed balance then requires that all the microscopic rates balance exactly

$$k_{n,m} = e^{-\sigma(\sqrt{n} + \sqrt{m} - \sqrt{n+m})}/k'$$

Use this out-of-equilibrium (rafts have no long "memory" of collisions)

Growth from pure monomers

(no recycling)

 $n c_n$

QuickTime[™] and a MPEG-4 Video decompressor are needed to see this picture.

n

$$\phi = 10\%$$
 $\gamma = 8 \quad (\rightarrow \sim 0.5 k_{\rm B} T/nm)$

Raft recycling

$$\dot{c}_n = \sigma(n) + \dots$$

1. Monomer deposition / raft removal

$$\sigma(n) = j_{\rm on}\delta_{n1} - j_{\rm off}c_n$$

2. Monomer deposition / monomer removal (loss of monomers from rafts ~ radioactive decay)

$$\sigma(n) = j_{\text{on}} \delta_{n1} - j_{\text{off}}(n c_n - (n+1) c_{n+1})$$

These are the two most extreme examples in a class of *scale-free* recycling schemes

(can suggest many other schemes)

Growth from pure monomers

with recycling

(monomer deposition / raft removal)

 $n c_n$

QuickTime[™] and a MPEG-4 Video decompressor are needed to see this picture.

n

$$\phi = 10\%$$
 $j_{\rm off}\tau_{\rm D} = 10^{-2}$ $\gamma = 8 \ (\rightarrow \sim 0.5k_{\rm B}T/nm)$

Turning recycling on

starting from equilibrium

(monomer deposition / raft removal)

 $n c_n$

QuickTime[™] and a MPEG-4 Video decompressor are needed to see this picture.

n

$$\phi = 10\%$$
 $j_{\text{off}}\tau_{\text{D}} = 10^{-2}$ $\gamma = 8 \ (\rightarrow \sim 0.5k_{\text{B}}T/nm)$

Steady state

no scission (large γ); monomer deposition / raft removal

$$\frac{dc_n}{dt} = 0 = j_{\text{on}}\delta_{n,1} - (j_{\text{off}} + N)c_n + \frac{1}{2}\sum_{m=1}^{n-1} c_{n-m}c_m$$

$$c_1 = j_{\rm on}/(j_{\rm off} + N)$$

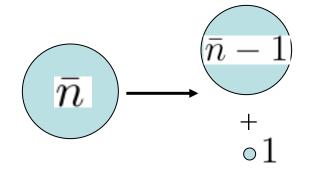
$$c_2 = \frac{1}{2}j_{\rm on}^2/(j_{\rm off} + N)^3$$

•

$$c_n = A_n j_{\text{on}}^n / (j_{\text{off}} + N)^{2n-1}$$
 $A_n = \frac{(2n-2)!}{2^{n-1} n! (n-1)!}$

No scission: self-consistency

Fastest scission process involves *shedding monomers:*



From detailed balance
$$k_{n,m} = e^{-\gamma(\sqrt{n}+\sqrt{m}-\sqrt{n+m})}/k'$$

$$k_{1,\bar{n}-1} \approx e^{-\gamma} k'$$
 exponentially slow

rate lifetime

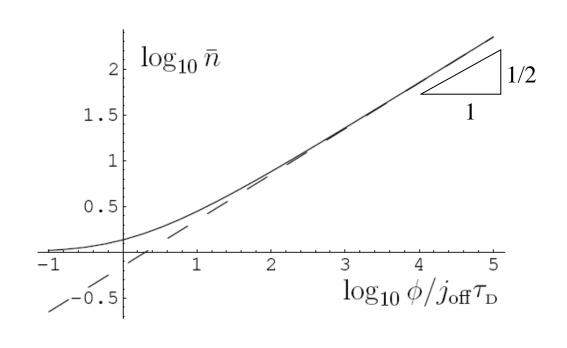
$$k_{1,\bar{n}-1}\frac{1}{j_{\text{off}}} \ll \bar{n} \implies \gamma \gg \gamma^* = \frac{1}{2}\log\frac{2}{\phi j_{\text{off}}\tau_{\text{D}}}$$

Values

ϕ	j_{on}	j_{off}	$ au_{ m D}$	\bar{n}	b	$/\gamma^{\star}$	R
	s^{-1}	s^{-1}	s	$(\gamma \gg \gamma^*)$	nm	$k_{\rm\scriptscriptstyle B}T/{\rm nm}$	$_{ m nm}$
0.1	10^{-3}	10^{-2}	10^{-5}	700	5	0.6	66
					1	3.0	13

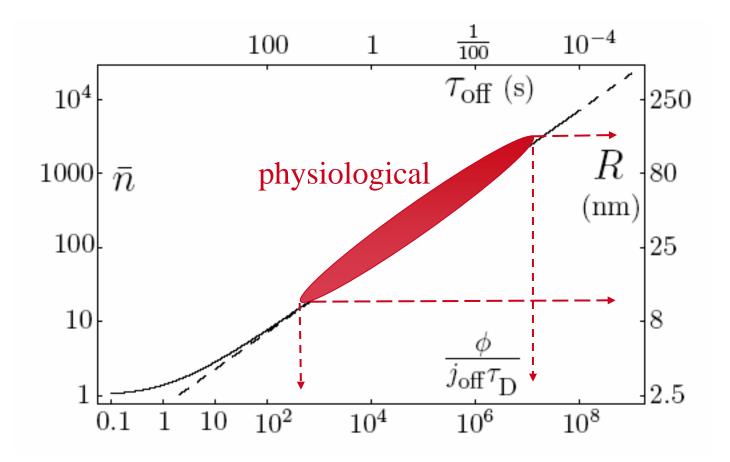
Asymptotic solution for c_n

mean raft size



no scission; monomer deposition / raft removal

Monomer deposition / raft removal; no scission



The steady state mean raft size is intermediate - tens of nm

Now...

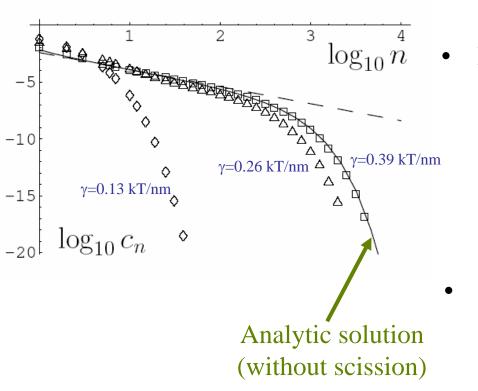
analytical result (no-scission)

compare

full numerical solution (with scission)

Numerical solution

Monomer deposition / raft removal



- Power-law regime
 - extends $\Delta n \sim \tau_{\rm off} = 1/j_{\rm off}$

$$c_n \approx \sqrt{\phi j_{\text{off}} \tau_{\text{D}}/(2\pi)} \frac{1}{n^{3/2}}$$

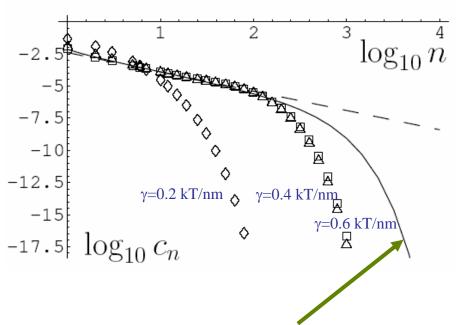
for $1 \ll n \ll \bar{n}^2$

- Analytic (asymptotic) solution holds for large line tensions
- Broad distribution of raft sizes

$$\phi = 10\%$$
 $j_{\text{off}}\tau_{\text{D}} = 10^{-3}$

Numerical solution

Monomer deposition / monomer removal

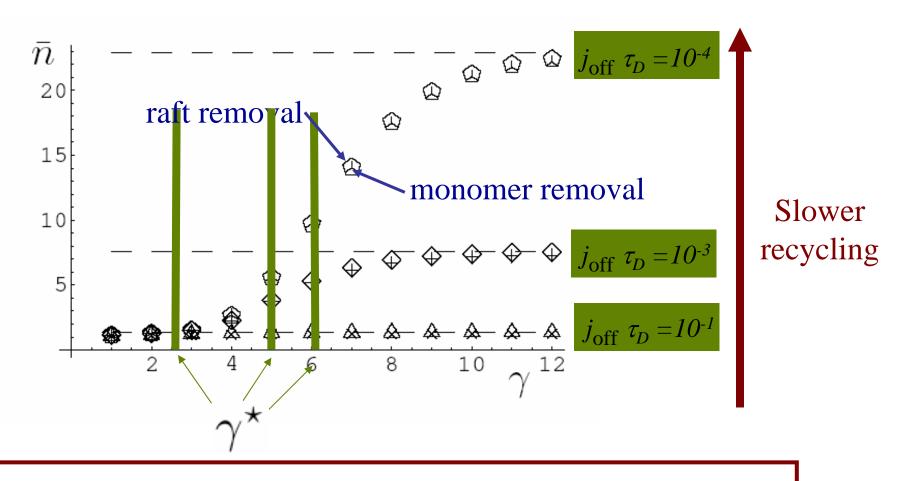


Analytic solution
(Monomer deposition / raft removal without scission)

$$\phi = 10\%$$
 $j_{\text{off}}\tau_{\text{D}} = 10^{-3}$

- Power-law regime still appears
- Solutions don't converge to analytic solution for large line tensions
 - No reason why they should!

The mean raft size is the same for the two extreme *scale-free* recycling schemes!



Propose: mean raft size is independent of recycling scheme for *all* scale-free processes

Perturbing the recycling

- add material externally
- up-/down-regulate recycling or synthesis pathways

How does the membrane respond?

$$au$$
 & ϕ \Rightarrow j_{off}

Summary

- Rafts are inherently non-equilibrium
- Recover sizes ~10-100 nm for physiological recycling rates
 - But may need to consider finite (cell) size effects
- Propose that all scale-free recycling yields the same mean raft size
- Can handle dynamic *perturbations* to the recycling
 - Biologically important and *testable*
- A connection between signaling and membrane traffic?
- Chemical analogues with non equilibrium domains?

I'd also be happy to discuss...

- Membranes
 - Mechanosensitive channels
 - Buffering of cell tension by buds
- Genetic networks
 - Circadian clocks
- Molecular motors
 - Towards a complete model of Myosin V
- Sickle hemoglobin fibers

