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Phase separation in Biological membranes : Lipid Rafts

Simons & Ikonen Science 290 1721 (2000)
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in vitro experiments reveal large “rafts”

in vivo the rafts are much smaller
• Consensus is tens of nm - 100nm

• e.g. 26 +/- 13 nm (Pralle et al. JCB 
2000)

Would be almost invisibly small here
Baumgart et al. Nature 2003

5μm



Equilibrium: dilute, circular rafts

adding mass

When an area

phase separates into “infinite” raft

Highly bimodal distribution: ~monomers + very large raft(s)



On adding material…

Crossed phase 
boundary into 
2-phase region



Baumgart et al. Nature 2003

5μm

Equilibrium thermodynamics of two component membranes

High line tension: 
Small domains & 

“phase separated” 
very large domain(s)

Intermediate-
sized 

domains are rare
at equilibrium

Low LO/LD line tension γ
Small domains 

~1 protein & lipid skirt



Typical (ternary) phase diagram 
e.g. Sparr et al. Biophys J. 2002



But… cell membranes are alive !

‘Short’ timescale (~minutes):
exchange between various membrane compartments

Longer timescale (>1/2 hour):
Synthesis of membrane material



Non-equilibrium: recycling

Rafts of all sizes

Off-rate

e.g. scheme #1: monomer deposition / raft removal

Monomeric rafts

On-rate



Raft dynamics

scission

fusion



Discrete model

Introduce a ‘monomeric’ raft

One raft-resident protein and 
its lipid ‘skirt’



Mean field master equation

n

m
kn,m is scission rate               n+m 

n

m
n+mk’n,m is fusion rate

See also Turner & Cates ‘90
for a similar treatment of 
wormlike micellar systems



Raft kinetics

Use this out-of-equilibrium (rafts have no long “memory” of collisions)

• Simplified diffusive collisions

– At equilibrium (no recycling)

• eg

Detailed balance then requires that all the microscopic rates balance exactly

Diameter of a monomeric raft

– Can set k’=1 
• defines timescale in terms of a microscopic time



Growth from pure monomers 
(no recycling)

QuickTime™ and a
MPEG-4 Video decompressor

are needed to see this picture.



Raft recycling

These are the two most extreme examples in a class of scale-free recycling 
schemes

(can suggest many other schemes)

2. Monomer deposition / monomer removal
(loss of monomers from rafts ~ radioactive decay)

1. Monomer deposition / raft removal



Growth from pure monomers 
with recycling 

(monomer deposition / raft removal)

QuickTime™ and a
MPEG-4 Video decompressor

are needed to see this picture.



Turning recycling on
starting from equilibrium
(monomer deposition / raft removal)

QuickTime™ and a
MPEG-4 Video decompressor

are needed to see this picture.



Steady state
no scission (large γ); monomer deposition / raft removal



No scission: self-consistency

From detailed balance

exponentially slow

+
Fastest scission process 
involves shedding monomers:

rate lifetime



Values



Asymptotic solution for cn

mean raft size



1/2
1

no scission; monomer deposition / raft removal



Monomer deposition / raft removal; no scission

The steady state mean raft size is intermediate - tens of nm

physiological



Now…

analytical result (no-scission)

compare

full numerical solution (with scission)



Monomer deposition / raft removal

γ=0.13 kT/nm
γ=0.26 kT/nm γ=0.39 kT/nm

Analytic solution
(without scission)

Numerical solution

• Analytic (asymptotic) solution 
holds for large line tensions

• Broad distribution of raft sizes

• Power-law regime
– extends



Monomer deposition / monomer removal

γ=0.2 kT/nm γ=0.4 kT/nm

γ=0.6 kT/nm

Analytic solution
(Monomer deposition / raft removal

without scission)

Numerical solution

• Power-law regime still appears

• Solutions don’t converge to 
analytic solution for large line 
tensions

– No reason why they should ! 



The mean raft size is the same for the two 
extreme scale-free recycling schemes !

joff τD =10-4

joff τD =10-1

Slower 
recycling

monomer removal

raft removal

joff τD =10-3

Propose: mean raft size is independent of 
recycling scheme for all scale-free processes



Perturbing the recycling

• add material externally

• up-/down-regulate recycling or synthesis pathways

How does the membrane respond ?



Summary
• Rafts are inherently non-equilibrium 

• Recover sizes ~10-100 nm for physiological recycling rates

– But may need to consider finite (cell) size effects

• Propose that all scale-free recycling yields the same mean raft size

• Can handle dynamic perturbations to the recycling

– Biologically important and testable

• A connection between signaling and membrane traffic ?

• Chemical analogues with non equilibrium domains ?



I’d also be happy to discuss…

• Membranes
– Mechanosensitive channels
– Buffering of cell tension by buds

• Genetic networks
– Circadian clocks

• Molecular motors
– Towards a complete model of Myosin V

• Sickle hemoglobin fibers


