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PHASE SEPARATION IN BIOLOGICAL MEMBRANES . Lipid Rafts

Simons & Ikonen Science 290 1721 (2000)

Liquid Disordered

unsaturated tails

content

low cholesterol

A A A A A A A Ay

Liquid Ordered

Saturated tails

High cholesterol content




In vitro experiments reveal large “rafts”

In vivo the rafts are much smaller
e Consensus iIs tens of nm - 100nm

e e.¢.26 +/- 13 nm (Pralle et al. JCB
2000)

Would be almost invisibly small here =

Baumgart et al. Nature 2003



Equilibrium: dilute, circular rafts
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When ¢ > @, anarea @ — @,
phase separates into “infinite” raft

Highly bimodal distribution: ~monomers + very large raft(s)



On adding material...
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Equilibrium thermodynamics of two component membranes

Baumgart et al. Nature 2003

o ° o . o °
Low LO/LD line tension y High line tension: Intermediate-
Small domains Small domains & sized
~1 protein & lipid skirt "phase separated” domains are rare

very large domain(s) at equilibrium




Typical (ternary) phase diagram

e.g. Sparr et al. Biophys J. 2002
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FIGUREE 5 Schematic partial temary composition
phase diagram of the water-rich comer for DMPC-
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lined from the microcalorimetric data and the “H-NMR
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But.. cell membranes are alive !/
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‘Short’ timescale (~minutes):
exchange between various membrane compartments

Longer timescale (>1/2 hour):
Synthesis of membrane material



Non-equilibrium: recycling

e.g. scheme #1: monomer deposition / raft removal
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Monomeric rafts Rafts of all sizes




Raft dynamics




Discrete model

Introduce a “monomeric’ raft

One raft-resident protein and
its lipid 'skirt’



Mean field master equation

T 2 : /
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Knm 1S SCISSION rate ’
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- (.
K’ IS fusion rate
@ See also Turner & Cates “90

for a similar treatment of
wormlike micellar systems



Raft kinetics

Simplified diffusive collisions D # D(n)

— Canset k=1
« defines timescale in terms of a microscopic time 7, = v°/D >~ 107" s

— At equilibrium (no recycling) Diameter of a monomeric raft
c EJ—I;'[H.H—,HH.
eq :
° eg
=7/ pn

E.:{\{ ] {

Detailed balance then requires that all the microscopic rates balance exactly

I — a‘,-":—i— JF— W Tt ) !
“TL, TT : /

Use this out-of-equilibrium (rafts have no long “memory” of collisions)



Growth from pure monomers

(no recycling)

n Cp

QuickTime™ and a
MPEG-4 Video decompressor
are needed to see this picture.

n

¢ = 10% vy=8 (— ~ 0.5k, T/nm)



Raft recycling
Cn :[or(n.)]—l— .
1. Monomer deposition / raft removal

{j‘(n) = JonOn1 — JoffCn

2. Monomer deposition / monomer removal
(loss of monomers from rafts ~ radioactive decay)

{J'(’n.) — .jt:rn(s-n,l — jcrff (ﬂ- Cn — (?’1- T 1) Cﬂ—i—l)

These are the two most extreme examples in a class of scale-free recycling
schemes

(can suggest many other schemes)



Growth from pure monomers

with recycling

(monomer deposition / raft removal)

n C'H

QuickTime™ and a
MPEG-4 Video decompressor
are needed to see this picture.

= 102 v=8 (— ~ 0.5k, T/nm)



Turning recycling on
starting from equilibrium

(monomer deposition / raft removal)

n Cp

QuickTime™ and a
MPEG-4 Video decompressor
are needed to see this picture.

n

¢ = 10% Jof Ty, = 1072 v=8 (— ~ 0.5k, T/nm)



Steady state

no scission (large y); monomer deposition / raft removal

de,, . : 1
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No scission: self-consistency

Fastest scission process

Involves shedding monomers: @ +
ol

From detailed balance £, ,, = e~V (Vn+vm—vnitm) /K’
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Values

¢\ Jjon|Joff |Tp| 7 |0V \ R
g1 g1 s | (y=>~") | nm | kT/nm| nm
0.1 107 1072 | 107 700
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Asymptotic solution for c,

=—>mean raft size
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no scission; monomer deposition / raft removal



Monomer deposition / raft removal; no scission
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The steady state mean raft size is /intermediate - tens of nm ]




Now...

é )
analytical result (no-scission)
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full numerical solution (with scission)
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Numerical solution

[ Monomer deposition / raft removal ]
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« Analytic (asymptotic) solution

Analytic solution holds for large line tensions

(without scission)
» Broad distribution of raft sizes

d=10%  jogT, = 1077



Numerical solution

[ Monomer deposition / monomer removal ]

Power-law regime still appears

10l « Solutions don’t converge to
10, 5 anal_ytlc solution for large line
p: tensions

_17.5 — No reason why they should !

Analytic solution
(Monomer deposition / raft removal
without scission)

b=10%  jogT, = 1077
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The mean raft size is the same for the two
extreme scale-free recycling schemes !
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Propose: mean raft size is independent of

recycling scheme for all scale-free processes




Perturbing the recycling

 add material externally

* up-/down-regulate recycling or synthesis pathways

How does the membrane respond ?
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Summary

Rafts are inherently non-equilibrium

Recover sizes ~10-100 nm for physiological recycling rates

— But may need to consider finite (cell) size effects

Propose that all scale-free recycling yields the same mean raft size

Can handle dynamic perturbations to the recycling

— Biologically important and testable
A connection between signaling and membrane traffic ?

Chemical analogues with non equilibrium domains ?



I'd also be happy to discuss...

— Mechanosensitive channels

Membranes / & -

— Buffering of cell tension by buds

Genetic networks
— Circadian clocks

Molecular motors
— Towards a complete model of Myosin V

Sickle hemoglobin fibers




