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No completely realistic theoretical model that can
quantitatively explain equilibrium and kinetic data
on protein folding

Theoretical work (and I don’t mean MD simulations)
has been introducing insightful concepts from modern
statistical mechanics and simulations

My bias as experimentalist: theoretical model should
consist of partition function, master equation, and
theory for experimentally measured quantities



Muiioz/Henry/Eaton theoretical model motivated by 4 key results.

1. Debunking of Levinthal paradox by
Zwanzig, Szabo, & Bagchi, PNAS 1992
Search 319 conformations in 100 fs
steps requires 1047 years. 2kT
energy bias reduces search to 1 sec.
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2. Demonstration by Onuchic and Wolynes in

lattice simulations that diffusion on a one-

dimensional free energy surface with order ;17

parameter as reaction coordinate can

reproduce simulated folding rate (JCP1996)

3. Observation of rate/contact order
correlation by Plaxco and Baker - JMB
1998, knowledge of native structure is
sufficient to predict rate; can ignore
non-native interactions
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4. Success of Ising-like model
Mufioz, Thompson, Hofrichter, WAE, Nature 1997
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'1.;_. ~ |Contacts only between residues in native conformation
_ .'1..' Single sequence approximation (216 = 65,536 — 121)
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Same conformational entropy change and diffusion
coefficient for all proteins — adjust contact energy
to fit experimental equilibrium constant

“speed
limit”
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Next challenge

Explain equilibrium and kinetic observables,
not just number of states and relative rates

Kubelka, Henry, Cellmer, Hofrichter and WAE, PNAS 2008



Why study ultrafast folders?

Can be simulated by all atom molecular dynamics calculations

Small proteins, and therefore simplest mechanisms

Therefore make connections among experiment, simulations,
and theory

In 2003 we guessed (correctly) that the villin headpiece
subdomain would be one of the most widely studied proteins by
experiment, theory, and simulations
(98 papers from 45 different groups
(40 theoretical/simulation) as of December 2010).



Villin headpiece subdomain
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Short Digression



Ensign and Pande, J Mol Bio 2007

Freddolino and Schulten, Biophys J 2009

Fluorescence does not monitor folding
In Pande simulations slowest fluorescence change
is up to 20 times faster than folding rate
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Rules of Ising-like model of Mufioz/Henry/WAE

for proteins



Residues in either native or non-native conformation

Contacts only if all intervening residues in native conformation
Native structure grows in no more than two regions (DSA)
(reduces conformations from 23° ~ 1010 +o ~ 10°)

Native segments can be connected by disordered loop
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Input:

‘55:4

I. residue-residue
contact map of native
structure
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II. Three thermodynamic parameters: &yt AScont, Aloop

97,769 Ql Eoonacs —N.TAs, . —TAg i,loop
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P(r)dr 2
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[II. two fluorescence parameters to describe temperature
dependence of fractional tryptophan quantum yield at
contact with protonated histidine: f, + A(7T-T,)?

Aoy = — k5T ln[ ] D.Thirumalai




Data to be calculated by theoretical model
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Data to be calculated by theoretical model (cont.)
Cellmer, Henry, Hofrichter, WAE, PNAS 2008

relaxation rates
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Ansari, Jones, Henry, Hofrichter, WAE, Science 1992
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Calculation of equilibrium properties (As
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Calculation of kinetic properties: diffusion on 1D free energy surface
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Simulate diffusion by hopping along reaction coordinate
with kinetic rule: ¥ and its activation energy are only

kinetic amplitudes
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Folding barrier increases with denaturant,
but so does diffusion coefficient!!

B. Schuler (U. Zirich) PNAS 2007
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Introduce position dependent diffusion coefficient to explain
temperature dependence of internal viscosity
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Do the reaction coordinates

P (number of native residues)
and

O (fraction of native contacts)

reproduce transition state results based
on responses to local perturbation, i.e.
points mutations



Du, Pande, Grosberg, Tanaka, & Shakhnovich, J. Chem. Phys. 1998

Proid 1S rigorous criterion for determining whether a structure
belongs to the transition state ensemble

Proid 1S defined as the probability of reaching the folded state
for the first time before reaching the unfolded state for the

first time. If p;4is ~ 3, structure belongs to transition state
ensemble.

Proid Tor each of the 97,769 species of model can be directly
calculated from the rate matrix

K'c=0



D

A31

< @\

QU9 991)

0.5

Prold

30

20

10



Il — | Il Il Il Il | Il Il Il Il | Il Il Il Il

Vel
—

S =
(o) wv
—

Saje]s JO Joquunu

(el

N

\O

<r (@l

A319U9 921

0.5

Prold

20 30

10



Q

O

< (@l

A319U9 921

0.5

Prold

20 30

10



(]

\O

<t (@\]

A319U9 931)

0.5

Prold

20 30

10



/]

A31

<t N

QU9 991)

0.5

Prold

20 30

10



20 |

|
e}
—

soJels JO Joquinu

]

o

< (@l

A319U9 921

ns

Prold

20 30

10



| |
S )
(@\] —_—

soJels JO Joquinu

Q

< @\l

A319U9 921

0.5

Prold

20 30

10



(=) e}

—

soJels JO Joquinu

-

=}

<r (@l

A319U9 921

0.5

Prold

20 30

10



| |
S (=)
(@\| —

SOJe}S JO Joquinu

(/]

A319U9 921

0.5

30

20

10

Prold



Splitting probability distributions for all states <2k, T
from most stable state at each value of P and Q.
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Conformations at top of free energy barrier belong to TS,
therefore P and Q appear to be good reaction coordinates



Calculation of @ values (response to a local perturbation)
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Fig. 1. Structure of villin subdomain solved by x-ray diffraction (PDB 1WY4) (2).
Ribbon diagram of backbone showing the side chains of W23 and H27 (4) and
structure with all nonhydrogen atoms (B). Residues F6 K7 A8,G11,M12,T13 are
shown in black because their contacts contribute most to the stability of the most
populated microstates of the transition state ensemble at 310 K (see Figs. 58
and 59).



Mechanistic insight - order of secondary structure formation

probability that residue is in native conformation for a given
value of the reaction coordinate
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Summary

A very simple, coarse-grained statistical mechanical model
based on the contact map of the native structure that only
considers the tradeoff between conformational entropy
and stabilizing contacts (with same energy and entropy for
every residue) is remarkably successful in quantitatively
explaining a wide variety of experimental data, i.e.
equilibrium calorimetry, fluorescence, circular dichroism;
relaxation rates as a function of temperature, denaturant,
and viscosity, kinetic amplitudes; and effects of mutations
on folding rates (@ values).



Next Steps

Test contiguous sequence approximation with Langevin
simulations of Go bead model - currently being carried
out by Robert Best

Compare predicted mechanism with (David E.
Shaw) MD trajectories in explicit water using his
super-computer "Anton”, hard wired for MD

Use single molecule FRET measurements to observe
distribution of ftransition paths - current major focus
of my lab



S. Piana, K. Lindorff-Larsen, and D.E. Shaw
(Bioph y5/ca/ J ouma/— B/oph yS/ca/ Letters, 2011)

Double norleucine mutant
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What is pathway distribution predicted by model?

Very preliminary results



Stochastic kinetic simulations (106 trajectories from 667 P= 2 states)

The rate for each possible transition is determined from a
linear free energy relation, i.e. k = yK*for, with the same
v = 2x 10* s"! and same exponent o = 1/2 for each transition.

-1
The length of a step is given by: 7, = [Z kl.jj
j
The probability of a step (..cnnc...~ ..cnnn..) is its relative rate

The rate of loop formation is taken from the experimentally-
determined empirical expression for the rate of loop
formation (tryptophan triplet quenching experiments)

The transition path is defined as that portion of the trajectory
after which the pfold is 0.2 and never falls below 0.2 before
reaching the fully folded state (pfold = 1).

The order of helix formation is determined by the fraction
of the transition path time during which the helix is formed.
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Order of helix formation from transition paths of
Munoz-Henry-Eaton Ising-like model (for wild-type)
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Why does such a simple model work so well?

Biology: evolved sequences have strong bias for forming
native over non-native contacts (Wolynes)

Physics: coarse graining works because enthalpy-entropy
compensation results in interaction free energies
of ~1 +1 kcal/mol for all contacts (Fersht)

Implies a universal property:
overall fold determines both the rate and mechanism (?)
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