A TALE OF TWO OBSERVERS

Dionysios Anninos

KITP, May, 2012

イロト イポト イミト イミト 二日

- Static Patch Curiosities
- Global de Sitter Space
- \bullet State Space at $\mathcal{I}^+/\text{Cosmic Corals}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへぐ

Outlook

STATIC PATCH CURIOSITIES

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - わへで

Observers surrounded by COSMOLOGICAL HORIZON. Geometry is given by:

$$ds^2 = -\left(1 - r^2/\ell^2\right) dt^2 + \left(1 - r^2/\ell^2\right)^{-1} dr^2 + r^2 d\Omega_2^2 \; .$$

How to describe the de Sitter observer remains an open question. Matrix theory [Banks; Susskind;Verlinde]?

Gibbons-Bekenstein Hawking entropy of cosmological horizon? What is it counting [Silverstein,et al.]? What are the microstates?

Basic Confusion: No asymptotic boundaries, no sharp observables.

Consider Green functions.

Boundary conditions are no incoming flux from past horizon and smoothness near $r = 0 \implies$ Sollipsistic, i.e., they capture response of pulses sent by isolated observer:

$$G_{R}(r,r') = \frac{f_{\omega lm}^{n}(r)g_{\omega lm}^{in}(r')}{W(\omega)} \text{ for } r < r', \quad W(\omega) = f_{\omega lm}^{n}\partial_{r}g_{\omega lm}^{in} - g_{\omega lm}^{in}\partial_{r}f_{\omega lm}^{n}.$$

Zeroes of $W(\omega)$ are QNM: $\omega_n = -2\pi i T_{dS} (2\Delta_{\pm} + n + 2I).$

More generally one might consider case with non-vanishing flux from past horizon...

Green functions have hidden $SL(2,\mathbb{R})$ symmetry, which is not a dS₄ isometry.

e.g. for $m^2 \ell^2 = 2$ scalar and 4d gravitons near the worldline:

$$G_R^l(t) \sim heta(t) \left(rac{1}{\sinh(t/(2\ell))}
ight)^{2(l+1)}$$

(Structure of conformal quantum mechanics, related to Poschl-Teller potential)

More general case (i.e. $m^2 \ell^2 \neq 2$) it is a product (in frequency space) of two $G_R(\omega)$'s:

$$G_{R}^{\prime}(\omega) = \frac{\Gamma\left(\tilde{\Delta} - i(\ell\omega - ix)/2\right)}{\Gamma\left(1 - \tilde{\Delta} - i(\ell\omega - ix)/2\right)} \frac{\Gamma\left(\tilde{\Delta} - i(\ell\omega + ix)/2\right)}{\Gamma\left(1 - \tilde{\Delta} - i(\ell\omega + ix)/2\right)}$$

where $x = \sqrt{d^2/4 - \ell^2 m^2}$ and $\tilde{\Delta} = I/2 + d/4$.

Related to conformal transformation from $dS_4 \times S^1$ to $BTZ \times S^2$. Boundary of BTZ is mapped to worldline.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Cannot build an arbitrarily large black hole. Nariai black holes are maximally large, (dS₂ \times S² geometry). Angular momentum is also capped.

Ratio of Nariai entropy to static patch entropy = 1/3. This is universal ratio for Einstein gravity with positive Λ .

Analogy: Most negative mass hyperbolic black holes in $AdS_4,$ $(AdS_2\times {\cal H}_2$ geometry).

Asymptotic symmetries at \mathcal{I}_{RN}^+ of rotating Nariai geometry (S^2 fibered over dS₂) is Virasoro algebra with real positive c_L [D. A.,Hartman;D.A.,Anous]. Note: $\mathcal{I}_{RN}^+ \neq \mathcal{I}^+$, in fact it just grazes the future horizon of dS₂.

Is this Virasoro structure connected to static patch $SL(2,\mathbb{R})$?

GLOBAL DE SITTER SPACE: THE METAOBSERVER

More globally, is at late times asymptotically de Sitter has FG expansion:

$$ds^{2} = rac{\ell^{2}}{\eta^{2}} \left(-d\eta^{2} + g_{ij}^{(0)} dx_{i} dx_{j} + \eta^{2} g_{ij}^{(2)} dx^{i} dx^{j} + \eta^{3} g_{ij}^{(3)} dx_{i} dx_{j}
ight)$$

with \mathcal{I}^+ living at $\eta \to 0$. Also, Tr $g_{ij}^{(3)} = \nabla^i g_{ij}^3 = 0$.

Though mathematically similar to boundary of AdS, \mathcal{I}^+ is also crucially different.

We have to consider deformations of conformal metric on \mathcal{I}^+ in addition to deformations of subleading terms in η .

Quantum mechanically, we compute the transition amplitude from initial (quantum) state, i.e. Hartle-Hawking.

CONJECTURE [Strominger,Witten,Maldacena]

Boundary-to-boundary correlators at \mathcal{I}^+ with Dirichlet (future) boundary conditions are those of a Euclidean (non-unitary) 3d CFT. Late time (non-normalizable) profiles of fields are sources in the CFT.

Partition function of CFT computes transition amplitude from Bunch-Davies vacuum to a particular late time configuration $\Phi(x)$:

$$Z_{CFT}[\Phi] \propto \Psi_{HH}[\Phi] pprox e^{iS_{cl}[\Phi]}$$
 .

CFT correlators are variational derivatives of $\Psi_{HH}[\Phi]$ w.r.t Φ .

Challenge: Computing CFT partition function for finite, space dependent sources (dissordered systems)?

For 4d Vassiliev gravity with infinite tower of even spin modes we have a proposal [D.A., Hartman, Strominger]. It is the 3d critical Sp(N) model:

$$\mathcal{L}_{CFT} = \int d^{3}x \sqrt{g} \left(g^{ij} \partial_{i} \chi^{A} \partial_{j} \chi^{B} \Omega_{AB} + \frac{1}{8} R[g] \Omega_{AB} \chi^{A} \chi^{B} + \lambda (\Omega_{AB} \chi^{A} \chi^{B})^{2} \right)$$

The χ^A are anti-symmetric scalars which transform as vectors in Sp(N). The above theory flows in the IR to a CFT [LeClair] whose correlators conjecturally reproduce those in higher spin gravity. Three-point functions checked [Giombi,Yin].

We must also impose a Sp(N) SINGLET constraint on the operator content. e.g. Graviton is dual to stress tensor.

ション ふゆ アメリア ショー シック

Perturbatively this is related to O(N) critical model by $N \rightarrow -N$.

Some lessons from higher spin dS/CFT:

dS/CFT can actually work (at least in this setup).

 $N \sim \ell^2/\ell_{Pl}^2$ is an INTEGER and hence the bulk cosmological constant is quantized. Brane constructions?

In special cases, we can compute wavefunction (i.e. Z_{CFT}) [D.A., Denef, Harlow], find interesting structure, possibly (non-perturbative) instabilities even in this simple setup.

For example wavefunction on $S^2 \times S^1$ diverges for small S^1 .

De Sitter is NOT an analytic continuation of AdS beyond perturbation theory.

On a squashed S^3 with $ds^2 = (d\theta^2 + \cos^2\theta d\phi^2) + e^{-\rho} (d\psi + \sin\theta d\phi)^2$:

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

COSMIC CORALS

◆□→ ◆聞→ ◆臣→ ◆臣→ ○臣

We consider the evolution of a free massless scalar field in a fixed dS_4 background:

$$ds^2 = rac{\ell^2}{\eta^2} \left(-d\eta^2 + dec{x}^2
ight) , \quad x^i \sim x^i + L$$

Solution of wave-equation:

$$\phi_{\vec{k}}(\eta) = rac{1}{\ell(2kL)^{3/2}} \left(A^+_{\vec{k}}(1-ik\eta)e^{ik\eta} + A^-_{\vec{k}}(1+ik\eta)e^{-ik\eta}
ight) \; .$$

Quantum fluctuations survive all the way up to \mathcal{I}^+ (where $\eta \to 0$) (No cluster decomposition). Large state space at \mathcal{I}^+ .

Initial quantum state (= Bunch-Davies) provides a probability distribution for late time configurations in a dS background.

Wavefunctional is given (semiclassically) by Hartle-Hawking. For massless scalar with late time profile ϕ :

$$\Psi_{HH}\left[\phi
ight]\propto e^{iS_{cl}\left[\phi
ight]}\implies \mathcal{P}\left[\phi
ight]\propto \left|\Psi_{HH}[\phi]
ight|^{2}$$
 .

For massless scalar:

$$\mathcal{P}[\phi] \propto e^{-2\sum_{\vec{k}}\beta_k |\phi_{\vec{k}}|^2}$$
, $\beta_k = \frac{1}{2}(Lk)^3 \ell^{d-1}$.

QUESTION: How are late time spatial configurations organized?

<□> <0>

Inspired by spin glasses, we define a notion of overlap between late time profiles. We propose a regularized Euclidean distance:

$$d[\phi_1,\phi_2] = \frac{1}{L^3} \int d^3x \left[(\phi_1(\vec{x}) - \overline{\phi_1(\vec{x})}) - (\phi_2(\vec{x}) - \overline{\phi_2(\vec{x})}) \right]^2$$

 $\mathsf{Overline} = \mathsf{Spatial} \text{ average } \Longrightarrow \text{ subtraction of zero mode}.$

We further subtract the divergent late time average (w.r.t. $\mathcal{P}[\phi]$) from d_{12} .

Our task is to compute the single and triple overlap distribution. e.g.

$$\mathcal{P}(\Delta) = \int \mathcal{D}\phi_1 \mathcal{D}\phi_2 |\Psi_{HH}(\phi_1)|^2 |\Psi_{HH}(\phi_2)|^2 \delta\left(\Delta - d[\phi^{(1)},\phi^{(2)}]
ight) \, .$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

For single overlap distribution, $P(\Delta) = \langle \delta(\Delta - d_{12}) \rangle$ we find the GUMBEL distribution:

Also appears in extreme value physics. Asymmetry \implies There are more dissimilar configurations. (Also found by Benna using different 'distance'.)

Similarly, we can compute the triple overlap distribution:

$$P(\Delta_1, \Delta_2, \Delta_3) \equiv \langle \delta(\Delta_1 - d_{23}) \delta(\Delta_2 - d_{13}) \delta(\Delta_3 - d_{12}) \rangle_{n=3}$$

 $P(\vec{\Delta})$ peaks at $\Delta_3 = \max{\{\Delta_1, \Delta_2\}}$.

This is a clear signal of ultrametricity directly analogous to that found for spin glasses.

▲ロト ▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 □ ∽ ९ ()