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Gravitational turbulent instability of AdS

Anti-de Sitter spacetime

Anti-de Sitter spacetime - 1/2

Anti-de Sitter space is a maximally symmetric solution to

S =
1

16πG

∫
ddx
√−g

[
R+

(d− 1)(d− 2)

L2

]
,

which in global coordinates can be expressed as

ds2 ≡ ḡabdxadxb = −
(
r2

L2
+ 1

)
dt2 +

dr2

r2

L2 + 1
+ r2dΩ2

d−2.

The Poincaré coordinates

ds2 = R2(−dτ2 + dx · dx) +
L2dR2

R2

do not cover the entire spacetime.
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Gravitational turbulent instability of AdS

Anti-de Sitter spacetime

Anti-de Sitter spacetime - 2/2

Conformally, AdS looks like the interior of a cylinder

Poincaré coordinates cover the brown-shaded
region.

The instability described in this talk will occur
in global AdS only.

The dual field theory lives on Rt × Sd−2.

With energy preserving boundary conditions,
waves bounce off infinity and return in finite
time.

3 / 17



Gravitational turbulent instability of AdS

Anti-de Sitter spacetime

Anti-de Sitter spacetime - 2/2

Conformally, AdS looks like the interior of a cylinder
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Gravitational turbulent instability of AdS

The stability problem

The stability problem for spacetimes in general relativity

The setup:

Consider a spacetime (M, g), together with prescribed boundary
conditions B if timelike boundary exists.

Take small perturbations (in a suitable
sense) on a Cauchy surface S.

Does the solution spacetime (M, g′) that
arises still has the same asymptotic causal
structure as (M, g)?

If so, can we bound the “difference”
between the asymptotic form of g and g′ in
terms of initial data defined on S?

S

BB

???
??????

In particular, if a geodesically complete spacetime is perturbed, does it
remain “complete”?
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Gravitational turbulent instability of AdS

Minkowski, dS and AdS

Minkowski, dS and AdS spacetimes

At the linear level, Anti de-Sitter space-time appears just as stable
as the Minkowski or de-Sitter spacetimes.

For the Minkowski and de-Sitter spacetimes, it has been shown that
small, but finite, perturbations remain small - D. Christodoulou and
S. Klainerman ‘93 and Friedrich ‘86.

Why has this not been shown for Anti de-Sitter?

It is just not true!

Claim:

Generic small (but finite) perturbations of AdS become large and
eventually form black holes.

The energy cascades from low to high frequency modes in a manner
reminiscent of the onset of turbulence.
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Gravitational turbulent instability of AdS

Folklore

Folklore

Doesn’t this claim contradict the fact that Anti de-Sitter is
supersymmetric?

Doesn’t this contradict the fact that there is a positivity of energy
theorem for Anti de-Sitter?

NO :

Positivity energy theorem: if matter satisfies the dominant energy
condition, then E ≥ 0 for all nonsingular, asymptotically AdS initial
data, being zero for AdS only.

This ensures that AdS cannot decay.

It does not ensure that a small amount of
energy added to AdS will not generically
form a small black hole.

That is usually ruled out by arguing that
waves disperse. This does not happen in
AdS.

AdS
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Gravitational turbulent instability of AdS

Heuristics

Why is AdS unstable?

AdS acts like a confining finite box. Any generic finite excitation
which is added to this box might be expected to explore all
configurations consistent with the conserved charges of AdS -
including small black holes.

Special (fine tuned) solutions need not lead to the formation of
black holes.

We will see that for some linearized gravitational mode there
will be a corresponding nonlinear solution - geon.
These solutions are special since they are exactly periodic in
time and invariant under a single continuous symmetry.
Geons are analogous to gravitational plane waves.

A perhaps more convincing intuitive picture: colliding exact plane
waves produces singularities - Penrose - ’71.
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Gravitational turbulent instability of AdS

Perturbative construction

Perturbative construction - 1/2

Expand the metric as

g = ḡ +
∑

i

εih(i).

At each order in perturbation theory, the Einstein equations yield:

∆̃Lh
(i)
ab = T

(i)
ab ,

where T (i) depends on {h(j≤i−1)} and their derivatives and

2∆̃Lh
(i)
ab ≡ −∇̄2h

(i)
ab − 2R̄ c d

a b h
(i)
cd − ∇̄a∇̄bh(i) + 2∇̄(a∇̄ch(i)b)c.

Any smooth symmetric two-tensor can be expressed as a sum of
fundamental building blocks, T `mab , that have definite transformation
properties under the SO(d− 1) subgroup of AdS.
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Gravitational turbulent instability of AdS

Perturbative construction

Perturbative construction - 2/2

For concreteness, set d = 4. Perturbations come in three classes:

Scalar-type perturbations: perturbations are constructed from
spherical harmonics on S2 - Y`m.
Vector-type perturbations: perturbations are constructed from vector
harmonics on S2 - these are ?S2∇Y`m.
Tensor-type perturbations: only exist in d ≥ 5.

We go beyond linear order: need real representation for Y`m -
Y c`m = cosφLm` (θ) and Y s`m = sinφLm` (θ).

At each order, we can reduce the metric perturbations to 4 gauge
invariant functions satisfying (Kodama and Ishibashi ’03 for i = 1):

�2Φ
α,(i)
`m (t, r) + V

(i)
` (r)Φ

α,(i)
`m (t, r) = T̃

α,(i)
`m (t, r),

where α ∈ {c, s} and �2 is the w. op. in the (t, r) orbit space.

Choice of initial data relates Φ
c,(i)
`m and Φ

s,(i)
`m : 2 PDEs to solve.
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Gravitational turbulent instability of AdS

Linear Perturbations

Linear Perturbations

At the linear level (i = 1) we can further decompose our
perturbations as

Φ
α,(i)
`m (t, r) = Φ

α,(i),c
`m (r) cos(ω`t) + Φ

α,(i),s
`m (r) sin(ω`t).

Because AdS acts like a confining box, only certain frequencies are
allowed to propagate

ω2
`L

2 = (1 + `+ 2p)2,

where p is the radial overtone. These are the so-called normal modes
of AdS. The fact that ω2L2 > 0 means that AdS is linearly stable.

For simplicity, we will take p = 0, in which case one finds

Φα,(1),κ(r) = Aα,(1),κ
r`+1

(r2 + L2)
`+1
2

,

where Aα,(1),κ is a normalization constant.
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Gravitational turbulent instability of AdS

General Structure

General Structure

1 Start with a given perturbation Φ
α,(i),κ
`m (r), and determine the

corresponding h
(i)
`m(t, r, θ, φ) through a linear differential map.

2 Compute T
(i+1)
ab and decompose it as a sum of the building blocks

T `mab .

3 Compute source term T̃
α,(i+1)
`m (t, r), and determine Φ

α,(i+1)
`m (t, r).

4 If T̃
α,(i+1)
`m (t, r) has an harmonic time dependence cos(ω t), then

Φ
α,(i+1)
`m (t, r) will exhibit the same dependence, EXCEPT when ω

agrees with one of the normal frequencies of AdS:

Φ
α,(i+1)
`m (t, r) = Φ

α,(i+1),c
`m (r) cos(ω t) + Φ

α,(i+1),s
`m (r) t sin(ω t).

This mode is said to be resonant.

5 If for a given perturbation one can construct Φ
α,(i)
`m to any order,

without ever introducing a term growing linearly in time, the
solution is said to be stable and is unstable otherwise.
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Gravitational turbulent instability of AdS

Examples

Geons

Start with a single mode ` = m = 2 initial data.

At second order there are no resonant modes and the solution can
be rendered regular everywhere.
At third order there is a resonant mode, but one can set the
amplitude of the growing mode to zero by changing the frequency
slightly

ωL = 3− 14703

17920
ε2.

The structure of the equations indicate that there is only one
resonant term at each odd order, and that the amplitude of the
growing mode can be set to zero by correcting the frequency.
One can compute the asymptotic charges to fourth order, and they
readily obey to the first order of thermodynamics:

Eg =
3Jg
2L

(
1− 4901 Jg

7560πL2

)
, ω2 =

3

L

(
1− 4901 Jg

3780πL2

)
,

where we defined ε by Jg = 27
128πL

2ε2.
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Gravitational turbulent instability of AdS

Examples

Colliding Geons - 1/2

Start with a linear combination of ` = m = 2 and ` = m = 4.

Alike the single mode initial data, at second order there are no
resonant modes and the solution can be rendered regular everywhere.

At third order, there are four resonant modes:

The amplitude of the growing modes in two of the resonant
modes can be removed by adjusting the frequency of the initial
data (ω2 L = 3 and ω4 L = 5) just like we did for the single
mode initial data.
The amplitude of the growing mode of smallest frequency is
automatically zero.
The amplitude of the growing mode with the largest frequency
cannot be set to zero (ωL = 7, ` = m = 6)!

AdS is nonlinearly unstable!
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Gravitational turbulent instability of AdS

Examples

Colliding Geons - 2/2

The frequency of the growing mode is higher than any of the
frequencies we started with!

The “energy” is transferred to modes of higher frequency.
Expect this to continue. When the ωL = 7, ` = m = 6 mode grows,
it will source even higher frequency modes with growing amplitude.

Conjecture:

The endpoint of this instability is a rotating black hole.

Spherical scalar field collapse in
AdS - Bizon and Rostworowski,
’11.

No matter how small you make
the initial amplitude, the
curvature at the origin grows and
you eventually form a small black
hole.

2

Numerical results. We solved the system (4-6) numeri-
cally using a fourth-order accurate finite-difference code.
We used the method of lines and a 4th-order Runge-
Kutta scheme to integrate the wave equation (4) in time,
where at each step the metric functions were updated
by solving the hamiltonian constraint (5) and the slicing
condition (6). Preservation of the momentum constraint
Ȧ + 2 sinx cosxA2e−δΦ Π = 0 was monitored to check
the accuracy of the code.

Solutions shown in Figs. 1 and 2 were generated from
Gaussian-type initial data of the form

Φ(0, x) = 0 , Π(0, x) =
2ε

π
exp

(
−4 tan2x

π2σ2

)
, (9)

with fixed width σ = 1/16 and varying amplitude ε. For
such data the scalar field is well localized in space and
propagates in time as a narrow wave packet. For large
amplitudes the wave packet quickly collapses, which is
signalled by the formation of an apparent horizon at a
point xH where A(t, x) drops to zero. As the amplitude
is decreased, the horizon radius xH decreases as well and
goes to zero for some critical amplitude ε0. This behavior
is basically the same as in the asymptotically flat case,
because for xH " π/2 the influence of the AdS bound-
ary is negligible. At criticality the Λ term becomes com-
pletely irrelevant, hence the solution with amplitude ε0

asymptotes (locally, near the center) the discretely self-
similar critical solution discovered by Choptuik in the
corresponding model with Λ = 0 [9]. For amplitudes
slightly below ε0 the wave packet travels to infinity, re-
flects off the boundary, and collapses while approaching
the center. Lowering gradually the amplitude we find
the second critical value ε1 for which xH = 0. As ε keeps
decreasing, this scenario repeats again and again, that is
we obtain a decreasing sequence of critical amplitudes εn

for which the evolution, after making n reflections from
the AdS boundary, locally asymptotes Choptuik’s solu-
tion. Specifically, we verified that in each small right
neighborhood of εn the horizon radius scales according
to the power law xH(ε) ∼ (ε−εn)γ with γ $ 0.37. Fig. 1
shows that xH(ε) has the shape of the right continuous
sawtooth curve with finite jumps at each εn. Notice that
T (εn+1) − T (εn) ≈ π, where T (ε) denotes the time of
collapse. We stress that xH is the radius of the first ap-
parent horizon that forms on the t = const hypersurface;
eventually all the matter falls into the black hole and
the solution settles down to the Schwarzschild-AdS black
hole with mass equal to the initial mass M (cf. [10]). It
appears that limn→∞ εn = 0, indicating that there is no
threshold for black hole formation, however we did not
determine precise values of εn for n > 10 because the
computational cost of bisection increases rapidly with n
(since, in order to resolve the collapse, solutions have to
be evolved for longer times on finer grids ).

Let us mention that the analogous problem in 2+1 di-
mensions was studied previously by Pretorius and Chop-
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FIG. 1: Horizon radius vs amplitude for initial data (9). The
number of reflections off the AdS boundary before collapse
varies from zero to nine (from right to left).

tuik [11] who emphasized the challenges inherent in nu-
merical simulations of AdS dynamics, however their anal-
ysis was primarily focused on the threshold for black
hole formation before any reflection off the AdS boundary
takes place (as for our data with amplitude ε0).

In the following we consider the development of gen-
eral (gaussian and other) small initial data, focusing at-
tention on early and intermediate pre-collapse phases of
evolution. We found that the Ricci scalar at the center,
R(t, 0) = −2Π2(t, 0)/%2−12/%2, can serve as a good indi-
cator for the onset of instability. This quantity oscillates
with frequency ≈ 2 (as it takes time ≈ π for the wave
packet to make the round trip from and back to the cen-
ter). An upper envelope of these oscillations is shown in
Fig. 2a, where several clearly pronounced phases of evolu-
tion can be distinguished. During the first phase the am-
plitude remains approximately constant but after some
time there begins a second phase of (roughly) exponen-
tial growth, followed by subsequent phases of steeper and
steeper growth, until finally the solution collapses. We
find that the time of onset of the second phase scales as
ε−2 (see Fig. 2b), which means that arbitrarily small per-
turbations eventually start growing. Note that this be-
havior is morally tantamount to instability of AdS space,
regardless of what happens later, in particular whether
the solution will collapse or not. In the remainder of this
Letter we sketch a preliminary attempt to explain the
mechanism of this instability in the framework of weakly
nonlinear perturbation theory.

Weakly nonlinear perturbations. We seek an approximate
solution of the system (4-6) with initial data (φ, φ̇)|t=0 =
(εf(x), εg(x)) in the form

φ =

∞∑

j=0

φ2j+1ε
2j+1, A = 1 −

∞∑

j=1

A2jε
2j , δ =

∞∑

j=1

δ2jε
2j ,

(10)
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Conjecture:

The endpoint of this instability is a rotating black hole.

Spherical scalar field collapse in
AdS - Bizon and Rostworowski,
’11.

No matter how small you make
the initial amplitude, the
curvature at the origin grows and
you eventually form a small black
hole.

2

Numerical results. We solved the system (4-6) numeri-
cally using a fourth-order accurate finite-difference code.
We used the method of lines and a 4th-order Runge-
Kutta scheme to integrate the wave equation (4) in time,
where at each step the metric functions were updated
by solving the hamiltonian constraint (5) and the slicing
condition (6). Preservation of the momentum constraint
Ȧ + 2 sinx cosxA2e−δΦ Π = 0 was monitored to check
the accuracy of the code.

Solutions shown in Figs. 1 and 2 were generated from
Gaussian-type initial data of the form

Φ(0, x) = 0 , Π(0, x) =
2ε

π
exp

(
−4 tan2x

π2σ2

)
, (9)

with fixed width σ = 1/16 and varying amplitude ε. For
such data the scalar field is well localized in space and
propagates in time as a narrow wave packet. For large
amplitudes the wave packet quickly collapses, which is
signalled by the formation of an apparent horizon at a
point xH where A(t, x) drops to zero. As the amplitude
is decreased, the horizon radius xH decreases as well and
goes to zero for some critical amplitude ε0. This behavior
is basically the same as in the asymptotically flat case,
because for xH " π/2 the influence of the AdS bound-
ary is negligible. At criticality the Λ term becomes com-
pletely irrelevant, hence the solution with amplitude ε0

asymptotes (locally, near the center) the discretely self-
similar critical solution discovered by Choptuik in the
corresponding model with Λ = 0 [9]. For amplitudes
slightly below ε0 the wave packet travels to infinity, re-
flects off the boundary, and collapses while approaching
the center. Lowering gradually the amplitude we find
the second critical value ε1 for which xH = 0. As ε keeps
decreasing, this scenario repeats again and again, that is
we obtain a decreasing sequence of critical amplitudes εn

for which the evolution, after making n reflections from
the AdS boundary, locally asymptotes Choptuik’s solu-
tion. Specifically, we verified that in each small right
neighborhood of εn the horizon radius scales according
to the power law xH(ε) ∼ (ε−εn)γ with γ $ 0.37. Fig. 1
shows that xH(ε) has the shape of the right continuous
sawtooth curve with finite jumps at each εn. Notice that
T (εn+1) − T (εn) ≈ π, where T (ε) denotes the time of
collapse. We stress that xH is the radius of the first ap-
parent horizon that forms on the t = const hypersurface;
eventually all the matter falls into the black hole and
the solution settles down to the Schwarzschild-AdS black
hole with mass equal to the initial mass M (cf. [10]). It
appears that limn→∞ εn = 0, indicating that there is no
threshold for black hole formation, however we did not
determine precise values of εn for n > 10 because the
computational cost of bisection increases rapidly with n
(since, in order to resolve the collapse, solutions have to
be evolved for longer times on finer grids ).

Let us mention that the analogous problem in 2+1 di-
mensions was studied previously by Pretorius and Chop-
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FIG. 1: Horizon radius vs amplitude for initial data (9). The
number of reflections off the AdS boundary before collapse
varies from zero to nine (from right to left).

tuik [11] who emphasized the challenges inherent in nu-
merical simulations of AdS dynamics, however their anal-
ysis was primarily focused on the threshold for black
hole formation before any reflection off the AdS boundary
takes place (as for our data with amplitude ε0).

In the following we consider the development of gen-
eral (gaussian and other) small initial data, focusing at-
tention on early and intermediate pre-collapse phases of
evolution. We found that the Ricci scalar at the center,
R(t, 0) = −2Π2(t, 0)/%2−12/%2, can serve as a good indi-
cator for the onset of instability. This quantity oscillates
with frequency ≈ 2 (as it takes time ≈ π for the wave
packet to make the round trip from and back to the cen-
ter). An upper envelope of these oscillations is shown in
Fig. 2a, where several clearly pronounced phases of evolu-
tion can be distinguished. During the first phase the am-
plitude remains approximately constant but after some
time there begins a second phase of (roughly) exponen-
tial growth, followed by subsequent phases of steeper and
steeper growth, until finally the solution collapses. We
find that the time of onset of the second phase scales as
ε−2 (see Fig. 2b), which means that arbitrarily small per-
turbations eventually start growing. Note that this be-
havior is morally tantamount to instability of AdS space,
regardless of what happens later, in particular whether
the solution will collapse or not. In the remainder of this
Letter we sketch a preliminary attempt to explain the
mechanism of this instability in the framework of weakly
nonlinear perturbation theory.

Weakly nonlinear perturbations. We seek an approximate
solution of the system (4-6) with initial data (φ, φ̇)|t=0 =
(εf(x), εg(x)) in the form

φ =

∞∑

j=0

φ2j+1ε
2j+1, A = 1 −
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find that the time of onset of the second phase scales as
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Numerical results. We solved the system (4-6) numeri-
cally using a fourth-order accurate finite-difference code.
We used the method of lines and a 4th-order Runge-
Kutta scheme to integrate the wave equation (4) in time,
where at each step the metric functions were updated
by solving the hamiltonian constraint (5) and the slicing
condition (6). Preservation of the momentum constraint
Ȧ + 2 sinx cosxA2e−δΦ Π = 0 was monitored to check
the accuracy of the code.

Solutions shown in Figs. 1 and 2 were generated from
Gaussian-type initial data of the form

Φ(0, x) = 0 , Π(0, x) =
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exp
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)
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with fixed width σ = 1/16 and varying amplitude ε. For
such data the scalar field is well localized in space and
propagates in time as a narrow wave packet. For large
amplitudes the wave packet quickly collapses, which is
signalled by the formation of an apparent horizon at a
point xH where A(t, x) drops to zero. As the amplitude
is decreased, the horizon radius xH decreases as well and
goes to zero for some critical amplitude ε0. This behavior
is basically the same as in the asymptotically flat case,
because for xH " π/2 the influence of the AdS bound-
ary is negligible. At criticality the Λ term becomes com-
pletely irrelevant, hence the solution with amplitude ε0

asymptotes (locally, near the center) the discretely self-
similar critical solution discovered by Choptuik in the
corresponding model with Λ = 0 [9]. For amplitudes
slightly below ε0 the wave packet travels to infinity, re-
flects off the boundary, and collapses while approaching
the center. Lowering gradually the amplitude we find
the second critical value ε1 for which xH = 0. As ε keeps
decreasing, this scenario repeats again and again, that is
we obtain a decreasing sequence of critical amplitudes εn

for which the evolution, after making n reflections from
the AdS boundary, locally asymptotes Choptuik’s solu-
tion. Specifically, we verified that in each small right
neighborhood of εn the horizon radius scales according
to the power law xH(ε) ∼ (ε−εn)γ with γ $ 0.37. Fig. 1
shows that xH(ε) has the shape of the right continuous
sawtooth curve with finite jumps at each εn. Notice that
T (εn+1) − T (εn) ≈ π, where T (ε) denotes the time of
collapse. We stress that xH is the radius of the first ap-
parent horizon that forms on the t = const hypersurface;
eventually all the matter falls into the black hole and
the solution settles down to the Schwarzschild-AdS black
hole with mass equal to the initial mass M (cf. [10]). It
appears that limn→∞ εn = 0, indicating that there is no
threshold for black hole formation, however we did not
determine precise values of εn for n > 10 because the
computational cost of bisection increases rapidly with n
(since, in order to resolve the collapse, solutions have to
be evolved for longer times on finer grids ).

Let us mention that the analogous problem in 2+1 di-
mensions was studied previously by Pretorius and Chop-
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tuik [11] who emphasized the challenges inherent in nu-
merical simulations of AdS dynamics, however their anal-
ysis was primarily focused on the threshold for black
hole formation before any reflection off the AdS boundary
takes place (as for our data with amplitude ε0).

In the following we consider the development of gen-
eral (gaussian and other) small initial data, focusing at-
tention on early and intermediate pre-collapse phases of
evolution. We found that the Ricci scalar at the center,
R(t, 0) = −2Π2(t, 0)/%2−12/%2, can serve as a good indi-
cator for the onset of instability. This quantity oscillates
with frequency ≈ 2 (as it takes time ≈ π for the wave
packet to make the round trip from and back to the cen-
ter). An upper envelope of these oscillations is shown in
Fig. 2a, where several clearly pronounced phases of evolu-
tion can be distinguished. During the first phase the am-
plitude remains approximately constant but after some
time there begins a second phase of (roughly) exponen-
tial growth, followed by subsequent phases of steeper and
steeper growth, until finally the solution collapses. We
find that the time of onset of the second phase scales as
ε−2 (see Fig. 2b), which means that arbitrarily small per-
turbations eventually start growing. Note that this be-
havior is morally tantamount to instability of AdS space,
regardless of what happens later, in particular whether
the solution will collapse or not. In the remainder of this
Letter we sketch a preliminary attempt to explain the
mechanism of this instability in the framework of weakly
nonlinear perturbation theory.

Weakly nonlinear perturbations. We seek an approximate
solution of the system (4-6) with initial data (φ, φ̇)|t=0 =
(εf(x), εg(x)) in the form
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Numerical results. We solved the system (4-6) numeri-
cally using a fourth-order accurate finite-difference code.
We used the method of lines and a 4th-order Runge-
Kutta scheme to integrate the wave equation (4) in time,
where at each step the metric functions were updated
by solving the hamiltonian constraint (5) and the slicing
condition (6). Preservation of the momentum constraint
Ȧ + 2 sinx cosxA2e−δΦ Π = 0 was monitored to check
the accuracy of the code.
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with fixed width σ = 1/16 and varying amplitude ε. For
such data the scalar field is well localized in space and
propagates in time as a narrow wave packet. For large
amplitudes the wave packet quickly collapses, which is
signalled by the formation of an apparent horizon at a
point xH where A(t, x) drops to zero. As the amplitude
is decreased, the horizon radius xH decreases as well and
goes to zero for some critical amplitude ε0. This behavior
is basically the same as in the asymptotically flat case,
because for xH " π/2 the influence of the AdS bound-
ary is negligible. At criticality the Λ term becomes com-
pletely irrelevant, hence the solution with amplitude ε0

asymptotes (locally, near the center) the discretely self-
similar critical solution discovered by Choptuik in the
corresponding model with Λ = 0 [9]. For amplitudes
slightly below ε0 the wave packet travels to infinity, re-
flects off the boundary, and collapses while approaching
the center. Lowering gradually the amplitude we find
the second critical value ε1 for which xH = 0. As ε keeps
decreasing, this scenario repeats again and again, that is
we obtain a decreasing sequence of critical amplitudes εn

for which the evolution, after making n reflections from
the AdS boundary, locally asymptotes Choptuik’s solu-
tion. Specifically, we verified that in each small right
neighborhood of εn the horizon radius scales according
to the power law xH(ε) ∼ (ε−εn)γ with γ $ 0.37. Fig. 1
shows that xH(ε) has the shape of the right continuous
sawtooth curve with finite jumps at each εn. Notice that
T (εn+1) − T (εn) ≈ π, where T (ε) denotes the time of
collapse. We stress that xH is the radius of the first ap-
parent horizon that forms on the t = const hypersurface;
eventually all the matter falls into the black hole and
the solution settles down to the Schwarzschild-AdS black
hole with mass equal to the initial mass M (cf. [10]). It
appears that limn→∞ εn = 0, indicating that there is no
threshold for black hole formation, however we did not
determine precise values of εn for n > 10 because the
computational cost of bisection increases rapidly with n
(since, in order to resolve the collapse, solutions have to
be evolved for longer times on finer grids ).

Let us mention that the analogous problem in 2+1 di-
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tuik [11] who emphasized the challenges inherent in nu-
merical simulations of AdS dynamics, however their anal-
ysis was primarily focused on the threshold for black
hole formation before any reflection off the AdS boundary
takes place (as for our data with amplitude ε0).

In the following we consider the development of gen-
eral (gaussian and other) small initial data, focusing at-
tention on early and intermediate pre-collapse phases of
evolution. We found that the Ricci scalar at the center,
R(t, 0) = −2Π2(t, 0)/%2−12/%2, can serve as a good indi-
cator for the onset of instability. This quantity oscillates
with frequency ≈ 2 (as it takes time ≈ π for the wave
packet to make the round trip from and back to the cen-
ter). An upper envelope of these oscillations is shown in
Fig. 2a, where several clearly pronounced phases of evolu-
tion can be distinguished. During the first phase the am-
plitude remains approximately constant but after some
time there begins a second phase of (roughly) exponen-
tial growth, followed by subsequent phases of steeper and
steeper growth, until finally the solution collapses. We
find that the time of onset of the second phase scales as
ε−2 (see Fig. 2b), which means that arbitrarily small per-
turbations eventually start growing. Note that this be-
havior is morally tantamount to instability of AdS space,
regardless of what happens later, in particular whether
the solution will collapse or not. In the remainder of this
Letter we sketch a preliminary attempt to explain the
mechanism of this instability in the framework of weakly
nonlinear perturbation theory.

Weakly nonlinear perturbations. We seek an approximate
solution of the system (4-6) with initial data (φ, φ̇)|t=0 =
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Gravitational turbulent instability of AdS

Field theory implications

Field theory implications - 1/2:

The fact that one evolves to a state of maximum entropy can be viewed
as thermalization - not in the canonical ensemble, but in the
microcanonical.

All theories with a gravity dual will show this cascade of energy like the
onset of turbulence.

Puzzle:

In 2+1 dimensions, classical turbulence has an inverse energy cascade due
to an extra conserved quantity - the enstrophy. Our results indicate that
in a strongly coupled quantum theory, there is a standard energy cascade.

Solution: This intuition comes from solving the Navier Stokes equations
in 2+1 dimensions: quantum turbulence is different.
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Gravitational turbulent instability of AdS

Field theory implications

Field theory implications - 2/2:

Perhaps more intriguing, from the CFT perspective, is the existence
of Geons.

At the linear level, these are spin 2 excitation.
A nonlinear geon is like a bose condensate of these excitations.

These high energy states do NOT thermalize!!

The boundary stress-tensor contains regions of negative and positive
energy density around the equator:

It is invariant under

K =
∂

∂t
+
ω

m

∂

∂φ
,

which is timelike near the poles
but spacelike near the equator.
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Conclusions:

Anti-de Sitter spacetime is nonlinearly unstable: generic small
perturbations become large and (probably) form black holes.

For some linearized gravity mode, there is an exact, nonsingular
geon.

Dual field theory shows generic turbulent cascade to maximum
entropy state but there are special states (geons) that do not
thermalize

Open questions:

Prove a singularity theorem for anti-de Sitter.

Understand the space of CFT states that do not thermalize.

Find the endpoint (if any) of time evolution of the anti-de Sitter
turbulent instability!
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