# The Resurgent Bootstrap and the 3D Ising Model 

Sheer El-Showk<br>CEA Saclay

Based on arXiv:1203.6064 with<br>M. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin, A. Vichi

April 17, 2012
KITP

## Motivation

## Why return to the bootstrap?

- Conformal symmetry very powerful tool that goes largely unused in $D>2$.
- Completely non-perturbative tool to study field theories
(1) Does not require SUSY, large $N$, or weak coupling.
- Map out "landscape of CFTs"
(1) Constraints on spectrum and interactions with few or no assumptions.
(2) Possibly classify CFTs as in $\mathrm{D}=2$ ?
- Universality
(1) Fixed points universal $\Rightarrow$ isolate them with minimal input.
- The Three-dimensional Ising Model.
- 4D phenomenology applications to (walking) technicolor [Rattazzi et al].
- Constructive Holography: deriving AdS from CFT.
[Heemskerk et al, Fitzpatrick et al, SE and Papadodimas]
- M5-theory? $(0,2)$ SCFT in 6D.


## Motivation

## Why return to the bootstrap?

- Conformal symmetry very powerful tool that goes largely unused in $D>2$.
- Completely non-perturbative tool to study field theories
(1) Does not require SUSY, large $N$, or weak coupling.
- Map out "landscape of CFTs"
(1) Constraints on spectrum and interactions with few or no assumptions.
(2) Possibly classify CFTs as in $\mathrm{D}=2$ ?
- Universality
(1) Fixed points universal $\Rightarrow$ isolate them with minimal input.


## Applications

- The Three-dimensional Ising Model.
- 4D phenomenology applications to (walking) technicolor [Rattazzi et al].
- Constructive Holography: deriving AdS from CFT.
- M5-theory? $(0,2)$ SCFT in 6D.


## Motivation

## Why return to the bootstrap?

- Conformal symmetry very powerful tool that goes largely unused in $D>2$.
- Completely non-perturbative tool to study field theories
(1) Does not require SUSY, large $N$, or weak coupling.
- Map out "landscape of CFTs"
(1) Constraints on spectrum and interactions with few or no assumptions.
(2) Possibly classify CFTs as in $\mathrm{D}=2$ ?
- Universality
(1) Fixed points universal $\Rightarrow$ isolate them with minimal input.


## Applications

- The Three-dimensional Ising Model.
- 4D phenomenology applications to (walking) technicolor [Rattazzi et al].
- Constructive Holography: deriving AdS from CFT.
[Heemskerk et al, Fitzpatrick et al, SE and Papadodimas]
- M5-theory? $(0,2)$ SCFT in 6D.


## Outline

## Outline

- Motivation
- Lightning Ising model refresher.
- CFT Review
- Correlators from OPE
- Crossing Symmetry
- Conformal Blocks
- The Bootstrap: solving theories by consistency alone
- Expanding the bootstrap around $z=\bar{z}=1 / 2$.
- Why does this work?
- Linear Programming
- The 3D Ising Model
- Constraints from $\langle\sigma \sigma \sigma \sigma\rangle$ correlator
- The landscape of 3D CFTs
- Other Applications

What exactly is the Ising model?

## The Ising Model

Original Formulation

## Basic Definition

- Lattice theory with nearest neighbor interactions

$$
H=-J \sum_{<i, j>} s_{i} s_{j}
$$

with $s_{i}= \pm 1$ (this is $O(N)$ model with $N=1$ ).

## Relevance

- Historical: 2d Ising model solved exactly. [Onsager, 1944].
- Relation to $\epsilon$-expansion.
- "Simplest" CFT (universality class)
(1) Only $\mathbb{Z}_{2}$ symmetry
(2) Not multi-critical: only one relevant operator.
- Describes:
(1) Ferromagnetism
(2) Liquid-vapour transition
(B) ...


## The Ising Model

A Field Theorist's Perspective

## Continuum Limit

- To study fixed point can take continuum limit (and $\sigma(x) \in \mathbb{R}$ )

$$
H=\int d^{D} x\left[(\nabla \sigma(x))^{2}+t \sigma(x)^{2}+a \sigma(x)^{4}\right]
$$

- Interaction generated by Guassian " $\mathbb{Z}_{2}$ " constraint: $\left(\sigma(x)^{2}-1\right)^{2}$.
- In $D<4$ coefficient $a$ is relevant and theory flows to a fixed point.


## $\epsilon$-expansion

Wilson-Fisher set $D=4-\epsilon$ and study critical point perturbatively.
3d Ising model: take $\epsilon=1$ expect CFT with:

| Field: | $\sigma$ | $\epsilon$ | $\epsilon^{\prime}$ | $T_{\mu \nu}$ | $C_{\mu \nu \rho \lambda}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Dim $(\Delta):$ | $0.5182(3)$ | $1.413(1)$ | $3.84(4)$ | 3 | $5.0208(12)$ |
| Spin (l): | 0 | 0 | 0 | 2 | 4 |
| $\mathbb{Z}_{2}:$ | - | + | + | + | + |

## CFT Refresher

## Conformal Symmetry in $D>2$

## Primary Operators

Conformal symmetry:

$$
\underbrace{S O(1, D-1) \times \mathbb{R}^{1, D-1}}_{\text {Poincare }}+D \quad(\text { Dilatations })+K_{\mu} \quad(\text { Special conformal })
$$

Representations built on:

$$
\begin{array}{rc}
\text { Primary operators: } & K_{\mu} \mathcal{O}(0)=0 \\
\text { Descendents: } & P_{\mu_{1}} \ldots P_{\mu_{n}} \mathcal{O}(0)
\end{array}
$$

All dynamics of descendants fixed by those of primaries.

## Clarifications vs 2D

- Primaries $\mathcal{O}$ called quasi-primaries in $D=2$.
- Descendents are with respect to "small" conformal group: $L_{0}, L_{ \pm 1}$.
- Viraso descendents $L_{-2} \mathcal{O}$ are primaries in our language.
- In this talk we always mean small conformal group (i.e. for descendants, conformal blocks, primaries, ...).


## On the uses of Conformal Symmetry

## Definition

- Abstract CFT defined by:
- OPE coefficients $C_{i j k}$.
- Conformal dim, spin of primary operators $\left(\Delta_{i}, l_{i}\right)$.
- This data formally defines CFT non-perturbatively.
- Unlike general QFT this formulation is well-defined and convergent.
- Unfortunately until recently has not been a practical definition (in $D>2$ ).


## Simple constraints:

- Conformal invariance imposes constraints on the above data.
- Unitarity bound on dimensions:

$$
L=0: \quad \Delta \geq \frac{D-2}{2}, \quad L>0: \quad \Delta \geq L+D-2
$$

- Two-point functions fixed up to normalization.
- Three point function $\left\langle\mathcal{O}_{i} \mathcal{O}_{j} \mathcal{O}_{k}\right\rangle \sim C_{i j k}$


## Spectrum and OPE

## CFT Background

CFT defined by specifying:

- Spectrum $\mathcal{S}=\left\{\mathcal{O}_{i}\right\}$ of primary operators dimensions, spins: $\left(\Delta_{i}, l_{i}\right)$
- Operator Product Expansion (OPE)

$$
\mathcal{O}_{i}(x) \cdot \mathcal{O}_{j}(0) \sim \sum_{k} C_{i j}^{k} D\left(x, \partial_{x}\right) \mathcal{O}_{k}(0)
$$

$\mathcal{O}_{i}$ are primaries. Diff operator $D\left(x, \partial_{x}\right)$ encodes descendent contributions. Higher point functions contain no new dynamical information!

- Can be reconstructed from above data:

$$
\langle\underbrace{\sum_{k} \underbrace{\mathcal{O}_{1}\left(x_{1}\right) \mathcal{O}_{2}\left(x_{2}\right)}_{12} \underbrace{\mathcal{O}_{3}\left(x_{3}\right) \mathcal{O}_{4}\left(x_{4}\right)}_{\left.x_{12}, \partial_{x_{2}}\right) \mathcal{O}_{k}\left(x_{2}\right) \sum_{l} C_{34}^{l} D\left(x_{34}, \partial_{x_{4}}\right)\left(x_{3}\right) \mathcal{O}_{l}\left(x_{4}\right)}\rangle}_{\sum_{k, l} C_{12}^{k} C_{34}^{l} D\left(x_{12}, x_{34}, \partial_{x_{2}}, \partial_{x_{4}}\right)\left\langle\mathcal{O}_{k}\left(x_{2}\right) \mathcal{O}_{l}\left(x_{4}\right)\right\rangle}
$$

- Operators $D\left(x, \partial_{x}\right)$ fixed kinematically: no dynamical info.
- OPE coefficients $C_{i j}^{k}$ are constants: encode full dynamics.


## Crossing Symmettry

## CFT Background

This procedure is not unique:


Consistency requires equivalence of two different contractions

$$
\sum_{k} C_{12}^{k} C_{34}^{k} G_{\Delta_{k}, l_{k}}^{12 ; 34}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\sum_{k} C_{14}^{k} C_{23}^{k} G_{\Delta_{k}, l_{k}}^{14 ; 23}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)
$$

Functions $G_{\Delta_{k}, l_{k}}^{a b ; c}$ are conformal blocks (of "small" conformal group):

- Encode contribution of operator $\mathcal{O}_{k}$ to double OPE contraction.
- Entirely kinematical: all dynamical information is in $C_{i j}^{k}$.
- Crossing sym. give non-perturbative constraints on $\left(\Delta_{k}, C_{i j}^{k}\right)$.

Conformal Blocks in all their Glory

## Conformal Blocks in $D=2,4$

## CFT Background

CBs eigenfunctions of quadratic and quartic conformal casismirs:

$$
\square^{(2)} G_{\Delta, l}=\lambda_{\Delta, l}^{(2)} G_{\Delta, l} \quad \square^{(4)} G_{\Delta, l}=\lambda_{\Delta, l}^{(4)} G_{\Delta, l}
$$

In $D=2,4$ Dolan-Osborn have computed conformal blocks, e.g. $D=4$ :

$$
G_{\Delta, l}^{12 ; 34}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\frac{1}{l+1} \frac{z \bar{z}}{(z-\bar{z})}\left[k_{\Delta+l}(z) k_{\Delta-l}(\bar{z})-(z \leftrightarrow \bar{z})\right]
$$

with

$$
k_{\beta}(z)=z^{\beta / 2}{ }_{2} F_{1}\left(\frac{\beta-\Delta_{12}}{2}, \frac{\beta+\Delta_{34}}{2}, \beta, z\right)
$$

with $\Delta_{i j}=\Delta_{i}-\Delta_{j}$ and $u, v$ conformal cross-ratios

$$
u=\frac{x_{12} x_{34}}{x_{13} x_{24}}, \quad v=\frac{x_{14} x_{23}}{x_{13} x_{24}}
$$

and $u=z \bar{z}$ and $v=(1-z)(1-\bar{z})$.

## Conformal Blocks in $z, \bar{z}$ coords

## CFT Background

- Via conformal transform can map $x_{1}, x_{2}, x_{3}, x_{4}$ to a plane.
- $(z, \bar{z})$ then complex coords on this plane.



## Conformal Blocks in General Dimension (near $z=\bar{z}$ )

## CFT Background

- In general $D$ no compact expression but double-infinte sum.
- At $z=\bar{z}$ sum simplifies so we work in a neighborhood of $z=\bar{z}$.

CBs at $z=\bar{z}$

- $l=0,1$ blocks exact expression in terms of ${ }_{3} F_{2}$ hypergeometrics.
- Recursion relations for higher spin (at $z \neq \bar{z}$ involve higher derivatives).
- ${ }_{3} F_{2}$ satisfies cubic equation.
- Combine with casimir eans to get derivative recursion relations.
- Take
and expand around $(a, b)=(1,0)$


## Conformal Blocks in General Dimension (near $z=\bar{z}$ )

## CFT Background

- In general $D$ no compact expression but double-infinte sum.
- At $z=\bar{z}$ sum simplifies so we work in a neighborhood of $z=\bar{z}$.

CBs at $z=\bar{z}$

- $l=0,1$ blocks exact expression in terms of ${ }_{3} F_{2}$ hypergeometrics.
- Recursion relations for higher spin (at $z \neq \bar{z}$ involve higher derivatives).


## Derivative Recursion Relations

- ${ }_{3} F_{2}$ satisfies cubic equation.
- Combine with casimir eqns to get derivative recursion relations.
- Take

$$
z=\frac{a+\sqrt{b}}{2}, \quad \bar{z}=\frac{a-\sqrt{b}}{2}
$$

and expand around $(a, b)=(1,0)$.
Can now compute CBs in arbitrary dim expanded around $z=\bar{z}!$

## Imposing Crossing Symmetry

## Crossing Symmetry Nuts and Bolts

## Bootstrap

So how do we enforce crossing symmetry in practice?
Consider four identical scalars: $\quad\left\langle\phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right) \phi\left(x_{4}\right)\right\rangle \quad \operatorname{dim}(\phi)=\Delta_{\phi}$
Crossing symmetry:

$$
\sum_{k}\left(C_{\phi \phi}^{k}\right)^{2} G_{\Delta_{k}, l_{k}}^{12 ; 34}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\sum_{k}\left(C_{\phi \phi}^{k}\right)^{2} G_{\Delta_{k}, l_{k}}^{14 ; 23}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)
$$



## Crossing Symmetry Nuts and Bolts

## Bootstrap

So how do we enforce crossing symmetry in practice?
Consider four identical scalars: $\quad\left\langle\phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right) \phi\left(x_{4}\right)\right\rangle \quad \operatorname{dim}(\phi)=\Delta_{\phi}$
Move everything to LHS:

$$
\sum_{k}\left(C_{\phi \phi}^{k}\right)^{2} G_{\Delta_{k}, l_{k}}^{12 ; 34}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)-\sum_{k}\left(C_{\phi \phi}^{k}\right)^{2} G_{\Delta_{k}, l_{k}}^{14 ; 23}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=0
$$



## Crossing Symmetry Nuts and Bolts

## Bootstrap

So how do we enforce crossing symmetry in practice?
Consider four identical scalars: $\quad\left\langle\phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right) \phi\left(x_{4}\right)\right\rangle \quad \operatorname{dim}(\phi)=\Delta_{\phi}$
Express as sum with positive coefficients:

$$
g(z, \bar{z})=\sum_{k}\left(C_{\phi \phi}^{k}\right)^{2}\left[G_{\Delta_{k}, l_{k}}^{12 ; 34}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)-G_{\Delta_{k}, l_{k}}^{14 ; 23}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right]=0
$$



## Crossing Symmetry Nuts and Bolts

## Bootstrap

So how do we enforce crossing symmetry in practice?
Consider four identical scalars: $\quad\left\langle\phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right) \phi\left(x_{4}\right)\right\rangle \quad \operatorname{dim}(\phi)=\Delta_{\phi}$
$\mathcal{F}_{\Delta_{k}, l_{k}}^{\phi}(z, z)$ are combined s-t channel CBs:

$$
\begin{gathered}
g(z, \bar{z})=\sum_{k} \underbrace{\left(C_{\phi \phi}^{k}\right)^{2}}_{p_{\Delta_{k}, l_{k}}} \underbrace{\left[u^{\Delta_{\phi}} G_{\Delta, l}(u, v)-v^{\Delta_{\phi}} G_{\Delta, l}(v, u)\right]}_{\mathcal{F}_{\Delta_{k}, l_{k}}(z, \bar{z})}=0 \\
\sum_{k} \underbrace{4}_{2}=\sum_{k}
\end{gathered}
$$

Combined blocks $\mathcal{F}_{\Delta_{k}, l_{k}}^{\phi}(z, z)$ depend on:

- External scalar dimension: $\Delta_{\phi}$.
- Exchanged operators spin, dimension: $l_{k}, \Delta_{k}$.
- Coordinates $z, \bar{z}$ in entirely kinematical way.


## Crossing Symmetry Nuts and Bolts

## Bootstrap

So how do we enforce crossing symmetry in practice?
Consider four identical scalars: $\quad\left\langle\phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right) \phi\left(x_{4}\right)\right\rangle \quad \operatorname{dim}(\phi)=\Delta_{\phi}$

$$
g(z, \bar{z})=\sum_{k} \underbrace{\left(C_{\phi \phi}^{k}\right)^{2}}_{p_{\Delta_{k}, l_{k}}} \underbrace{\left[u^{\Delta_{\phi}} G_{\Delta, l}(u, v)-v^{\Delta_{\phi}} G_{\Delta, l}(v, u)\right]}_{\mathcal{F}_{\Delta_{k}, l_{k}}(z, \bar{z})}=0
$$

(1) Expand in derivatives around $z=\bar{z}=1 / 2$

$$
\begin{aligned}
g(1 / 2,1 / 2) & =0, & & \partial_{z}^{2} g(1 / 2,1 / 2)=0 \\
\partial_{\bar{z}}^{2} g(1 / 2,1 / 2) & =0, & & \cdots
\end{aligned}
$$

(O) If can find any constant vector $\Lambda=\left(\lambda_{2,0}, \lambda_{0,2}, \lambda_{2,2}, \lambda_{4,0}, \ldots\right)$ such that
then crossing symmetry has no solutions
3) Can reformulate in terms of vectors (derivatives at $z=\bar{z}=1 / 2$ ):

## Crossing Symmetry Nuts and Bolts

## Bootstrap

So how do we enforce crossing symmetry in practice?
Consider four identical scalars: $\quad\left\langle\phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right) \phi\left(x_{4}\right)\right\rangle \quad \operatorname{dim}(\phi)=\Delta_{\phi}$

$$
g(z, \bar{z})=\sum_{k} \underbrace{\left(C_{\phi \phi \phi}^{k}\right)^{2}}_{p_{\Delta_{k}, l_{k}}} \underbrace{\left[u^{\Delta_{\phi}} G_{\Delta, l}(u, v)-v^{\Delta_{\phi}} G_{\Delta, l}(v, u)\right]}_{\mathcal{F}_{\Delta_{k}, l_{k}}(z, \bar{z})}=0
$$

(1) Expand in derivatives around $z=\bar{z}=1 / 2$

$$
\begin{aligned}
g(1 / 2,1 / 2) & =0, & & \partial_{z}^{2} g(1 / 2,1 / 2)=0 \\
\partial_{\bar{z}}^{2} g(1 / 2,1 / 2) & =0, & & \cdots
\end{aligned}
$$

(2) If can find any constant vector $\Lambda=\left(\lambda_{2,0}, \lambda_{0,2}, \lambda_{2,2}, \lambda_{4,0}, \ldots\right)$ such that

$$
\left.\lambda_{m, n} \partial_{z}^{m} \partial_{\bar{z}}^{n} g(z, \bar{z})\right|_{z=\bar{z}=1 / 2}>0
$$

then crossing symmetry has no solutions.

If $\left\{\vec{f}_{\Delta, l}\right\}$ form a cone cannot solve crossing symmetry!

## Crossing Symmetry Nuts and Bolts

## Bootstrap

So how do we enforce crossing symmetry in practice?
Consider four identical scalars: $\quad\left\langle\phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right) \phi\left(x_{4}\right)\right\rangle \quad \operatorname{dim}(\phi)=\Delta_{\phi}$

$$
g(z, \bar{z})=\sum_{k} \underbrace{\left(C_{\phi \phi}^{k}\right)^{2}}_{p_{\Delta_{k}, l_{k}}} \underbrace{\left[u^{\Delta_{\phi}} G_{\Delta, l}(u, v)-v^{\Delta_{\phi}} G_{\Delta, l}(v, u)\right]}_{\mathcal{F}_{\Delta_{k}, l_{k}}(z, \bar{z})}=0
$$

(1) Expand in derivatives around $z=\bar{z}=1 / 2$

$$
\begin{aligned}
g(1 / 2,1 / 2) & =0, & & \partial_{z}^{2} g(1 / 2,1 / 2)=0 \\
\partial_{\bar{z}}^{2} g(1 / 2,1 / 2) & =0, & & \cdots
\end{aligned}
$$

(2) If can find any constant vector $\Lambda=\left(\lambda_{2,0}, \lambda_{0,2}, \lambda_{2,2}, \lambda_{4,0}, \ldots\right)$ such that

$$
\left.\lambda_{m, n} \partial_{z}^{m} \partial_{\bar{z}}^{n} g(z, \bar{z})\right|_{z=\bar{z}=1 / 2}>0
$$

then crossing symmetry has no solutions.
(3) Can reformulate in terms of vectors (derivatives at $z=\bar{z}=1 / 2$ ):

$$
\vec{f}_{\Delta, l}=\left(\mathcal{F}_{\Delta, l}^{(0,0)}, \mathcal{F}_{\Delta, l}^{(1,0)}, \mathcal{F}_{\Delta, l}^{(0,1)}, \ldots\right)
$$

If $\left\{\vec{f}_{\Delta, l}\right\}$ form a cone cannot solve crossing symmetry!

## Cones in Derivative Space



Why does this work?

- Consider $\langle\phi \phi \phi \phi\rangle$ with $\Delta(\phi)=0.515$.
- Project $\vec{f}_{\Delta, l}$ to plane:

$$
\left(\partial_{a}^{1} \partial_{b}^{1} \mathcal{F}_{\Delta, l}, \partial_{a}^{3} \mathcal{F}_{\Delta, l}\right)
$$

- Plot

$$
\begin{aligned}
\Delta & =\Delta_{\text {unitarity }} \text { to } \Delta_{\text {unitarity }}+\epsilon \\
l & =0 \text { to } 10
\end{aligned}
$$

- $\epsilon$ parametrized range of $\Delta$ we consider.
- Take $\epsilon=0$ so CBs at unitarity bound.
$\Rightarrow$ vectors in "cone"
$\Rightarrow$ no crossing symmetry.


## Cones in Derivative Space



Why does this work?

- Consider $\langle\phi \phi \phi \phi\rangle$ with $\Delta(\phi)=0.515$.
- Project $\vec{f}_{\Delta, l}$ to plane:

$$
\left(\partial_{a}^{1} \partial_{b}^{1} \mathcal{F}_{\Delta, l}, \partial_{a}^{3} \mathcal{F}_{\Delta, l}\right)
$$

- Plot

$$
\begin{aligned}
\Delta & =\Delta_{\text {unitarity }} \text { to } \Delta_{\text {unitarity }}+\epsilon \\
l & =0 \text { to } 10
\end{aligned}
$$

- $\epsilon$ parametrized range of $\Delta$ we consider.
- For $\epsilon$ small
$\Rightarrow$ vectors still in "cone"
$\Rightarrow$ no crossing symmetry.


## Cones in Derivative Space



## Why does this work?

- Consider $\langle\phi \phi \phi \phi\rangle$ with $\Delta(\phi)=0.515$.
- Project $\vec{f}_{\Delta, l}$ to plane:

$$
\left(\partial_{a}^{1} \partial_{b}^{1} \mathcal{F}_{\Delta, l}, \partial_{a}^{3} \mathcal{F}_{\Delta, l}\right)
$$

- Plot

$$
\begin{aligned}
\Delta & =\Delta_{\text {unitarity }} \text { to } \Delta_{\text {unitarity }}+\epsilon \\
l & =0 \text { to } 10
\end{aligned}
$$

- $\epsilon$ parametrized range of $\Delta$ we consider.
- For $\epsilon$ large enough
$\Rightarrow$ vectors span plane.
$\Rightarrow$ In particular can find $p_{\Delta, l}>0$

$$
\sum p_{\Delta, l} \vec{f}_{\Delta, l}=0
$$

$\Rightarrow$ crossing sym. can be satisfied!!

## Cones in Derivative Space

## Why does this work?

- Consider $\langle\phi \phi \phi \phi\rangle$ with $\Delta(\phi)=0.515$.
- Project $\vec{f}_{\Delta, l}$ to plane:

$$
\left(\partial_{a}^{1} \partial_{b}^{1} \mathcal{F}_{\Delta, l}, \partial_{a}^{3} \mathcal{F}_{\Delta, l}\right)
$$

- Plot

$$
\begin{aligned}
\Delta & =\Delta_{\text {unitarity }} \text { to } \Delta_{\text {unitarity }}+\epsilon \\
l & =0 \text { to } 10
\end{aligned}
$$

- $\epsilon$ parametrized range of $\Delta$ we consider.
- When $\epsilon$ big enough
$\Rightarrow$ vectors no longer in "cone"
$\Rightarrow$ crossing sym. can be satisfied.
$\Rightarrow$ Requires $0.76 \leq \Delta_{0} \leq 2.099$.


## Linear Programming

Putting Crossing Symmetry on a (big) Computer

- Plots visually intuitive but hard to work with.
- Want to systematically check crossing symmetry.


## Algorithm

(1) Fix a putative spectrum $\mathcal{S}=\{(\Delta, l)\}$.
(2) If there exists a vector $\Lambda=\left(\lambda_{(0,0)}, \lambda_{(1,0)}, \lambda_{(0,1)}, \lambda_{(1,1)}, \ldots\right)$ such that

$$
\Lambda(\mathcal{F}):=\sum_{m, n} \lambda_{(m, n)} \partial_{a}^{m} \partial_{b}^{n} \mathcal{F}_{\Delta, l}>0
$$

for all $(\Delta, l) \in \mathcal{S}$ then:

## $\mathcal{S}$ cannot be the spectrum of a consistent CFT.

- To make this tractable discretize possible $\Delta$.
- Then finding such $\Lambda$ is a linear optimization problem ${ }^{1}$.
- Efficient algorithms and implementations: e.g. IBM's Cplex.

[^0]
## Solving the 3d Ising Model with Crossing Symmetry??

## Spectrum of the Ising Model

Constraints from Crossing Symmetry
Is the putative spectrum of 3 d Ising consistent with crossing symmetry?

| Field: | $\sigma$ | $\epsilon$ | $\epsilon^{\prime}$ | $T_{\mu \nu}$ | $C_{\mu \nu \rho \lambda}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\operatorname{Dim}(\Delta):$ | $0.5182(3)$ | $1.413(1)$ | $3.84(4)$ | 3 | $5.0208(12)$ |
| Spin (1): | 0 | 0 | 0 | 2 | 4 |

Constraining the spectrum

- Consider crossing symmetry of
- What are possible values of $\Delta_{\epsilon}$ as a function of $\Delta_{\sigma}$ ?
- Argue by exclusion: show certain values inconsistent with crossing.
- How do we determine this?

(2) Check crossing symmetry assuming the next scalar has $\Delta_{\epsilon}>1$
(Note: we do not fix $\Delta_{\epsilon}$ to its Ising model value.)


## Spectrum of the Ising Model

Constraints from Crossing Symmetry
Is the putative spectrum of 3 d Ising consistent with crossing symmetry?

| Field: | $\sigma$ | $\epsilon$ | $\epsilon^{\prime}$ | $T_{\mu \nu}$ | $C_{\mu \nu \rho \lambda}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Dim $(\Delta):$ | $0.5182(3)$ | $1.413(1)$ | $3.84(4)$ | 3 | $5.0208(12)$ |
| Spin (l): | 0 | 0 | 0 | 2 | 4 |

## Constraining the spectrum

- Consider crossing symmetry of

$$
\left\langle\sigma\left(x_{1}\right) \sigma\left(x_{2}\right) \sigma\left(x_{3}\right) \sigma\left(x_{4}\right)\right\rangle
$$

- What are possible values of $\Delta_{\epsilon}$ as a function of $\Delta_{\sigma}$ ?
- Argue by exclusion: show certain values inconsistent with crossing.
- How do we determine this?
(1) Fix $\Delta_{\sigma}$.
(2) Check crossing symmetry assuming the next scalar has $\Delta_{\epsilon}>1$.
(Note: we do not fix $\Delta_{\epsilon}$ to its Ising model value.)


## Putative Spectrum: Gapped Scalar Sector

Allow any spectrum but impose "Gap" in scalar sector


## Spectrum of the Ising Model

Assuming gap in scalar spectrum between $\Delta_{\sigma}$ and $\Delta_{\epsilon}$

Plot: possible values of second lightest operator, $\Delta_{\epsilon}$, as function of $\Delta_{\sigma}$.


(1) Valid range of $\left(\Delta_{\sigma}, \Delta_{\epsilon}\right)$ restricted by crossing symmetry.
(2) Ising model values seem to sit at a "kink".
(3) Note: this plot is completely general. Only a "gap" is assumed.
(9) Crossing symmetry excludes $\approx \frac{1}{3}$ error bar region.

## Putative Spectrum: Only One Relevant $\mathbb{Z}_{2}$ Singlet

Allow any spectrum but allow only one relevant $\mathbb{Z}_{2}$ operator, $\epsilon$


## Spectrum of the Ising Model

Assuming only one relevant scalar (i.e. $\epsilon$ with $\Delta_{\epsilon}<3$ )

Ising model has only one irrelevanat scalar so lets try:

- Impose gap between $\epsilon$ and next scalar, $\epsilon^{\prime}$.
- $\epsilon^{\prime}$ irrelevant so $\Delta_{\epsilon^{\prime}}>3$ (but we also consider $>3.4,3.8$ ).

Plot of allowed $\left(\Delta_{\sigma}, \Delta_{\epsilon}\right)$ region assuming:
Next scalar in spectrum $\epsilon^{\prime}: \quad \Delta_{\epsilon^{\prime}}>3$

Allowed Region Assuming $\Delta\left(\epsilon^{\prime}\right) \geq 3$



## Spectrum of the Ising Model

## Assuming only one relevant scalar (i.e. $\epsilon$ with $\Delta_{\epsilon}<3$ )

Ising model has only one irrelevanat scalar so lets try:

- Impose gap between $\epsilon$ and next scalar, $\epsilon^{\prime}$.
- $\epsilon^{\prime}$ irrelevant so $\Delta_{\epsilon^{\prime}}>3$ (but we also consider $>3.4,3.8$ ).

Plot of allowed $\left(\Delta_{\sigma}, \Delta_{\epsilon}\right)$ region assuming:
Next scalar in spectrum $\epsilon^{\prime}: \quad \Delta_{\epsilon^{\prime}}>3.4$

Allowed Region Assuming $\Delta\left(\epsilon^{\prime}\right) \geq 3.4$

(Zoomed) Allowed Region Assuming $\Delta\left(\epsilon^{\prime}\right) \geq 3.4$


## Spectrum of the Ising Model

## Assuming only one relevant scalar (i.e. $\epsilon$ with $\Delta_{\epsilon}<3$ )

Ising model has only one irrelevanat scalar so lets try:

- Impose gap between $\epsilon$ and next scalar, $\epsilon^{\prime}$.
- $\epsilon^{\prime}$ irrelevant so $\Delta_{\epsilon^{\prime}}>3$ (but we also consider $>3.4,3.8$ ).

Plot of allowed $\left(\Delta_{\sigma}, \Delta_{\epsilon}\right)$ region assuming:
Next scalar in spectrum $\epsilon^{\prime}: \quad \Delta_{\epsilon^{\prime}}>3.8$

Allowed Region Assuming $\Delta\left(\epsilon^{\prime}\right) \geq 3.8$

(Zoomed) Allowed Region Assuming $\Delta\left(\epsilon^{\prime}\right) \geq 3.8$


## Spectrum of the Ising Model

Inverting the Logic: Bounding $\epsilon^{\prime}$ assuming $\epsilon$ has maximal dimension.
Assuming $\Delta_{\epsilon}$ takes maximal allowed value (as function of $\Delta_{\sigma}$ ):
Plot: possible values of $\Delta_{\epsilon^{\prime}}$ vs. $\Delta_{\sigma}$

(1) Again Ising model seems to stand out.
(2) At Ising point CFT third scalar $\epsilon^{\prime}$ can be irrelevant.
© "Kink" or "cusp" in $(\epsilon, \sigma)$ plot due to rapid rearrangement of spectrum.

## Spectrum of the Ising Model

Spin 2 sector.

## Higher spin?

- Stress-tensor $T_{\mu \nu}$ fixed by symmetry: $\Delta=3$.
- What about next spin 2 field: $T_{\mu \nu}^{\prime}$.

Plot $\Delta_{T^{\prime}}$ vs $\Delta_{\sigma}$ (i.e. maximal gap in spin 2 spectrum):


Again Ising region seems very special!

## Central Charge of the Ising Model

## Going beyond the Spectrum.

## What else?

- Putting the optimization back in linear optimization can constrain OPE coefficients.
- Coefficient of stress-tensor CB, $\mathcal{F}_{3,2}$, fixed by conf sym to be:

$$
p_{3,2}=\frac{\Delta_{\sigma}^{2}}{C_{T}} \quad \text { with } \quad C_{T} \sim\left\langle T_{\mu \nu} T_{\rho \lambda}\right\rangle
$$

Plot $\operatorname{Min}\left(C_{T} / C_{T}^{\mathrm{free}}\right)$ vs $\Delta_{\sigma}$ :

- Compare $C_{T}$ to "free" value ( $\Delta_{\sigma}=0.5$ ).
- No assumptions in this plot!
- Again Ising region very special!



## Summary

Results so far.

So what have we shown?

## Conformal Blocks in Any Dimension

General Stuff

- A way to efficiently compute (tabulate) CBs in any dim around $z=\bar{z}$.
- Although a general expression would be nice this suffices for crossing symmetry.


## The 3d Ising Model

- Crossing symmetry applied to $\langle\sigma \sigma \sigma \sigma\rangle$ already very constraining.
- Even without assumptions Ising model stands out.
- With a few simple assumptions:
(1) Gap in scalar spectrum with: $\sigma, \epsilon<3$ and $\epsilon^{\prime}>3$.
(2) Gap in spin 2 spectrum $T^{\prime}>4$.
can restrict "landscape" of CFTs to neighborhood of Ising point.
- From this follows the hope:

Could crossing symmetry allow us to classify \& solve CFTs in any dim?

## The Future

What's left to do?

## Honing in on the Ising model?

- Lets add another correlator: $\langle\sigma \sigma \epsilon \epsilon\rangle$.
- $C_{T}$ and $C_{\sigma \sigma \epsilon}$ appear in both correlators $\Rightarrow$ should give strong constraints.
- "Saturation" bounds seems to give unique answers close to Ising model.
- Suggests strategy:
(1) For each $\mathcal{O}$ find max $\Delta_{\mathcal{O}}$ as function of $\Delta_{\sigma}$.
(2) Fixing $\Delta_{\mathcal{O}}$ to its max look for next operator $\mathcal{O}^{\prime}$ as function of $\Delta_{\sigma}$.
(3) Iterate over-and-over to get full spectrum.
(9) Iterate over spins imposing bounds from lower spins.


## Finding new CFTs

- 3d Ising model follows largely from minimal constraints on spectrum.
- Adding symmetries (e.g. $O(N)$ ) expect stronger constraints $\Rightarrow$ isolate more CFTs.
- Can we use this to classify CFTs using only global symmetry and crossing symmetry (as in $D=2$ )?


## The Future

What's left to do?

## AdS/CFT Applications

- Generalized Free Field CFTs are dual to free $(N \sim \infty)$ fields in AdS

> [Heemskerk et al, SE and Papadodimas]

- Higher spin GFFs are "multi-particle states" in bulk:

$$
\mathcal{O} \sim \phi \partial_{\left\{\mu_{1}\right.} \ldots \partial_{\left.\mu_{n}\right\}} \phi
$$

with $\Delta_{\mathcal{O}}=n+2 \Delta_{\phi}$ and $\Delta_{\phi}>\frac{D-2}{2}$.

- Tentative result: Bound on gap for any spins is saturated by GFFs.
- If true then: leading $1 / N^{2}$ always negative!


## Other stuff

- Technology still begin refined $\Rightarrow$ lots to do!
- Seem to get new bounds/results all the time.
- Only just begun to take advantage of conformal symmetry in $D>2$.
- Lots to do...

Thanks


[^0]:    ${ }^{1}$ Without the optimization :-)

