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Motivation

Why return to the bootstrap?

» Conformal symmetry very powerful tool that goes largely unused in D > 2.
» Completely non-perturbative tool to study field theories

@ Does not require SUSY, large N, or weak coupling.
» Map out “landscape of CFTs”

@ Constraints on spectrum and interactions with few or no assumptions.
@ Possibly classify CFTs as in D=2?

» Universality

@ Fixed points universal = isolate them with minimal input.
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@ Does not require SUSY, large N, or weak coupling.
» Map out “landscape of CFTs”

@ Constraints on spectrum and interactions with few or no assumptions.
@ Possibly classify CFTs as in D=2?

» Universality

@ Fixed points universal = isolate them with minimal input.

Applications
» The Three-dimensional Ising Model.
» 4D phenomenology applications to (walking) technicolor [Rattazzi et al].

» Constructive Holography: deriving AdS from CFT.
[Heemskerk et al, Fitzpatrick et al, SE and Papadodimas]

» MS5-theory? (0,2) SCFT in 6D.



Outline

Outline
» Motivation
» Lightning Ising model refresher.

» CFT Review

» Correlators from OPE
> Crossing Symmetry
» Conformal Blocks

v

The Bootstrap: solving theories by consistency alone
» Expanding the bootstrap around z =z = 1/2.
> Why does this work?
> Linear Programming
The 3D Ising Model
» Constraints from (cooo) correlator
> The landscape of 3D CFTs

Other Applications

v

v



What exactly 1s the Ising model?



The Ising Model

Original Formulation

Basic Definition
» Lattice theory with nearest neighbor interactions

H=-J Z §iS;

<ij>
with s; = £1 (this is O(N) model with N = 1).

Relevance
» Historical: 2d Ising model solved exactly. [Onsager, 1944].
» Relation to e-expansion.
» “Simplest” CFT (universality class)

@ Only Z, symmetry
© Not multi-critical: only one relevant operator.

» Describes:

@ Ferromagnetism
© Liquid-vapour transition

Q ...



The Ising Model

A Field Theorist’s Perspective

Continuum Limit

» To study fixed point can take continuum limit (and o (x) € R)

H= /de [(Vo(x)* +to(x)®> +ao(x)]

» Interaction generated by Guassian “Z,” constraint: (o(x)? — 1)2.

» In D < 4 coefficient a is relevant and theory flows to a fixed point.

e-expansion

Wilson-Fisher set D = 4 — € and study critical point perturbatively.
3d Ising model: take € = 1 expect CFT with:

Field: g € € T;u/ C[U/p/\
Dim (A): | 0.5182(3) | 1.413(1) | 3.84(4) 3 5.0208(12)
Spin (1): 0 0 0 2 4
Zy : - + + + +




CFT Refresher



Conformal Symmetry in D > 2

Primary Operators

Conformal symmetry:

SO(1,D — 1) x RMP=1 4+ D (Dilatations) + K,, (Special conformal)

Poincare

Representations built on:

Primary operators: K, 0(0)=0
Descendents: P, ...P, 0(0)

All dynamics of descendants fixed by those of primaries.
Clarifications vs 2D

» Primaries O called quasi-primaries in D = 2.
Descendents are with respect to “small” conformal group: Loy, L4 ;.

Viraso descendents L_, O are primaries in our language.

vV vV

In this talk we always mean small conformal group (i.e. for descendants,
conformal blocks, primaries, ... ).



On the uses of Conformal Symmetry

Definition

» Abstract CFT defined by:

> OPE coefficients Cij.
» Conformal dim, spin of primary operators (A;, /;).

» This data formally defines CFT non-perturbatively.
» Unlike general QFT this formulation is well-defined and convergent.

» Unfortunately until recently has not been a practical definition (in D > 2).

Simple constraints:
» Conformal invariance imposes constraints on the above data.
» Unitarity bound on dimensions:
D—-2
>

L=0: A
- 2 b

L>0: A>L+D-2

» Two-point functions fixed up to normalization.

» Three point function (O;0;0x) ~ Cijk



Spectrum and OPE
CFT Background
CFT defined by specifying:
» Spectrum S = {O;} of primary operators dimensions, spins: (A, [;)

» Operator Product Expansion (OPE)

ZC x8 Ok()

O; are primaries. Diff operator D(x, ;) encodes descendent contributions.
Higher point functions contain no new dynamical information!

» Can be reconstructed from above data:

( O1(x1)O2(x2) O3(x3)Oa(xs) )
—_—— —_——

>k Oy D(x12,8) ) Ok (x2) 32, G4 D(x34,05,) (x3) Ot (x4)

311 O CLD(x12,%34,0x,y ,0, ) ( Ok (x2) O1 (1))

» Operators D(x, 0y) fixed kinematically: no dynamical info.

» OPE coefficients Cg- are constants: encode full dynamics.



Crossing Symmettry

CFT Background
This procedure is not unique: (P1020304)

1 4

1 4

k _
T = T s

2 3

3

Consistency requires equivalence of two different contractions
12;34 _ k k1423
E ChCy4 G,y (X1, %2, X3, X4) = E ClaCr G (x1,%2, X3, %4)
k

Functions G“Ab;fi are conformal blocks (of “small” conformal group):
» Encode contribution of operator O to double OPE contraction.

» Entirely kinematical: all dynamical information is in Cf;

» Crossing sym. give non-perturbative constraints on (A, C{‘/)



Conformal Blocks 1n all their Glory



Conformal Blocks in D = 2.4

CFT Background
CBs eigenfunctions of quadratic and quartic conformal casismirs:
2 4
0®Ga, = )\(A?; Ga, 0WGA, = )\(A?; Ga,

In D = 2,4 Dolan-Osborn have computed conformal blocks, e.g. D = 4:

. Z . _
Gt (1, x0,43,34) = —— [ka+1(2)ka-i(z) — (z > 2)]

1
I+1(z—72)

with

kﬂ(z) :Zﬁ/22Fl </6_A12 B+A34a ﬁa Z)

2 72
with A; = A; — Aj and u, v conformal cross-ratios

X12X34 X14X23
u — —— yp= ——

9
X13X24 X13X24

andu =zzandv = (1 —z)(1 —2).



Conformal Blocks in z,Z coords
CFT Background

» Via conformal transform can map x,x3,x3, x4 to a plane.

> (z,Z) then complex coords on this plane.

Ty — OO
1 )
Z
Z1 x3
——————————————
1




Conformal Blocks in General Dimension (near z = )
CFT Background

» In general D no compact expression but double-infinte sum.

> Atz = Z sum simplifies so we work in a neighborhood of z = Z.
CBsatz =12

» [ =0, 1 blocks exact expression in terms of 3F, hypergeometrics.

> Recursion relations for higher spin (at z # Z involve higher derivatives).



Conformal Blocks in General Dimension (near z = )
CFT Background

» In general D no compact expression but double-infinte sum.
> Atz = Z sum simplifies so we work in a neighborhood of z = Z.

CBsatz =z
» [ =0, 1 blocks exact expression in terms of 3F, hypergeometrics.

> Recursion relations for higher spin (at z # Z involve higher derivatives).

Derivative Recursion Relations

> 3F), satisfies cubic equation.
» Combine with casimir eqns to get derivative recursion relations.

» Take

a+\/l; _ a—\/I;
s )

and expand around (a, b) = (1,0).

Can now compute CBs in arbitrary dim expanded around z = z!



Imposing Crossing Symmetry



Crossing Symmetry Nuts and Bolts

Bootstrap

So how do we enforce crossing symmetry in practice?

Consider four identical scalars: (Pp(x1)D(x2) P (x3)Pp(x4)) dim(¢) = Ay

Crossing symmetry:

D _(Cho)” Gy (xtya,xs,0) = 3 (Cho) Gy (1, 00,33, )
k k

1 4

1 4
Zk%: Dok |k
2 3
2

3



Crossing Symmetry Nuts and Bolts

Bootstrap

So how do we enforce crossing symmetry in practice?

Consider four identical scalars: (Pp(x1)D(x2) P (x3)Pp(x4)) dim(¢) = Ay

Move everything to LHS:

Z(C¢¢) GZ:t{(X1,xz,)C3,X4) — Z(C¢¢) kazzk(X1,X2,X37X4) =0
k k

B - m



Crossing Symmetry Nuts and Bolts

Bootstrap

So how do we enforce crossing symmetry in practice?

Consider four identical scalars: (Pp(x1)D(x2) P (x3)Pp(x4)) dim(¢) = Ay

Express as sum with positive coefficients:

g(Z7 Z) = Z(C;¢)2 [GZS;:(X|7X2,X3,X4) - GZ;Z,Z{(X|7X2,)C37X4)} =0
k

1 4

1 4
Zk%: Dok |k
2 3
2

3



Crossing Symmetry Nuts and Bolts

Bootstrap

So how do we enforce crossing symmetry in practice?

Consider four identical scalars: (Pp(x1)d(x2) P (x3)P(x4)) dim(¢) = Ay

fim (z,z) are combined s-t channel CBs:

8(z,2) = Z (Cls) ™ Ga(u,v) = v Gay(v,u)] =0
P

PA I fﬁkh‘ (22)

1 4
1 4
zk>%<: S |
2 3
2

Combined blocks ]-'ik’ ;. (2, 2) depend on:
> External scalar dimension: A.
» Exchanged operators spin, dimension: [, Ag.
» Coordinates z, 7 in entirely kinematical way.



Crossing Symmetry Nuts and Bolts

Bootstrap

So how do we enforce crossing symmetry in practice?

Consider four identical scalars: (Pp(x1)d(x2) P (x3)P(x4)) dim(¢) = Ay

g(z,2) = Z (Ci;d))z [ Ga(u,v) =4 Ga (v, u)] =0
S~

PA I Fﬁk 4 @D

@ Expand in derivatives around z =7 = 1/2
g(1/2,1/2)=0,  824(1/2,1/2) =0
02g(1/2,1/2) =0,



Crossing Symmetry Nuts and Bolts

Bootstrap

So how do we enforce crossing symmetry in practice?

Consider four identical scalars: (Pp(x1)d(x2) P (x3)P(x4)) dim(¢) = Ay

g(z,2) = Z (Ci;d))z [ Ga(u,v) =4 Ga (v, u)] =0
S~

P, fﬁ/w’k (z,2)

@ Expand in derivatives around z =7 = 1/2
g(1/2,1/2)=0,  9g(1/2,1/2)=0
&g(1/2,1/2) =0,
@ If can find any constant vector A = (X\2,0, Ao2, 2,2, M40, . . . ) such that
Mo 0202 8(2,2)cmz=1/2 > 0

then crossing symmetry has no solutions.



Crossing Symmetry Nuts and Bolts

Bootstrap

So how do we enforce crossing symmetry in practice?

Consider four identical scalars: (Pp(x1)d(x2) P (x3)P(x4)) dim(¢) =

g(z,2) = Z (Ci;d))z [ Ga(u,v) =4 Ga (v, u)] =0
S~

PAI Fﬁm (29)
@ Expand in derivatives around z =7 = 1/2
g(1/2,1/2)=0,  9’g(1/2,1/2)=0
&g(1/2,1/2) =0,
@ If can find any constant vector A = (X\2,0, Ao2, 2,2, M40, . . . ) such that
A 0707 8(2,7)

then crossing symmetry has no solutions.

=z=1/2 >0

© Can reformulate in terms of vectors (derivatives at z =z = 1/2):

FO0) £(1.0) F0.1)
AI7 AI"FAI7"')

If {fa,/} form a cone cannot solve crossing symmetry!



Cones in Derivative Space

Rl Why does this work?
L=2
Ca > Consider (¢p¢dd) with A(¢) = 0.515.
vy > Projecth,l to plane:
RN
» Plot

A= Auni/ari/y to Aunimrit,\‘ +e€

Y S E T BRI Ry Y ]

I S S ' T
-06  -04  -02 K 0.2 04 0.6 08 [=0to 10
/
/
/ > ¢ parametrized range of A we consider.
/
/ » Take € = 0 so CBs at unitarity bound.
! sl = vectors in “cone”
, .
/ = no crossing symmetry.
;
/
/
/
;
/
/
/ -10




Cones in Derivative Space
Why does this work?

SRR
L=2 ‘//

o » Consider (¢pdp¢) with A(¢) = 0.515.
§ > Projecth,l to plane:

D40y Fau OaFau)

/

/

/ » Plot
A= Auni/ari/y to Aunimrit,\‘ +e€

e I=0to10

0.8

T S L L T L
-0.6 -04 , 0.2 04 0.6
> ¢ parametrized range of A we consider.

,
' » For e small
= vectors still in “cone”

/
= no crossing symmetry.

1
o

/ -10 L




Cones in Derivative Space
Why does this work?

i

> Consider (¢pdd¢p) with A(¢p) = 0.515.

> Projecth,l to plane:
(a0 Fas 0aFa)
> Plot

A= Aunitalrily to Aunimrﬂy +€
[=0to 10

P
-06 -04

/ > ¢ parametrized range of A we consider.

/ > For € large enough
/ = vectors span plane.
roosr = In particular can find pa; > 0

! ZPA,I_}?A,/ =0

, *‘\—/7 = crossing sym. can be satisfied!!




Cones in Derivative Space

FlL L

Why does this work?

> Consider (ppdd) with A(¢) = 0.515.

> Project fAJ to plane:
(020pFas 0aFa)
> Plot

Fis.0 A= Aum'rariry to Aunitariz‘y +e€
[=0to 10

» ¢ parametrized range of A we consider.

> When € big enough
= vectors no longer in “cone”
= crossing sym. can be satisfied.
= Requires 0.76 < Ay < 2.099.



Linear Programming
Putting Crossing Symmetry on a (big) Computer

» Plots visually intuitive but hard to work with.

> Want to systematically check crossing symmetry.

Algorithm
@ Fix a putative spectrum S = {(A, ) }.
@ If there exists a vector A = (A(,0), A1,0, A0,1), A(1,1), - - - ) such that

AF) = Ay Ou 05 Fay >0

m,n

forall (A, 1) € S then:

S cannot be the spectrum of a consistent CFT.

» To make this tractable discretize possible A.
» Then finding such A is a linear optimization problem".

» Efficient algorithms and implementations: e.g. IBM’s Cplex.

'Without the optimization :-)



Solving the 3d Ising Model with
Crossing Symmetry??



M

Spectrum of the Ising Model

Constraints from Crossing Symmetry

Is the putative spectrum of 3d Ising consistent with crossing symmetry?

Field: o € e T, CLupx
Dim (A): | 0518203) | 1.413(1) | 3.84(d) | 3 | 5.0208(12)
Spin (1): 0 0 0 2 4




M

Spectrum of the Ising Model

Constraints from Crossing Symmetry

Is the putative spectrum of 3d Ising consistent with crossing symmetry?

v

v

v

Field: o € e T, CLupx
Dim (A): | 0518203) | 1.413(1) | 3.84(d) | 3 | 5.0208(12)
Spin (1): 0 0 0 2 4

Constraining the spectrum

Consider crossing symmetry of

(o(x1)o(x2)o(x3)0(xs))

What are possible values of A, as a function of A, ?

Argue by exclusion: show certain values inconsistent with crossing.

How do we determine this?

@ Fix A,.

@ Check crossing symmetry assuming the next scalar has A, > 1.
(Note: we do not fix A, to its Ising model value.)




okl

Putative Spectrum: Gapped Scalar Sector

Allow any spectrum but impose “Gap” in scalar sector

A
sk
4; }
3r 7‘\‘\ 3
[ Unitarity Bound
oL
—) €

1+ Gap

A
0 L L L



Spectrum of the Ising Model

Assuming gap in scalar spectrum between A, and A,

Plot: possible values of second lightest operator, A, as function of A,,.

Ac

18

1.6

14r

1.2f

Ising

§5 05 060 065 070 075 080

Ae
1.44¢

1.43}
1.42} )
Lal Ising
1.40}

1.39¢

A

1. -
As %?510 0.515

0.520

@ Valid range of (A, A,) restricted by crossing symmetry.

@ Ising model values seem to sit at a “kink”.

© Note: this plot is completely general. Only a “gap” is assumed.

@ Crossing symmetry excludes ~

1
3

error bar region.

0.525

05307



4

Putative Spectrum: Only One Relevant Z, Singlet

Allow any spectrum but allow only one relevant Z, operator, €

.

3 T -
[ Gap Unitarity Bound
oL
) €= €max
1+ Gap
[ —
07 L L L



Spectrum of the Ising Model

Assuming only one relevant scalar (i.e. € with A < 3)

Ising model has only one irrelevanat scalar so lets try:
» Impose gap between ¢ and next scalar, €.
» ¢ irrelevant so A, > 3 (but we also consider > 3.4,3.8).

Plot of allowed (A, A¢) region assuming:
Next scalar in spectrum ¢’: A >3

Allowed Region Assuming A(e")=3 (Zoomed) Allowed Region Assuming A(€)=3
Ac

1.44¢
1.43¢
142} IS

sing
141}
1.40¢

1.39f

1. I 1 1
1 : . . . '
85 om om0 06 070 o7 om0l 50 0515 0520 052

0.530A‘T



Spectrum of the Ising Model

Assuming only one relevant scalar (i.e. € with A < 3)

Ising model has only one irrelevanat scalar so lets try:
» Impose gap between ¢ and next scalar, €.
» ¢ irrelevant so A, > 3 (but we also consider > 3.4,3.8).

Plot of allowed (A, A¢) region assuming:

Next scalar in spectrum ¢’: Ao > 3.4

Allowed Region Assuming A(e)=3.4 (Zoomed) Allowed Region Assuming A(e))=3.4
Ac €
1.44¢
1.8¢
1.43¢
16f 1.42¢ Is
sing
14l 141F
1.40¢
L2 / 1.3}
. . . A, 138 As

0.75 0.‘80 510 0.515 0.520 0.525 0.530



Spectrum of the Ising Model

Assuming only one relevant scalar (i.e. € with A < 3)

Ising model has only one irrelevanat scalar so lets try:
» Impose gap between ¢ and next scalar, €.
» ¢ irrelevant so A, > 3 (but we also consider > 3.4,3.8).

Plot of allowed (A, A¢) region assuming:
Next scalar in spectrum ¢’: A > 3.8

Allowed Region Assuming A(€)=3.8 (Zoomed) Allowed Region Assuming A(e)=3.8
A
1.44¢
1.43¢
1.42¢ s
sing
1.41F
1.40¢

1.39¢

Ay

1 . " " , 1. . . " .
(9.50 055 060 065 070 075 0.80 Ar 88510 0.515 0.520 0.525 0.530



Spectrum of the Ising Model

Inverting the Logic: Bounding €’ assuming € has maximal dimension.

Assuming A, takes maximal allowed value (as function of A,):

Plot: possible values of A.s vs. A,

A
45¢

4.0} /

3.5

3.0f

2.5F Isin
/ g

2 : : : : !
f50 o052 054 0% 058 060

Ay

@ Again Ising model seems to stand out.
@ AtIsing point CFT third scalar ¢ can be irrelevant.
@ “Kink” or “cusp” in (¢, o) plot due to rapid rearrangement of spectrum.



Spectrum of the Ising Model

Spin 2 sector.
Higher spin?
> Stress-tensor 7, fixed by symmetry: A = 3.

> What about next spin 2 field: 7},,.

Plot A7/ vs A, (i.e. maximal gap in spin 2 spectrum):

~— lIsing

L

3. I I I I ]
8.50 0.52 0.54 0.56 0.58 0.60

Ay

Again Ising region seems very special!
7



Central Charge of the Ising Model

Going beyond the Spectrum.

What else?

» Putting the optimization back in linear optimization can constrain OPE coefficients.
» Coefficient of stress-tensor CB, F3 », fixed by conf sym to be:

2
P32 = == with Cr ~ <T;WTP)\>

Cr
Cr/Cr"®
_ 1.25¢
Plot Min(Cr /C¥*) vs A,: 100k
» Compare Cr to “free” value 1.15F
(As =0.5). 110k
» No assumptions in this plot! 1.05f
» Again Ising region very special! 1-00\
0.95} . Ising

0.50 0.52 0.54 0.56 0.58 0.60 Ar



Summary

Results so far.

So what have we shown?

Conformal Blocks in Any Dimension

General Stuff

> A way to efficiently compute (tabulate) CBs in any dim around z = Z.

> Although a general expression would be nice this suffices for crossing symmetry.
The 3d Ising Model

» Crossing symmetry applied to (cooo) already very constraining.

|

>

Even without assumptions Ising model stands out.
With a few simple assumptions:
@ Gap in scalar spectrum with: o, e < 3 and ¢’ > 3.
© Gap in spin 2 spectrum 7’ > 4.
can restrict “landscape” of CFTs to neighborhood of Ising point.

From this follows the hope:

Could crossing symmetry allow us to classify & solve CFTs in any dim?



The Future

What'’s left to do?

Honing in on the Ising model?

> Lets add another correlator:  (coee).

» Cr and C,. appear in both correlators = should give strong constraints.
> “Saturation” bounds seems to give unique answers close to Ising model.
> Suggests strategy:

@ For each O find max A as function of A, .

@ Fixing Ao to its max look for next operator O’ as function of A, .
@ Tterate over-and-over to get full spectrum.

@ Iterate over spins imposing bounds from lower spins.

Finding new CFTs

» 3d Ising model follows largely from minimal constraints on spectrum.

> Adding symmetries (e.g. O(N)) expect stronger constraints
= isolate more CFTs.

» Can we use this to classify CFTs using only global symmetry and crossing
symmetry (as in D = 2)?



The Future

What'’s left to do?

AdS/CFT Applications

» Generalized Free Field CFTs are dual to free (N ~ co) fields in AdS
[Heemskerk et al, SE and Papadodimas]

> Higher spin GFFs are “multi-particle states” in bulk:

O~ @Oy - - - Oy &
with Ao = n+2A4 and Ay > 22,
» Tentative result: Bound on gap for any spins is saturated by GFFs.

» If true then: leading 1/N? always negative!

Other stuff

» Technology still begin refined = lots to do!
> Seem to get new bounds/results all the time.
» Only just begun to take advantage of conformal symmetry in D > 2.

» Lots to do...



Thanks
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