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Motivation

Why return to the bootstrap?
I Conformal symmetry very powerful tool that goes largely unused in D > 2.
I Completely non-perturbative tool to study field theories

1 Does not require SUSY, large N, or weak coupling.
I Map out “landscape of CFTs”

1 Constraints on spectrum and interactions with few or no assumptions.
2 Possibly classify CFTs as in D=2?

I Universality
1 Fixed points universal⇒ isolate them with minimal input.

Applications
I The Three-dimensional Ising Model.
I 4D phenomenology applications to (walking) technicolor [Rattazzi et al].
I Constructive Holography: deriving AdS from CFT.

[Heemskerk et al, Fitzpatrick et al, SE and Papadodimas]

I M5-theory? (0,2) SCFT in 6D.
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Outline

Outline
I Motivation
I Lightning Ising model refresher.
I CFT Review

I Correlators from OPE
I Crossing Symmetry
I Conformal Blocks

I The Bootstrap: solving theories by consistency alone
I Expanding the bootstrap around z = z̄ = 1/2.
I Why does this work?
I Linear Programming

I The 3D Ising Model
I Constraints from 〈σσσσ〉 correlator
I The landscape of 3D CFTs

I Other Applications
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What exactly is the Ising model?
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The Ising Model
Original Formulation

Basic Definition
I Lattice theory with nearest neighbor interactions

H = −J
∑
<i,j>

sisj

with si = ±1 (this is O(N) model with N = 1).

Relevance
I Historical: 2d Ising model solved exactly. [Onsager, 1944].
I Relation to ε-expansion.
I “Simplest” CFT (universality class)

1 Only Z2 symmetry
2 Not multi-critical: only one relevant operator.

I Describes:
1 Ferromagnetism
2 Liquid-vapour transition
3 . . .
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The Ising Model
A Field Theorist’s Perspective

Continuum Limit
I To study fixed point can take continuum limit (and σ(x) ∈ R)

H =

∫
dDx

[
(∇σ(x))2 + t σ(x)2 + aσ(x)4]

I Interaction generated by Guassian “Z2” constraint: (σ(x)2 − 1)2.
I In D < 4 coefficient a is relevant and theory flows to a fixed point.

ε-expansion
Wilson-Fisher set D = 4− ε and study critical point perturbatively.
3d Ising model: take ε = 1 expect CFT with:

Field: σ ε ε′ Tµν Cµνρλ
Dim (∆): 0.5182(3) 1.413(1) 3.84(4) 3 5.0208(12)
Spin (l): 0 0 0 2 4
Z2 : - + + + +
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CFT Refresher
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Conformal Symmetry in D > 2
Primary Operators
Conformal symmetry:

SO(1,D− 1)× R1,D−1︸ ︷︷ ︸
Poincare

+ D (Dilatations) + Kµ (Special conformal)

Representations built on:

Primary operators: KµO(0) = 0
Descendents: Pµ1 . . .Pµn O(0)

All dynamics of descendants fixed by those of primaries.

Clarifications vs 2D
I Primaries O called quasi-primaries in D = 2.
I Descendents are with respect to “small” conformal group: L0,L±1.
I Viraso descendents L−2O are primaries in our language.
I In this talk we always mean small conformal group (i.e. for descendants,

conformal blocks, primaries, . . . ).
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On the uses of Conformal Symmetry

Definition
I Abstract CFT defined by:

I OPE coefficients Cijk.
I Conformal dim, spin of primary operators (∆i, li).

I This data formally defines CFT non-perturbatively.
I Unlike general QFT this formulation is well-defined and convergent.
I Unfortunately until recently has not been a practical definition (in D > 2).

Simple constraints:
I Conformal invariance imposes constraints on the above data.
I Unitarity bound on dimensions:

L = 0 : ∆ ≥ D− 2
2

, L > 0 : ∆ ≥ L + D− 2

I Two-point functions fixed up to normalization.
I Three point function 〈OiOjOk〉 ∼ Cijk
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Spectrum and OPE
CFT Background

CFT defined by specifying:
I Spectrum S = {Oi} of primary operators dimensions, spins: (∆i, li)
I Operator Product Expansion (OPE)

Oi(x) · Oj(0) ∼
∑

k

Ck
ij D(x, ∂x)Ok(0)

Oi are primaries. Diff operator D(x, ∂x) encodes descendent contributions.
Higher point functions contain no new dynamical information!

I Can be reconstructed from above data:

〈 O1(x1)O2(x2)︸ ︷︷ ︸∑
k Ck

12 D(x12,∂x2 )Ok(x2)

O3(x3)O4(x4)︸ ︷︷ ︸∑
l Cl

34 D(x34,∂x4 )(x3)Ol(x4)︸ ︷︷ ︸∑
k,l Ck

12Cl
34D(x12,x34,∂x2 ,∂x4 )〈Ok(x2)Ol(x4)〉

〉

I Operators D(x, ∂x) fixed kinematically: no dynamical info.
I OPE coefficients Ck

ij are constants: encode full dynamics.
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Crossing Symmettry
CFT Background

This procedure is not unique: 〈φ1φ2φ3φ4〉

Consistency requires equivalence of two different contractions∑
k

Ck
12Ck

34 G12;34
∆k,lk (x1, x2, x3, x4) =

∑
k

Ck
14Ck

23 G14;23
∆k,lk (x1, x2, x3, x4)

Functions Gab;cd
∆k,lk are conformal blocks (of “small” conformal group):

I Encode contribution of operator Ok to double OPE contraction.
I Entirely kinematical: all dynamical information is in Ck

ij.

I Crossing sym. give non-perturbative constraints on (∆k,Ck
ij).
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Conformal Blocks in all their Glory
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Conformal Blocks in D = 2, 4
CFT Background

CBs eigenfunctions of quadratic and quartic conformal casismirs:

2(2)G∆,l = λ
(2)
∆,l G∆,l 2(4)G∆,l = λ

(4)
∆,l G∆,l

In D = 2, 4 Dolan-Osborn have computed conformal blocks, e.g. D = 4:

G12;34
∆,l (x1, x2, x3, x4) =

1
l + 1

zz̄
(z− z̄)

[k∆+l(z)k∆−l(z̄)− (z↔ z̄)]

with

kβ(z) = zβ/2
2F1

(
β −∆12

2
,
β + ∆34

2
, β, z

)
with ∆ij = ∆i −∆j and u, v conformal cross-ratios

u =
x12x34

x13x24
, v =

x14x23

x13x24

and u = zz̄ and v = (1− z)(1− z̄).
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Conformal Blocks in z, z̄ coords
CFT Background

I Via conformal transform can map x1, x2, x3, x4 to a plane.
I (z, z̄) then complex coords on this plane.

x1

1 2

�1

1

x3

x4 → ∞
x2

z
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Conformal Blocks in General Dimension (near z = z̄)
CFT Background

I In general D no compact expression but double-infinte sum.
I At z = z̄ sum simplifies so we work in a neighborhood of z = z̄.

CBs at z = z̄
I l = 0, 1 blocks exact expression in terms of 3F2 hypergeometrics.

I Recursion relations for higher spin (at z 6= z̄ involve higher derivatives).

Derivative Recursion Relations
I 3F2 satisfies cubic equation.

I Combine with casimir eqns to get derivative recursion relations.

I Take

z =
a +
√

b
2

, z̄ =
a−
√

b
2

and expand around (a, b) = (1, 0).

Can now compute CBs in arbitrary dim expanded around z = z̄!
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Imposing Crossing Symmetry
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Crossing Symmetry Nuts and Bolts
Bootstrap

So how do we enforce crossing symmetry in practice?

Consider four identical scalars: 〈φ(x1)φ(x2)φ(x3)φ(x4)〉 dim(φ) = ∆φ

Crossing symmetry:∑
k

(Ck
φφ)2 G12;34

∆k,lk
(x1, x2, x3, x4) =

∑
k

(Ck
φφ)2 G14;23

∆k,lk
(x1, x2, x3, x4)
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(Ck
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∑
k

(Ck
φφ)2 G14;23

∆k,lk
(x1, x2, x3, x4) = 0

17



Crossing Symmetry Nuts and Bolts
Bootstrap

So how do we enforce crossing symmetry in practice?

Consider four identical scalars: 〈φ(x1)φ(x2)φ(x3)φ(x4)〉 dim(φ) = ∆φ

Express as sum with positive coefficients:

g(z, z̄) =
∑

k

(Ck
φφ)2 [G12;34

∆k,lk
(x1, x2, x3, x4)− G14;23

∆k,lk
(x1, x2, x3, x4)] = 0
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Crossing Symmetry Nuts and Bolts
Bootstrap

So how do we enforce crossing symmetry in practice?

Consider four identical scalars: 〈φ(x1)φ(x2)φ(x3)φ(x4)〉 dim(φ) = ∆φ

Fφ∆k,lk
(z, z) are combined s-t channel CBs:

g(z, z̄) =
∑

k

(Ck
φφ)2︸ ︷︷ ︸

p∆k,lk

[u∆φG∆,l(u, v)− v∆φG∆,l(v, u)]︸ ︷︷ ︸
Fφ

∆k,lk
(z,̄z)

= 0

Combined blocks Fφ∆k,lk
(z, z) depend on:

I External scalar dimension: ∆φ.
I Exchanged operators spin, dimension: lk, ∆k.
I Coordinates z, z̄ in entirely kinematical way.
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Crossing Symmetry Nuts and Bolts
Bootstrap

So how do we enforce crossing symmetry in practice?

Consider four identical scalars: 〈φ(x1)φ(x2)φ(x3)φ(x4)〉 dim(φ) = ∆φ

g(z, z̄) =
∑

k

(Ck
φφ)2︸ ︷︷ ︸

p∆k,lk

[u∆φG∆,l(u, v)− v∆φG∆,l(v, u)]︸ ︷︷ ︸
Fφ

∆k,lk
(z,̄z)

= 0

1 Expand in derivatives around z = z̄ = 1/2

g(1/2, 1/2) = 0, ∂2
z g(1/2, 1/2) = 0

∂2
z̄ g(1/2, 1/2) = 0, . . .

2 If can find any constant vector Λ = (λ2,0, λ0,2, λ2,2, λ4,0, . . . ) such that

λm,n ∂
m
z ∂

n
z̄ g(z, z̄)|z=z̄=1/2 > 0

then crossing symmetry has no solutions.
3 Can reformulate in terms of vectors (derivatives at z = z̄ = 1/2):

~f∆,l = (F (0,0)
∆,l ,F

(1,0)
∆,l ,F

(0,1)
∆,l , . . . )

If {~f∆,l} form a cone cannot solve crossing symmetry!
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Cones in Derivative Space

L =0

L = 2

L = 4
L =6

L =8
L =10

-0.6 -0.4 -0.2 0.2 0.4 0.6 0.8
F 8 3, 0<

-1.0

-0.5

0.5

F 8 1, 1< Why does this work?

I Consider 〈φφφφ〉 with ∆(φ) = 0.515.

I Project~f∆,l to plane:

(∂1
a∂

1
bF∆,l, ∂

3
aF∆,l)

I Plot

∆ = ∆unitarity to ∆unitarity + ε

l = 0 to 10

I ε parametrized range of ∆ we consider.

I Take ε = 0 so CBs at unitarity bound.
⇒ vectors in “cone”
⇒ no crossing symmetry.
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I Plot
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⇒ no crossing symmetry.
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3
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I Plot

∆ = ∆unitarity to ∆unitarity + ε

l = 0 to 10

I ε parametrized range of ∆ we consider.

I For ε large enough
⇒ vectors span plane.
⇒ In particular can find p∆,l > 0∑

p∆,l~f∆,l = 0

⇒ crossing sym. can be satisfied!!
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1
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3
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I Plot

∆ = ∆unitarity to ∆unitarity + ε

l = 0 to 10

I ε parametrized range of ∆ we consider.

I When ε big enough
⇒ vectors no longer in “cone”
⇒ crossing sym. can be satisfied.
⇒ Requires 0.76 ≤ ∆0 ≤ 2.099.
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Linear Programming
Putting Crossing Symmetry on a (big) Computer

I Plots visually intuitive but hard to work with.
I Want to systematically check crossing symmetry.

Algorithm
1 Fix a putative spectrum S = {(∆, l)}.
2 If there exists a vector Λ = (λ(0,0), λ(1,0), λ(0,1), λ(1,1), . . . ) such that

Λ(F) :=
∑
m,n

λ(m,n)∂
m
a ∂

n
bF∆,l > 0

for all (∆, l) ∈ S then:

S cannot be the spectrum of a consistent CFT.

I To make this tractable discretize possible ∆.
I Then finding such Λ is a linear optimization problem1.
I Efficient algorithms and implementations: e.g. IBM’s Cplex.
1Without the optimization :-)
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Solving the 3d Ising Model with
Crossing Symmetry??

20



Spectrum of the Ising Model
Constraints from Crossing Symmetry

Is the putative spectrum of 3d Ising consistent with crossing symmetry?

Field: σ ε ε′ Tµν Cµνρλ
Dim (∆): 0.5182(3) 1.413(1) 3.84(4) 3 5.0208(12)
Spin (l): 0 0 0 2 4

Constraining the spectrum

I Consider crossing symmetry of

〈σ(x1)σ(x2)σ(x3)σ(x4)〉

I What are possible values of ∆ε as a function of ∆σ?
I Argue by exclusion: show certain values inconsistent with crossing.
I How do we determine this?

1 Fix ∆σ .
2 Check crossing symmetry assuming the next scalar has ∆ε > 1.

(Note: we do not fix ∆ε to its Ising model value.)
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Putative Spectrum: Gapped Scalar Sector

Allow any spectrum but impose “Gap” in scalar sector

Unitarity Bound

Gap

Ε

Σ

0 2 4
L0

1

2

3

4

5

D
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Spectrum of the Ising Model
Assuming gap in scalar spectrum between ∆σ and ∆ε

Plot: possible values of second lightest operator, ∆ε, as function of ∆σ .

Ising

0.50 0.55 0.60 0.65 0.70 0.75 0.80
DΣ1.0

1.2

1.4

1.6

1.8

DΕ

Ising

0.510 0.515 0.520 0.525 0.530
DΣ1.38

1.39

1.40

1.41

1.42

1.43

1.44
DΕ

1 Valid range of (∆σ,∆ε) restricted by crossing symmetry.
2 Ising model values seem to sit at a “kink”.
3 Note: this plot is completely general. Only a “gap” is assumed.
4 Crossing symmetry excludes ≈ 1

3 error bar region.
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Putative Spectrum: Only One Relevant Z2 Singlet

Allow any spectrum but allow only one relevant Z2 operator, ε

Unitarity Bound

Gap

Gap

Ε '

Ε = Εmax

Σ

0 2 4
L0

1

2

3

4

5

D
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Spectrum of the Ising Model
Assuming only one relevant scalar (i.e. ε with ∆ε < 3)

Ising model has only one irrelevanat scalar so lets try:
I Impose gap between ε and next scalar, ε′.
I ε′ irrelevant so ∆ε′ > 3 (but we also consider > 3.4, 3.8).

Plot of allowed (∆σ,∆ε) region assuming:

Next scalar in spectrum ε′: ∆ε′ > 3

Ising

0.50 0.55 0.60 0.65 0.70 0.75 0.80
DΣ1.0

1.2

1.4

1.6

1.8

DΕ

Allowed Region Assuming DHΕ'L³3

Ising

0.510 0.515 0.520 0.525 0.530
DΣ1.38

1.39

1.40

1.41

1.42

1.43

1.44
DΕ

HZoomedL Allowed Region Assuming DHΕ'L³3
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Plot of allowed (∆σ,∆ε) region assuming:

Next scalar in spectrum ε′: ∆ε′ > 3.4
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0.50 0.55 0.60 0.65 0.70 0.75 0.80
DΣ1.0

1.2

1.4

1.6

1.8
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Allowed Region Assuming DHΕ'L³3.4
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0.510 0.515 0.520 0.525 0.530
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Spectrum of the Ising Model
Assuming only one relevant scalar (i.e. ε with ∆ε < 3)

Ising model has only one irrelevanat scalar so lets try:
I Impose gap between ε and next scalar, ε′.
I ε′ irrelevant so ∆ε′ > 3 (but we also consider > 3.4, 3.8).

Plot of allowed (∆σ,∆ε) region assuming:

Next scalar in spectrum ε′: ∆ε′ > 3.8

Ising

0.50 0.55 0.60 0.65 0.70 0.75 0.80
DΣ1.0

1.2

1.4

1.6

1.8

DΕ

Allowed Region Assuming DHΕ'L³3.8

Ising

0.510 0.515 0.520 0.525 0.530
DΣ1.38

1.39

1.40

1.41

1.42

1.43

1.44
DΕ
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Spectrum of the Ising Model
Inverting the Logic: Bounding ε′ assuming ε has maximal dimension.

Assuming ∆ε takes maximal allowed value (as function of ∆σ):

Plot: possible values of ∆ε′ vs. ∆σ

Ising

0.50 0.52 0.54 0.56 0.58 0.60
DΣ2.0

2.5

3.0

3.5

4.0

4.5
DΕ'

1 Again Ising model seems to stand out.
2 At Ising point CFT third scalar ε′ can be irrelevant.
3 “Kink” or “cusp” in (ε, σ) plot due to rapid rearrangement of spectrum.
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Spectrum of the Ising Model
Spin 2 sector.

Higher spin?
I Stress-tensor Tµν fixed by symmetry: ∆ = 3.
I What about next spin 2 field: T ′µν .

Plot ∆T′ vs ∆σ (i.e. maximal gap in spin 2 spectrum):
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Again Ising region seems very special!
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Central Charge of the Ising Model
Going beyond the Spectrum.

What else?
I Putting the optimization back in linear optimization can constrain OPE coefficients.

I Coefficient of stress-tensor CB, F3,2, fixed by conf sym to be:

p3,2 =
∆2
σ

CT
with CT ∼ 〈TµνTρλ〉

Plot Min(CT/Cfree
T ) vs ∆σ:

I Compare CT to “free” value
(∆σ = 0.5).

I No assumptions in this plot!

I Again Ising region very special!
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Summary
Results so far.

So what have we shown?

Conformal Blocks in Any Dimension
General Stuff

I A way to efficiently compute (tabulate) CBs in any dim around z = z̄.

I Although a general expression would be nice this suffices for crossing symmetry.

The 3d Ising Model
I Crossing symmetry applied to 〈σσσσ〉 already very constraining.
I Even without assumptions Ising model stands out.
I With a few simple assumptions:

1 Gap in scalar spectrum with: σ, ε < 3 and ε′ > 3.
2 Gap in spin 2 spectrum T ′ > 4.

can restrict “landscape” of CFTs to neighborhood of Ising point.
I From this follows the hope:

Could crossing symmetry allow us to classify & solve CFTs in any dim?
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The Future
What’s left to do?

Honing in on the Ising model?
I Lets add another correlator: 〈σσεε〉.
I CT and Cσσε appear in both correlators⇒ should give strong constraints.

I “Saturation” bounds seems to give unique answers close to Ising model.

I Suggests strategy:

1 For each O find max ∆O as function of ∆σ .
2 Fixing ∆O to its max look for next operator O′ as function of ∆σ .
3 Iterate over-and-over to get full spectrum.
4 Iterate over spins imposing bounds from lower spins.

Finding new CFTs
I 3d Ising model follows largely from minimal constraints on spectrum.

I Adding symmetries (e.g. O(N)) expect stronger constraints
⇒ isolate more CFTs.

I Can we use this to classify CFTs using only global symmetry and crossing
symmetry (as in D = 2)?
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The Future
What’s left to do?

AdS/CFT Applications
I Generalized Free Field CFTs are dual to free (N ∼ ∞) fields in AdS

[Heemskerk et al, SE and Papadodimas]

I Higher spin GFFs are “multi-particle states” in bulk:

O ∼ φ∂{µ1 . . . ∂µn}φ

with ∆O = n + 2∆φ and ∆φ >
D−2

2 .

I Tentative result: Bound on gap for any spins is saturated by GFFs.

I If true then: leading 1/N2 always negative!

Other stuff
I Technology still begin refined⇒ lots to do!

I Seem to get new bounds/results all the time.

I Only just begun to take advantage of conformal symmetry in D > 2.

I Lots to do. . .
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Thanks
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