# Higher Spin Gravity from 2d CFT

Tom Hartman Institute for Advanced Study

Bits, Branes, Black Holes @ KITP March 29, 2012

# **Simplified Holography**

Introduction Minimal Model CFTs 3d Higher Spin Gravity Duality Black Holes

### A goal

• Find a holographic duality simple enough to solve, but complicated enough to look like gravity in d>2.

### This talk

- Simple bulk: 3d higher spin gravity
- Simple boundary: 2d CFT with  $\mathcal{W}_N$  symmetry

### **Motivation**

Introduction Minimal Model CFTs 3d Higher Spin Gravity Duality Black Holes

 $\triangleright$ 

### What makes holography tick?

- How does the radial direction emerge from renormalization? in free field theory: Douglas, Mazzucato, Razamat '10
- What is a black hole? (Coarse-graining of microstates, information retrieval, etc.)

• How general is holography? (de Sitter, cosmology, etc.)

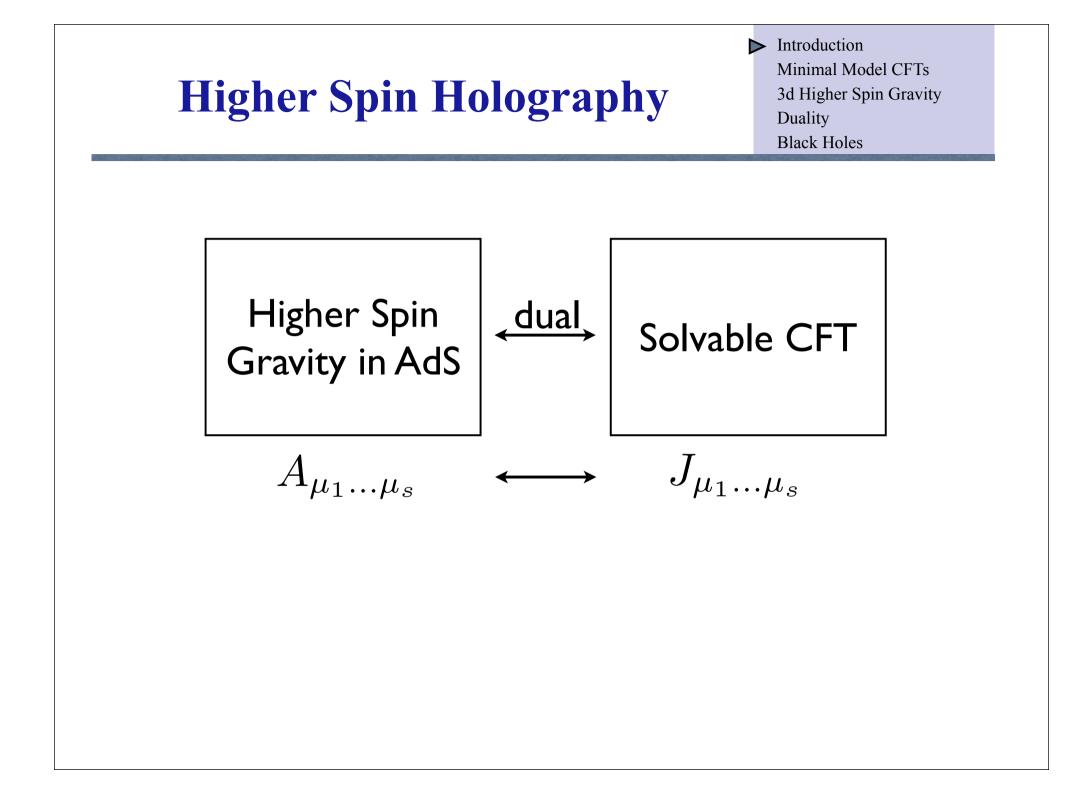
**Higher Spin Gravity** 

Introduction
 Minimal Model CFTs
 3d Higher Spin Gravity
 Duality
 Black Holes

Gravity plus large (or infinite) number of massless fields,

 $A_{\mu_1\cdots\mu_s}$ 

with spins


$$s = 0, 1, 2, 3, 4, \cdots,$$

Spin-2 = graviton. Massless higher spin fields mean very large gauge symmetry extending diffeomorphism invariance.

Consistent interacting theory exists for  $\Lambda \neq 0$ 

Fradkin and Vasiliev, 1987 Vasiliev, 1990

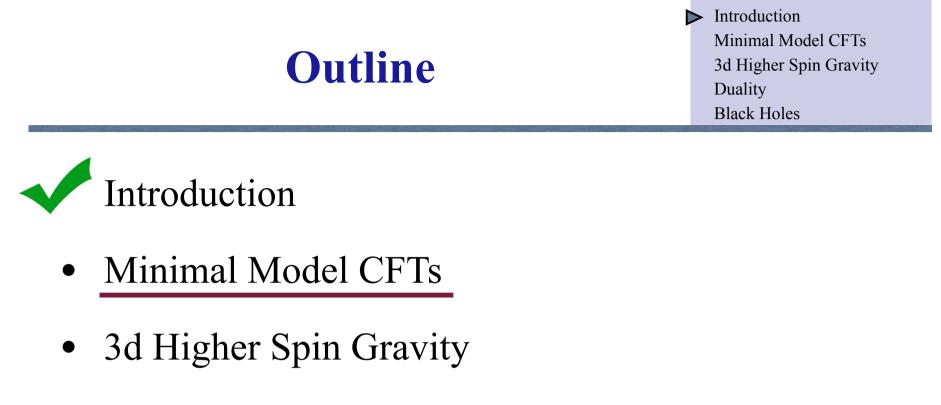
Toy model for string theory in the stringy limit



# **Higher Spin Dualities**

### <u>d=4 gravity</u>

- Vasiliev gravity in  $AdS_4 \leftrightarrow O(N) CFT_3$
- Similar construction in 4d de Sitter


### <u>d=3 gravity</u>

- Vasiliev gravity in  $AdS_3 \leftrightarrow W_N \ CFT_2$ 
  - Gravity side is simpler than 4d
  - Interacting, solvable CFT duals

Introduction
 Minimal Model CFTs
 3d Higher Spin Gravity
 Duality
 Black Holes

Fronsdal '79 Witten Sundborg Mikhailov Sezgin & Sundell Klebanov & Polyakov Giombi & Yin etc...

Campoleoni et al Henneaux & Ray Gaberdiel & Gopakumar Gaberdiel & TH etc.



- The duality
- Black holes

# **Minimal Model CFTs**

Introduction
Minimal Model CFTs
3d Higher Spin Gravity
Duality
Black Holes

### BPZ Virasoro Minimal Models

- Central charge c < 1
- Ising model, etc
- Rational: finite number of primaries

### W<sub>N</sub> Minimal Models

- c < N 1; allows for large N, classical limit in the bulk
- Extended conformal symmetry: W<sub>N</sub> instead of Virasoro
- Rational and exactly solvable

#### Belavin, Polyakov, Zamolodchikov '84

### Extende Conformal Symmetry A Higher Spin Gravity Duality Black Holes

### <u>3d CFT</u>

• Maldacena and Zhiboedov 2011: A single conserved current with spin >2 implies an infinite set of conserved higher spin currents, and the <JJJ...> correlators are those of a free theory.

### <u>2d CFT</u>

- There is no such theorem. Interacting theories with a finite set of higher spin currents can be constructed explicitly.
- Definition of W-algebra: An extension of the Virasoro algebra by higher spin currents.
- Example:  $\mathcal{W}_3$ 
  - Extended chiral algebra: spin-2: T(z) spin-3: W(z)

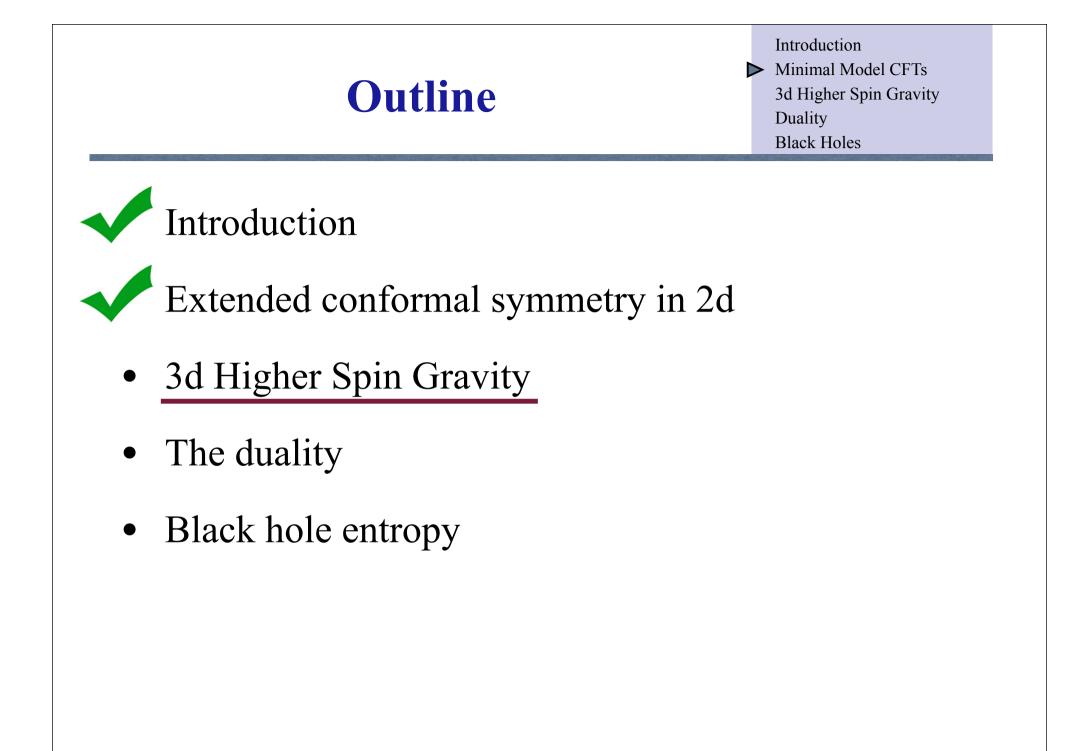
Zamolodchikov '85

- Example:  $\mathcal{W}_N$ 
  - ► Higher spin currents of all spins s=2,...,N

# **W<sub>N</sub> Minimal Models**

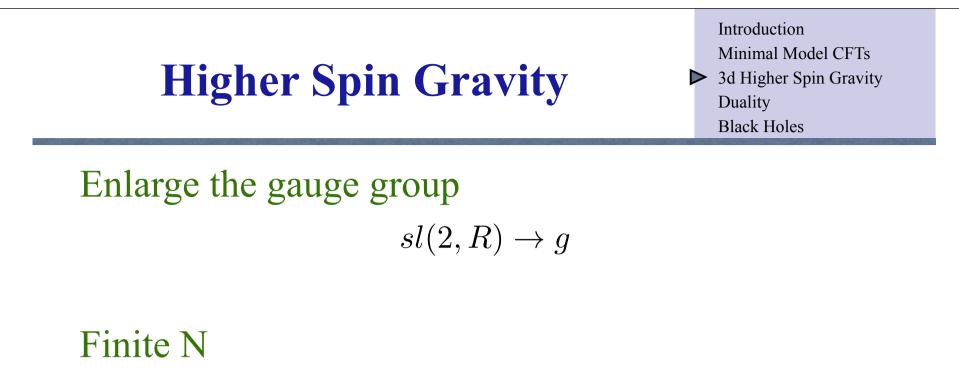
Introduction
Minimal Model CFTs
3d Higher Spin Gravity
Duality
Black Holes

 $W_N$  specifies the symmetries. The simplest CFTs with this symmetry are the "minimal models":


$$\frac{SU(N)_k \times SU(N)_1}{SU(N)_{k+1}} \qquad c < N-1$$

- N=2 gives the c < 1 Virasoro minimal models -- Ising, etc.
- For  $k = \infty$  this is the singlet sector of N-1 free bosons

### These are solvable CFTs, ie we can compute:


- Dimensions and charges of primary operators
- Partition function
- All correlation functions
- W-algebra commutation relations

### ... at least in principle



### Comments:

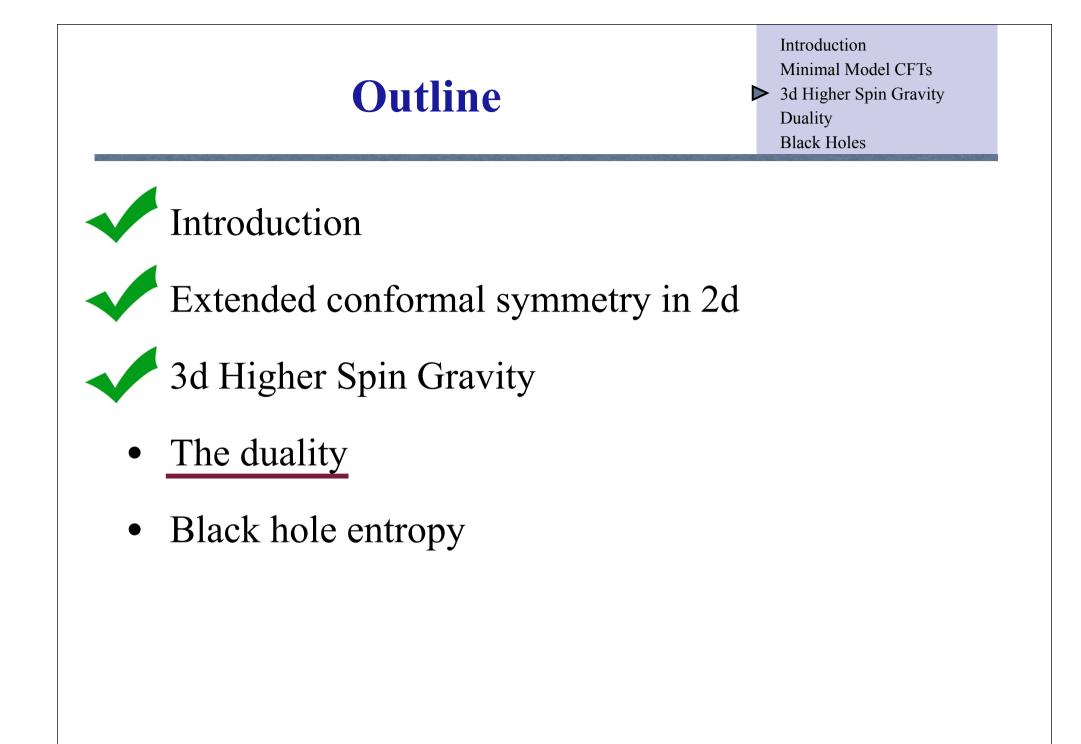
- This sector of the theory is topological. Any extra matter is not.
- These theories are inequivalent. For our purposes, the CS action is just a rewriting of the Einstein action in convenient variables, and should not be thought of as a gauge theory.



$$g = sl(N)$$
, spins  $= 2, 3, \dots, N$ 

Infinite N (all spins >1)

$$g = sl(\infty)$$
  
$$g = hs(\lambda) \leftarrow \text{non-integer } sl(\lambda)$$


Fradkin, Vasiliev '80s Blencowe '88 etc.

# **Higher Spin Gravity**

Introduction
 Minimal Model CFTs
 3d Higher Spin Gravity
 Duality
 Black Holes

### Comments

- We will discuss the one-parameter family of higher spin theories based on the infinite Lie algebra  $hs(\lambda)$
- Translation back to metric-like variables is known implicitly, but complicated
- In d > 3, action is unknown, and truncation to any finite number of higher spins is impossible



# The Conjecture

# Introduction Minimal Model CFTs 3d Higher Spin Gravity Duality Black Holes

Gaberdiel, Gopakumar '10

### A duality between

• The 3d higher spin gravity theory based on  $hs(\lambda)$  plus two additional scalar matter fields  $\phi_{\pm}$  with masses

$$M^2 = -1 + \lambda^2$$

• The 2d  $W_N$  minimal model CFT at level k, with large N

with the tunable 't Hooft-like coupling

$$\begin{split} \lambda &= \lim_{N,k \to \infty} \frac{N}{N+k} \quad , \quad 0 < \lambda < 1 \\ c &\approx N(1-\lambda^2) \end{split}$$



Introduction
 Minimal Model CFTs
 3d Higher Spin Gravity
 ▶ Duality
 Black Holes

Symmetries Spectrum of Primaries Correlation functions Black holes

# **Bulk Symmetries**

Introduction
 Minimal Model CFTs
 3d Higher Spin Gravity
 ▶ Duality
 Black Holes

Brown & Henneaux computed asymptotic symmetries in ordinary AdS<sub>3</sub> gravity:

$$sl(2) \rightarrow Virasoro$$

In higher spin gravity, there is a similar enhancement to a W-algebra:

$$hs(\lambda) \rightarrow \mathcal{W}_{\infty}(\lambda)$$

Campoleoni et al Henneaux & Ray Gaberdiel & TH

 $\mathcal{W}_{\infty}(\lambda)$  is a nonlinear algebra with an infinite number of conserved currents.



Introduction
 Minimal Model CFTs
 3d Higher Spin Gravity
 ▶ Duality
 Black Holes

The symmetry in the CFT at finite N is

 $\mathcal{W}_N$ 

So the duality requires

$$W_{\infty}[\lambda] = \lim_{N,k \to \infty} W_N \quad \text{with} \quad \lambda = \frac{N}{N+k}$$

This is unproven but appears to be true  $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ 

Gaberdiel, TH Gaberdiel, Gopakumar, TH, Raju

- (Evidence = properties of degenerate representations)
- The higher spin algebra  $hs(\lambda)$  is hiding inside  $\mathcal{W}_N$  in the 't Hooft limit

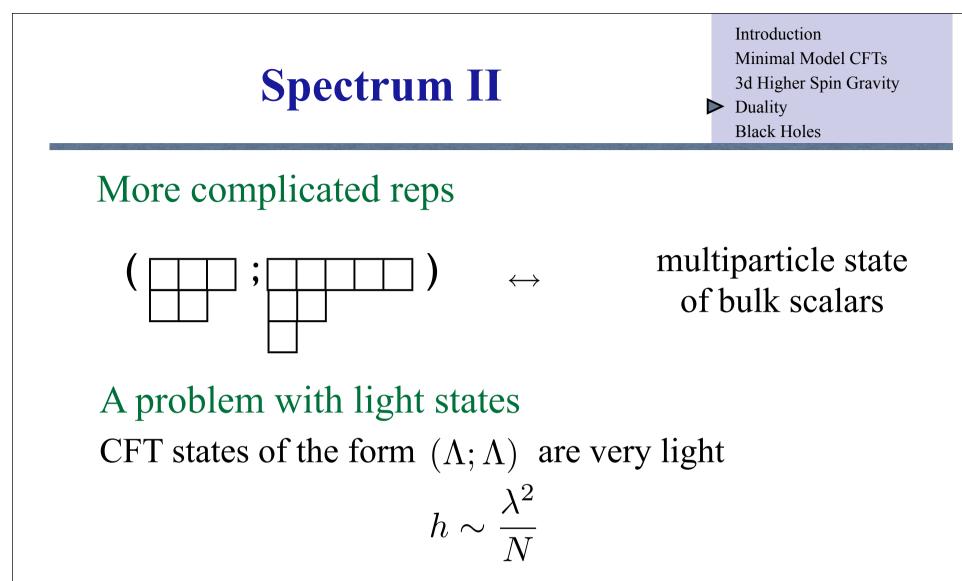


### Bulk

Gauge fields + two complex scalars, with

$$h_{\pm} = \frac{1}{2} \left( \frac{3}{2} \pm \sqrt{\frac{9}{4} + m^2 \ell^2} \right) = \frac{1 \pm \lambda}{2}$$

### CFT


States in the coset theory are labeled by two representations of SU(N). Examples:

$$\frac{SU(N)_k \times SU(N)_1}{SU(N)_{k+1}}$$

$$(0; \square)$$
  $h = \frac{1-\lambda}{2}$   
 $(\square; 0)$   $h = \frac{1+\lambda}{2}$ 

dual to first scalar

dual to other scalar



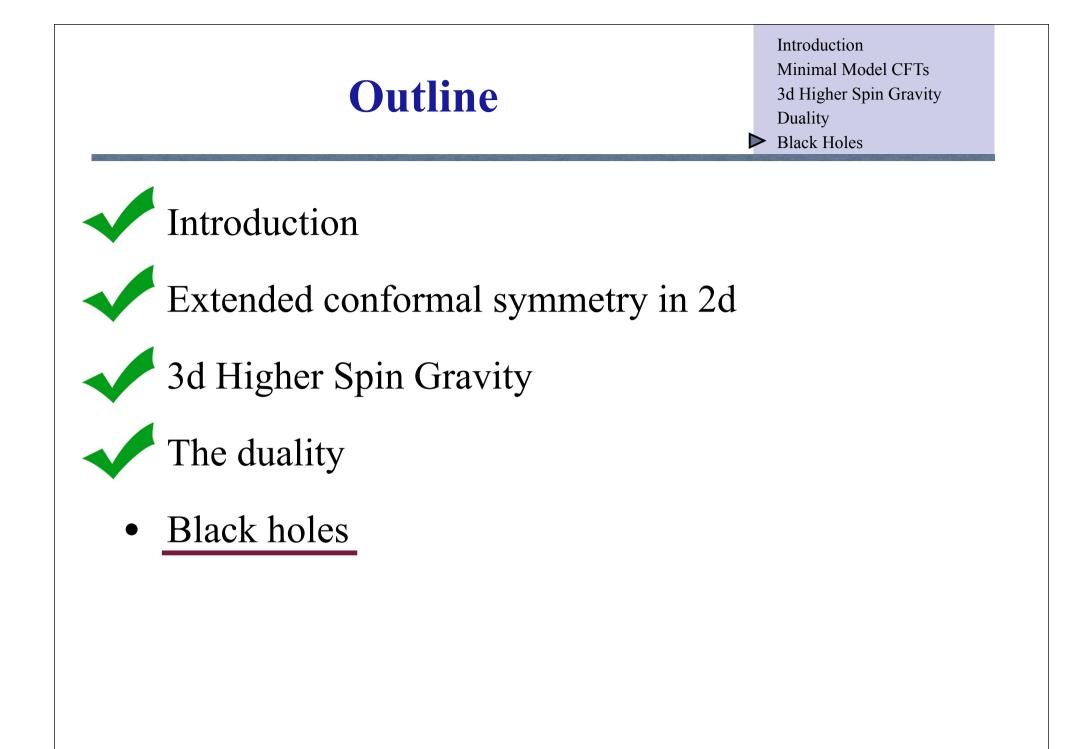
but have (so far) no clear bulk interpretation. cf: S. Shenker's talk.

# **Spectrum & Correlators**

Introduction
 Minimal Model CFTs
 3d Higher Spin Gravity
 ▶ Duality
 Black Holes

### Possible Escapes:

- Drop one of the scalars; resulting theory is consistent perturbatively but not modular invariant Chang & Yin
- Lots of classical solutions in the bulk, which account for these additional states Castro, Gopakumar, Gutperle, Raeymaekers

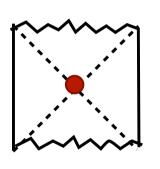

### Quick Summary

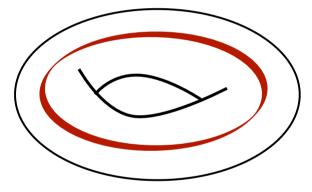
• Excluding light states, bulk spectrum and CFT spectrum match exactly as  $N \to \infty$ 

Gaberdiel & Gopakumar Gaberdiel, Gopakumar, TH, Raju

- The `t Hooft limit is nice: ie, correlators factorize.
- Certain correlators have been computed in Vasiliev theory in the bulk, and matched to the CFT
   Chang & Yin

Ammon, Kraus, & Perlmutter





# Black Holes in Higher Spin Gravity

Introduction Minimal Model CFTs 3d Higher Spin Gravity Duality Black Holes

### What is a black hole?

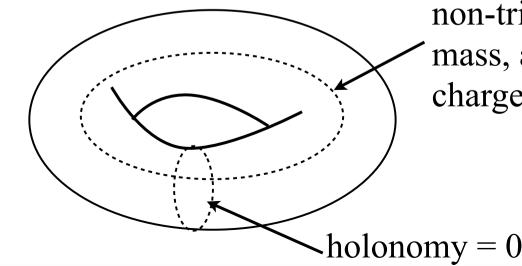
- Lorentzian: Classical solution with a horizon
- Euclidean: smooth, solid torus





### However,

- The metric and gauge fields mix under higher spin gauge transformations
- Thus Ricci and causal structure are *not* gauge invariant.
  - What is "smooth"? What is a "horizon"?


# Black Holes in Higher Spin Gravity

Introduction Minimal Model CFTs 3d Higher Spin Gravity Duality Black Holes

- The Chern-Simons description is useful to define black holes in a gauge-invariant way
- Gauge invariant data = holonomies of the Chern-Simons gauge field  $A \in hs(\lambda)$

Pexp  $\oint A$ 

"Black hole" = flat connection on a torus, with vanishing holonomy around one cycle



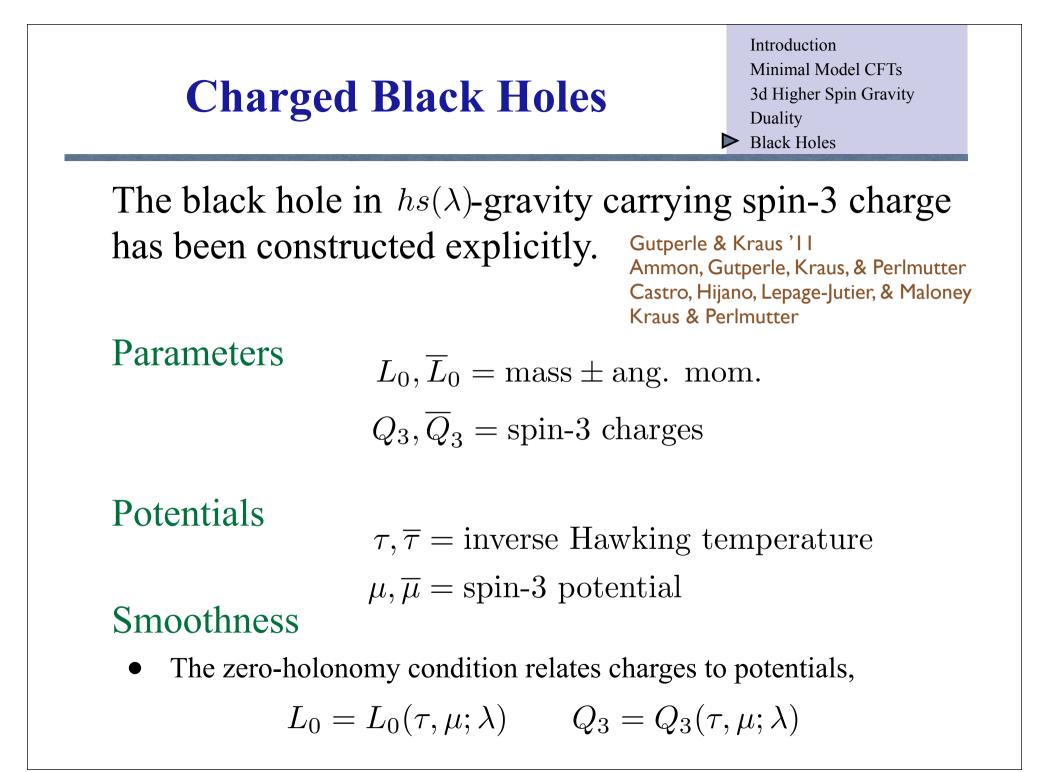
non-trivial holonomy encodes mass, ang. mom., and higher spin charges

# **Phase structure?**

Introduction
 Minimal Model CFTs
 3d Higher Spin Gravity
 Duality
 Black Holes

BTZ black hole dominates the free energy at asymptotically high temperatures,

 $T \gg c$ 


where the CFT obeys the Cardy formula. (cf. 4d)

Otherwise the phase structure is completely unknown, in both bulk and CFT.

- Is there a Hawking-Page transition at  $T \gtrsim 1$  ?
- Or perhaps a Shenker-Yin-like transition at Planck temperatures?
- Do other saddles dominate at other temperatures?

Although exact CFT partition function is known, it is too complicated to solve this problem by brute force.

Instead I will discuss charged black holes at very high temperature.



# Aside: RG Flows

Introduction Minimal Model CFTs 3d Higher Spin Gravity Duality Black Holes

Ammon, Gutperle, Kraus, & Perlmutter Turning on a higher spin potential is like deforming the CFT by an irrelevant operator,

$$S_{cft} \to S_{cft} + \mu \int d^2 z W(z)$$

Therefore these black holes violate the original Brown-Henneaux boundary conditions.

### However:

- It *is* asymptotically AdS in a different higher-spin gauge
- A different set of higher spin fields are identified as "metric" in the UV
- Thus these black holes describe an RG flow between two CFTs

# **Black Hole Entropy**

Introduction Minimal Model CFTs 3d Higher Spin Gravity Duality Black Holes

Horizon area / Wald entropy is not higher-spin-gauge invariant. But Wald entropy was designed to integrate the first law of thermodynamics, so we might as well just do this directly:

$$L_0 \sim \partial_\tau \log Z$$
  

$$Q_3 \sim \partial_\mu \log Z$$
  

$$= \operatorname{Tr} e^{2\pi i (\tau L_0 + \mu Q_3)}$$

Smoothness (zero-holonomy) condition gives the charges. Integrating the thermodynamic relations gives the free energy,

Thermodynamics  

$$Introduction
Minimal Model CFTs
3d Higher Spin Gravity
Duality
Black Holes
$$Bulk partition function$$

$$\log Z = \frac{i\pi c}{12\tau} \left[ 1 - \frac{4}{3} \frac{\mu^2}{\tau^4} + \frac{400}{27} \frac{\lambda^2 - 7}{\lambda^2 - 4} \frac{\mu^4}{\tau^8} - \frac{1600}{27} \frac{5\lambda^4 - 85\lambda^2 + 377}{(\lambda^2 - 4)^2} \frac{\mu^6}{\tau^{12}} + \cdots \right]$$
entropy =  $(1 - \tau \partial_{\tau} - \mu \partial_{\mu}) \log Z$   
Kraus & Perlmutter$$

- this should equal the on-shell action of the Vasiliev theory, but this computation has not been done.
- first term is the Cardy formula Strominger '97

### CFT partition function

Gaberdiel, TH, Jin

- Compute  $Z = \operatorname{Tr} e^{2\pi i (\tau L_0 + \mu Q_3)}$  in a CFT with  $\mathcal{W}_{\infty}(\lambda)$
- At high temperature, result agrees exactly with the bulk
- In what regime does this formula apply to minimal models?

## Conclusions

Introduction Minimal Model CFTs 3d Higher Spin Gravity Duality Black Holes

### Summary

• 3d higher spin gravity = 2d CFT with  $W_N$  symmetry

### The Future

• Can we use these models to tackle difficult issues in holography and quantum gravity, like RG, de Sitter space, information paradox, etc.?

Jevicki and Jin Douglas, Mazzucato, & Razamat etc.