## Accelerated Expansion and AdS/CFT

#### Thomas Hertog

Institute for Theoretical Physics University of Leuven, Belgium

### with JB Hartle, SW Hawking

arXiv:1205.....

arXiv:1111.6090

arXiv:0803.1663

#### Can AdS/CFT be applied to cosmology?

- Time-dependent Lorentzian AdS/CFT
  - $\rightarrow "cosmological" \ backgrounds$

#### Can AdS/CFT be applied to cosmology?

- Time-dependent Lorentzian AdS/CFT
  - → "cosmological" backgrounds
- Analytic continuation from Euclidean AdS
  - → wave function of perturbations

#### Wave function of the universe:

 Euclidean AdS/CFT [Horowitz & Maldacena '04]

$$\exp(-I_{ADS}^{R}[h,\chi]/\hbar) = Z_{QFT}[h,\chi]$$

 No-boundary State [Hartle & Hawking '83]

$$\Psi[h,\chi] = \exp(-I_{dS}[h,\phi]/\hbar)$$

This talk: connect both ideas.

### **Motivation**

- precise formulation of no-boundary state
- singularity resolution
- theoretical foundations of inflation
- probabilities in eternal inflation

## **No-Boundary State**

$$\Psi[^3g,\chi] = \int_C \delta g \delta \phi \exp(-I_{dS}[g,\phi]/\hbar)$$

"The amplitude of configurations  $({}^3g,\chi)$  on a three-surface  $\Sigma$  is given by the integral over all regular metrics g and matter fields  $\phi$  that match  $({}^3g,\chi)$  on their only boundary." [Hartle & Hawking '83]



#### **Saddle Point Limit**

$$\Psi[^3g,\chi] \approx \exp\{[-I_{dS}(^3g,\chi)]/\hbar\}$$



$$I_{dS}(^{3}g,\chi) = I_{R}(^{3}g,\chi) - iS(^{3}g,\chi)$$

#### WKB Interpretation

$$\Psi[^{3}g,\chi] \approx \exp\{[-I_{R}(^{3}g,\chi) + iS(^{3}g,\chi)]/\hbar\}$$

Lorentzian space-time evolution emerges if

$$|\nabla_A I_R| \ll |\nabla_A S|$$

The predicted classical histories are

$$p_A = \nabla_A S$$

and have conserved probabilities

$$P_{history} \propto \exp[-2I_R/\hbar]$$

No-boundary state  $\rightarrow$  prior on multiverse

$$ds^2 = d\tau^2 + g_{ij}(\tau, x)dx^i dx^j, \quad \phi(\tau, x)$$



Tuning at SP:  $\phi(0) = \phi_0 e^{i\gamma}$ 

#### **Example**

Homogeneous/isotropic ensemble:  $\Psi[b,\chi]$ 

$$ds^{2} = d\tau^{2} + a^{2}(\tau)d\Omega_{3}, \quad \phi(\tau)$$
$$V(\phi) = \Lambda + \frac{1}{2}m^{2}\phi^{2}$$

Classical evolution requires tuning:



 $\rightarrow$  multiverse of FLRW backgrounds

## **Probability measure**



$$I(v) = \frac{3\pi}{2} \int_C d\tau a [a^2(H^2 + 2V(\phi)) - 1]$$

$$I_R(\chi) \approx -\frac{\pi}{4V(\phi_0)}$$

#### **Probability measure**



$$I(v) = \frac{3\pi}{2} \int_C d\tau a [a^2(H^2 + 2V(\phi)) - 1]$$

$$I_R(\chi) \approx -\frac{\pi}{4V(\phi_0)}$$

Including perturbations:

$$I_R(\delta\zeta_n) \approx +(\epsilon/H^2)n^3(\delta\zeta_n)^2$$

### **Inflation**

$$p_A = \nabla_A S$$



$$\hat{h} \approx m\hat{\phi}$$

No-boundary state predicts inflation

## Was there a Beginning?





large  $\phi_0$ 

small  $\phi_0$ 

## Was there a Beginning?



Saddle points everywhere regular

→ singularities in classical extrapolation no obstacle to asymptotic predictions

## **No-Boundary State: ADS form**





e.g. 
$$a(\tau) = \frac{1}{H}\sin(H\tau), \qquad \phi(\tau) = 0$$

horizontal part:  $ds^2 = d\tau^2 + \frac{1}{H^2}\sin^2(H\tau)d\Omega_3^2$ 

vertical part:  $ds^2 = -dy^2 + \frac{1}{H^2}\cosh^2(Hy)d\Omega_3^2$ 





## Representations

Different representation of same solution:



## Representations



vertical part: Euclidean ADS

$$ds^2 = -dy^2 - \frac{1}{H^2}\sinh^2(Hy)d\Omega_3^2$$

## Representations



With matter: Euclidean ADS domain wall



• V acts as effective -V in AdS regime because the signature of the complex saddle point metric varies in the  $\tau$ -plane,

$$V_{eff} = -V$$

- Somewhat reminiscent of Domain Wall/Cosmology correspondence in SUGRA.
  [Cvetic; Skenderis, Townsend, Van Proeyen]
- Realized here at the level of the wave function of the universe which involves a given complexified theory.

### **Saddle Point Action**

$$I_{dS}(b,\chi) = I_v + I_h$$



• Contribution from vertical part:

$$I_v = \int_v I_{dS}[g, \phi] = -I_{AdS}^R(^3\tilde{g}, \tilde{\chi}) + S_{ct}(a, \tilde{\chi})$$

where  $I_{AdS}^R$  is finite when  $y \to \infty$ .

$$\phi = \alpha e^{-\lambda_{-}y} + \beta e^{-\lambda_{+}y}$$

### **Saddle Point Action**

$$I_{dS}(b,\chi) = I_v + I_h$$



• Contribution from horizontal part:

$$I_h = \int_h I[g, \phi] = -S_{ct}(a, \tilde{\chi}) + iS_{ct}(b, \chi)$$

and no finite contribution.

## **Asymptotic Structure**

Expanded in small  $u \equiv e^{i\tau} = e^{-y+ix}$ ,

$$g_{ij}(u,\Omega) = \frac{-1}{4u^2} [h_{ij}(\Omega) + h_{ij}^{(2)}(\Omega)u^2 + h_{ij}^{(-)}(\Omega)u^{\lambda_-} + h_{ij}^{(3)}(\Omega)u^3 + \cdots]$$

$$\phi(u,\Omega) = u^{\lambda_{-}}(\alpha(\Omega) + \alpha_{1}(\Omega)u + \cdots) + u^{\lambda_{+}}(\beta(\Omega) + \beta_{1}(\Omega)u + \cdots)$$

with  $\lambda_{\pm} \equiv \frac{3}{2}[1 \pm \sqrt{1 - (2m/3)^2}]$ 

and arbitrary 'boundary values'  $(h_{ij}, \alpha)$ .

$$I_h = \int_h I[g, \phi] = -S_{ct}(a, \tilde{g}, \tilde{\chi}) + iS_{ct}(b, \tilde{g}, \chi)$$

A universal AdS/dS connection follows directly from an asymptotic analysis

#### **Saddle Point Action**



$$I_{dS}(^{3}g,\chi) = -I_{AdS}^{R}(^{3}\tilde{g},\tilde{\chi}) + iS_{ct}(^{3}g,\chi)$$

with

$$S_{ct}(^{3}g,\phi) = a_{0} \int \sqrt{^{3}g} + a_{1} \int \sqrt{^{3}g} R^{(3)} + \cdots$$

No-Boundary State:

$$\Psi[b, \tilde{h}, \chi] = \exp\{[+I_{AdS}^R(\tilde{h}, \tilde{\chi}) - iS_{ct}(b, \tilde{h}, \chi)]/\hbar\}$$

## Two Sets of Saddle points

$$\phi(\upsilon) = \phi(\upsilon_2) = \chi, \qquad \tilde{g}_{ij}(\upsilon) = \tilde{g}_{ij}(\upsilon_2)$$

$$\tilde{g}_{ij}(v) = \tilde{g}_{ij}(v_2)$$





COMPLEX  $\phi_0$ 

REAL  $\phi_0$ 

# Accelerated Expansion and AdS/CFT

## Holographic Cosmology

No-boundary State:

$$\Psi[b, \tilde{h}, \chi] = \exp\{[+I_{AdS}^R(\tilde{h}, \tilde{\chi}) + iS_{ct}(b, \tilde{h}, \chi)]/\hbar\}$$

Euclidean AdS/CFT:

$$\exp(-I_{AdS}^R[\tilde{h}, \tilde{\chi}]/\hbar) = Z_{QFT}[\tilde{h}, \tilde{\chi}]$$

$$\Psi[b, \tilde{h}, \chi] = \frac{1}{Z_{QFT}[\tilde{h}, \tilde{\chi}, \epsilon]} \exp\{[iS_{ct}(b, \tilde{h}, \chi)]/\hbar\}$$

with complex source  $ilde{\chi}$  and UV cutoff  $\epsilon \sim rac{l}{b}$ 

## Cosmology with AdS Gravity

Using AdS/CFT we evaluate the holographic no-boundary state,

$$\exp(-I_{ADS}^{R}[\tilde{h}, \tilde{\chi}]/\hbar) = Z_{QFT}[\tilde{h}, \tilde{\chi}]$$

There are two sets of saddle points

## **Cosmology with AdS Gravity**

Using AdS/CFT we can evaluate the holographic no-boundary state,

$$\exp(-I_{ADS}^{R}[\tilde{h}, \tilde{\chi}]/\hbar) = Z_{QFT}[\tilde{h}, \tilde{\chi}]$$

There are two sets of saddle points

A: Real  $\tilde{\chi} \to \text{real Euclidean AdS domain walls}$ 



$$\Psi[b, \tilde{h}, \chi] \approx \exp\{[+I_{AdS}^{R}(\tilde{h}, \tilde{\chi}) - S_{ct}(b, \tilde{h}, \chi)]/\hbar\}$$

## Cosmology with AdS Gravity

Using AdS/CFT we can evaluate the holographic no-boundary state,

$$\exp(-I_{ADS}^{R}[\tilde{h}, \tilde{\chi}]/\hbar) = Z_{QFT}[\tilde{h}, \tilde{\chi}]$$

There are two sets of saddle points

B: Complex  $\tilde{\chi} \to \text{complex Euclidean domain walls}$ 



$$\Psi[b, \tilde{h}, \chi] \approx \exp\{[+I_{AdS}^{R}(\tilde{h}, \tilde{\chi}) - iS_{ct}(b, \tilde{h}, \chi)]/\hbar\}$$

Saddle points correspond to inflationary universes

#### Remarks

$$Z_{QFT}[\tilde{h}, \tilde{\chi}] = \langle \exp \int d^3x \sqrt{\tilde{h}} \tilde{\chi} \mathcal{O} \rangle$$

- The dependence of Z on the external sources provides a cosmological measure on the space of configurations  $(b, \tilde{h}, \chi)$ .
- AdS/CFT implements no-boundary condition of regularity in saddle point limit
- Scale factor evolution arises as inverse RG flow
- Physical interpretation of counterterms in AdS

## What models?

#### What models?

$$Z_{QFT}[\tilde{h}, \tilde{\chi}] = \langle \exp \int d^3x \sqrt{\tilde{h}} \tilde{\chi} \mathcal{O} \rangle$$

- Lorentzian stability criteria too stringent
- Unitary physics in given classical background
- Ensemble of inflationary backgrounds

$$V_{AdS}(\phi) = -\Lambda - \frac{1}{2}m^2\phi^2$$



Classical evolution constrains V

# Singularity Resolution (for Gary)

# Singularity Resolution (for Gary)

$$\Psi[b, \tilde{h}, \chi] = \frac{1}{Z_{QFT}[\tilde{h}, \tilde{\chi}, \epsilon]} \exp\{[iS_{ct}(b, \tilde{h}, \chi)]/\hbar\}$$

Given an asymptotic structure one can probe the deep interior by taking the RG flow all the way down to the IR.

Singularity described by IR fixed point.

#### **Conclusion**

The no-boundary proposal and Euclidean AdS/CFT are intimately connected.

- A wave function defined in terms of a gravitational theory with a negative cosmological constant  $\Lambda$  can predict expanding universes with an 'effective' positive cosmological constant  $-\Lambda$ .
- The Euclidean AdS/CFT dual provides a more precise, 'holographic' formulation of the semiclassical no-boundary state.

#### Applications:

- Holographic calculation of CMB correlators.
- Get a better handle on eternal inflation?

#### **Euclidean Eternal Inflation**

#### [Hartle, Hawking & TH, in progress]

Proposal: replace the inner region of eternal inflation by a dual CFT on the threshold surface at  $v_i$ :



- IR CFT with a deformation set by threshold  $\phi_{EI}$ . (similar to [Maldacena '10])
- $\bullet$  <  $\mathcal{O}$  > on inner boundary replaces regularity condition at origin.