Local observables in AdS

work with Hamilton, Lifschytz, Lowe, Roy, Sarkar

recent work by Heemskerk, Marolf, Polchinski

XITP 4/10/12

Motivation

Many puzzles and properties of quantum gravity involve local measurements.

BH unitarity, CMB fluctuations

Take holography as a fundamental principle, with AdS/CFT as a concrete realization. Can we understand the emergence of (approximately) local bulk physics from the CFT?

=> We're here.

One approach, followed since the earliest days of AdS/CFT: write local field operators in the bulk in terms of the CFT.

Horowitz,...

free field:

$$\phi(x,z) = \int dx' K(x,z|x') \mathcal{O}(x')$$

interacting field:

$$\phi(x,z) = \sum_{i} \int dx' K_i(x,z|x') \mathcal{O}_i(x')$$

Free massless scalar in AdS2

$$ds^{2} = \frac{R^{2}}{z^{2}} \left(-dt^{2} + dz^{2} \right)$$

wave eqn $\Box \phi = 0$

$$\Box \phi = 0$$

bdy cond
$$\phi(t,z) \sim z\mathcal{O}(t)$$
 as $z \to 0$

as
$$z \to 0$$

Solution:
$$\phi(t,z) = \frac{1}{2} \int_{t-z}^{t+z} dt' \, \mathcal{O}(t')$$

$$t+z$$

support at spacelike separation

Free scalar in AdS_{d+1}

Generalizes pretty easily, provided you work on the complexified boundary.

(complexifying seems necessary)

Veronika + Mukund?

For a massless scalar

$$\phi(t, x, z) \sim \int dt' dy' \, \mathcal{O}(t + t', x + iy')$$
$$t'^2 + y'^2 < z^2$$

bulk point

smear over a ball of radius z

dS boundary

For a massive scalar

For a massive scalar

bulk - bdy distance

$$\phi(t, x, z) \sim \int dt' dy' (\sigma z')^{\Delta - d} \mathcal{O}(t + t', x + iy')$$

dimension

For a massive scalar

bulk - bdy distance

$$\phi(t,x,z) \sim \int dt' dy' \, (\sigma z')^{\Delta-d} \, \mathcal{O}(t+t',x+iy')$$

$$t'^2 + y'^2 < z^2$$
 dimension
$$d-\Delta$$

For a massive scalar bulk – bdy distance $\phi(t,x,z) \sim \int\limits_{t'^2+y'^2< z^2} dt' dy' \, (\sigma z')^{\Delta-d} \, \mathcal{O}(t+t',x+iy')$ dimension $-d \qquad d-\Delta$

Gauge fields

Set
$$A_z=0$$
 and

$$zA_{\mu} \sim \int_{t'^2 + y'^2 = z^2} dt' dy' j_{\mu}(t + t', x + iy')$$

shell of radius z

In AdS $_3$ a chiral current $j_-=j_-(x^-)$ is dual to a Chern-Simons gauge field with

$$A_{+} = A_{z} = 0$$

 $A_{-}(x^{+}, x^{-}, z) = j_{-}(x^{-})$

Metric

Set
$$h_{zz}=h_{z\mu}=0$$
 and

$$z^2 h_{\mu\nu} \sim \int_{t'^2 + y'^2 < z^2} dt' dy' T_{\mu\nu} (t + t', x + iy')$$

In AdS $_3$ $h_{\mu\nu}=T_{\mu\nu}$ so there's a Virasoro algebra

$$i[h_{--}(x^+, x^-, z), h_{--}(x'^+, x'^-, z')] = \frac{c}{24\pi} \delta'''(x^- - x'^-)$$

Interactions?

For scalar fields there are two approaches.

1. Solve bulk e.o.m. perturbatively, e.g.

$$\nabla \phi = \lambda \phi^2 \quad \Rightarrow \phi = \phi^{(0)} + \phi^{(1)} + \cdots$$

$$\nabla \phi^{(0)} = 0$$

$$\nabla \phi^{(1)} = \lambda (\phi^{(0)})^2$$

•

Heemskerk - Marolf - Polchinski

2. Impose bulk micro-causality

Dowker

$$\langle \int K \mathcal{O}_1 \, \mathcal{O}_2 \rangle$$
 causal by construction

$$\langle \int K \mathcal{O}_1 \, \mathcal{O}_2 \, \mathcal{O}_3 \rangle$$
 violates causality

In the 1/N expansion you can add higher-dimension multi-trace operators, with coefficients chosen to restore bulk causality. No bulk e.o.m. required!

For scalar fields the two approaches seem to be equivalent.

$$ds^{2} = -(r^{2} - 1)dt^{2} + (r^{2} - 1)^{-1}dr^{2} + r^{2}dx^{2}$$

$$\phi(t, x, r) = \int d\omega dk \, a_{\omega k} e^{-i\omega t} e^{ikx} f_{\omega k}(r)$$

$$ds^{2} = -(r^{2} - 1)dt^{2} + (r^{2} - 1)^{-1}dr^{2} + r^{2}dx^{2}$$

$$\phi(t, x, r) = \int d\omega dk \, a_{\omega k} e^{-i\omega t} e^{ikx} f_{\omega k}(r)$$

$$ds^{2} = -(r^{2} - 1)dt^{2} + (r^{2} - 1)^{-1}dr^{2} + r^{2}dx^{2}$$

$$\phi(t, x, r) = \int d\omega dk \, a_{\omega k} e^{-i\omega t} e^{ikx} f_{\omega k}(r)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$r^{-\Delta} \mathcal{O}$$
as $r \to \infty$

$$ds^{2} = -(r^{2} - 1)dt^{2} + (r^{2} - 1)^{-1}dr^{2} + r^{2}dx^{2}$$

$$\phi(t, x, r) = \int d\omega dk \, a_{\omega k} e^{-i\omega t} e^{ikx} f_{\omega k}(r)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$r^{-\Delta} \mathcal{O}$$
as $r \to \infty$

So
$$a_{\omega k}=\int e^{i\omega t}e^{-ikx}\mathcal{O}(t,x)$$
 Plug back in and formally $\phi=\int K\mathcal{O}$ with $K=\mathrm{F.T.}\left(f_{\omega k}\right)$

But $f_{\omega k}$ grows exponentially as $k \to \pm \infty$

$$ds^{2} = -(r^{2} - 1)dt^{2} + (r^{2} - 1)dt^{2}$$

$$\phi(t, x, r) = \int d\omega dk \, a_{\omega k} e^{-i\omega t} dt$$

$$\downarrow$$

$$r^{-\Delta} \mathcal{O}$$
as $r \to \infty$

So
$$a_{\omega k}=\int e^{i\omega t}e^{-ikx}\mathcal{O}(t,x)$$
 Plug back in and formally $\phi=\int K\mathcal{O}$ with $K=\mathrm{F.T.}\left(f_{\omega k}\right)$

But $f_{\omega k}$ grows exponentially as $k \to \pm \infty$

$$ds^{2} = -(r^{2} - 1)dt^{2} + (r^{2} - 1)dt^{2}$$

$$\phi(t, x, r) = \int d\omega dk \, a_{\omega k} e^{-i\omega t} dt$$

$$\downarrow$$

$$r^{-\Delta} \mathcal{O}$$
as $r \to \infty$

So
$$a_{\omega k}=\int e^{i\omega t}e^{-ikx}\mathcal{O}(t,x)$$
 Plug back in and formally $\phi=\int K\mathcal{O}$ with $K=\mathrm{F.T.}\left(f_{\omega k}\right)$

But $f_{\omega k}$ grows exponentially as $k \to \pm \infty$ Interpret as continuation to complex x.