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1. The information paradox
   
Hawking argument can be 
made rigorous

Inequality 

(arXiv: 09091038) 

2. Constructing microstates ....
   Find no regular horizons (fuzzballs) 
   (‘hair’ in string theory)

Collapsing shell: wavefunction spreads
over large phase space of solutions
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S(E) =?

Extra 
‘outwards ‘push’
from level density 
of microstates ?

4. Cosmology3. The infall problem

For generic microstates, is there a 
sense in which infalling observers
see traditional black hole physics in
some approximation ?

�
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 What is the information paradox ?

(i) The full theory of nature includes quantum gravity

(ii) There is a limit in which we get semiclassical physics,
     where quantum gravity effects are small

(iii) This semiclassical limit breaks down when curvatures are 
planck scale

(iv) Hawking ‘theorem’:  There must be a 
second mode of breakdown which does not 
involve planck scale curvature.

If there is no such second mode, then black hole evaporation will 
lead to information loss / remnants



Question for any theory of gravity: 

Is there a second mode of breakdown for the 
semiclassical approximation ?

If yes, what is it ?

What are the conditions under which it happens ?
(It must happen in the good slicing of the black hole, but
not in a good slice through our room)

Different theories of gravity behave differently ...

Canonically quantized gravity: information loss/remnants

Loop quantum gravity: slow leaking remnants ...

String theory ... Information in Hawking radiation ...



The information problem

⊗ |0�2|0�2� + |1�2|1�2�

⊗ |0�n|0�n� + |1�n|1�n�

. . .
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ΨM



Possible endpoints

M, c

very entangled state

very entangled statenothing
left

Remnant

Planck mass, planck sized 
objects with unbounded 
degeneracy

Radiation can only be 
defined by density matrix

No wavefunction can be 
written for the radiation

State of radiation is ‘mixed’ 
in a fundamental way



Let us first look at the Schwinger process ...
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Schwinger pair production

State of created quanta is entangled

↑↓ − ↓↑

Sent = ln 2

Entanglement entropy
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entangled
 pairs

Sent = N ln 2

After N steps, the leading order computation gives



Can we change something so that           becomes close to zero ?  Sent

+
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Ψ =
�

i Ci ψi ⊗ χi

ψi → Uijψj

Sent =
�

i |Ci|2 remains unchanged

scramble

Scrambling the quanta
that have already been
created does not change
the entanglement
at all ....



Large corrections, occurring very infrequently, don’t help either ...

Produce one pair
that may not be 
entangled ...

System can tunnel into 
another state with an 
exponentially small 
probability
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Small correction at each step, large number of pairs N ...
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Its not completely obvious, but it can be shown that this does not 
help either  ...
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We would get a significant modification if the earlier created quanta did 
not move away .... 
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State of new pair will be corrected to
order unity by interaction with 
earlier created quanta ...

In any normal warm body,  e.g. a star,  we can have radiation, leading to 
entanglement ...

But in the black hole we have a 
horizon, and then the older 
quanta get flushed away ...
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The black hole is described by the Schwarzschild 
metric

Structure of the black hole
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Crucial point about the black hole: 
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The infalling matter, and the created pairs, are all at low energy
on the slice

‘lab physics limit’
holds on these slices
in this region
(Traditional horizon)



r=0 horizon

t=constant

r=constant

The spacelike slices in a schematic picture

(no time-independent 
slicing possible)



Follow the wavemode from
say 1 fm to 1 Km

At 1 fm the mode must be in 
the vacuum state, else there 
would be a high energy density 
at the horizon
(would violate ‘traditional 
horizon’ assumption)

At 1 Km we have particle pairs,
with wavefunction the Hawking 
entangled state

(Transplanckian physics not 
needed; bypassed by uniqueness
of vacuum assumption)

Entangled pairs

The Hawking process



r=0 horizon

correlated pairs

Older quanta move apart

initial matter

Hawking state
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10    light years
77

(We will use a discretized 
picture for simplicity; for 
full state see e.g. Giddings-
Nelson)



Hawking’s argument
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:  Entanglement entropy 
   after N pairs have 
   been created 

The radiation state (green quanta) are highly entangled with the infalling 
members of the Hawking pairs (red quanta)
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Entangled state

If the black hole 
evaporates away,
we are left in a 
configuration which 
cannot be described 
by a pure state 

(Radiation quanta are 
entangled, but there is 
nothing that they are 
entangled with)

We can get a remnant
with which the radiation
is highly entangled



Corrections ?

(A) 

Older quanta get flushed away ...



r=0 horizon

At step N :

From (??) we are given that

||ψ2||2 = �ψ2|ψ2� ≡ �21 < �2 (65)
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+O(�3) < � (67)

SN+1 > SN + ln 2− 2� (68)

ds
2 = − (1− 2M

r
)dt2 +

dr2

(1− 2M
r )

+ r
2(dθ2 + sin2 θdφ2) (69)

r > 2M r < 2M t = constant r = constant (70)

O(�) (71)

|Ψ� =
�

Cmnψmχn χn ψm (72)

SN = −
�

i

|Ci|2 ln |Ci|2 (73)

4

From (??) we are given that

||ψ2||2 = �ψ2|ψ2� ≡ �21 < �2 (65)

|�ψ1|ψ2�| ≡ �2 < � (66)

S(p) = (�21 − �22) ln
e

(�21 − �22)
+O(�3) < � (67)

SN+1 > SN + ln 2− 2� (68)

ds
2 = − (1− 2M

r
)dt2 +

dr2

(1− 2M
r )

+ r
2(dθ2 + sin2 θdφ2) (69)

r > 2M r < 2M t = constant r = constant (70)

O(�) (71)

|Ψ� =
�

Cmnψmχn χn ψm (72)

SN = −
�

i

|Ci|2 ln |Ci|2 (73)

4

From (??) we are given that

||ψ2||2 = �ψ2|ψ2� ≡ �21 < �2 (65)

|�ψ1|ψ2�| ≡ �2 < � (66)

S(p) = (�21 − �22) ln
e

(�21 − �22)
+O(�3) < � (67)

SN+1 > SN + ln 2− 2� (68)

ds
2 = − (1− 2M

r
)dt2 +

dr2

(1− 2M
r )

+ r
2(dθ2 + sin2 θdφ2) (69)

r > 2M r < 2M t = constant r = constant (70)

O(�) (71)

|Ψ� =
�

Cmnψmχn χn ψm (72)

SN = −
�

i

|Ci|2 ln |Ci|2 (73)

4

From (??) we are given that

||ψ2||2 = �ψ2|ψ2� ≡ �21 < �2 (65)

|�ψ1|ψ2�| ≡ �2 < � (66)

S(p) = (�21 − �22) ln
e

(�21 − �22)
+O(�3) < � (67)

SN+1 > SN + ln 2− 2� (68)

ds
2 = − (1− 2M

r
)dt2 +

dr2

(1− 2M
r )

+ r
2(dθ2 + sin2 θdφ2) (69)

r > 2M r < 2M t = constant r = constant (70)

O(�) (71)

|Ψ� =
�

Cmnψmχn χn ψm (72)

SN = −
�

i

|Ci|2 ln |Ci|2 (73)

4

From (??) we are given that

||ψ2||2 = �ψ2|ψ2� ≡ �21 < �2 (65)

|�ψ1|ψ2�| ≡ �2 < � (66)

S(p) = (�21 − �22) ln
e

(�21 − �22)
+O(�3) < � (67)

SN+1 > SN + ln 2− 2� (68)

ds
2 = − (1− 2M

r
)dt2 +

dr2

(1− 2M
r )

+ r
2(dθ2 + sin2 θdφ2) (69)

r > 2M r < 2M t = constant r = constant (70)

O(�) (71)

|Ψ� =
�

Cmnψmχn χn ψm (72)

SN = −
�

i

|Ci|2 ln |Ci|2 (73)

|Ψ� =
�

i

Ciψiχi (74)

4

(basis for outside quanta)
(basis for initial matter
and inside quanta)

basis change
on inner and 
outer spaces

total state

entanglement 
entropy



Rules for evolution from step N to step N+1: 

(a) Quanta that have already left at earlier steps are not modified 

this step of the evolution. This is because these bi quanta have left the vicinity of the hole,
and can be collected outside; in any case they can no longer be influenced by the hole without
invoking some magical ‘action at a distance’ that would violate any locality condition that we
assume. We can write these quanta bi in terms of creation operators for outgoing modes, and
in this basis the state does not evolve further (the quanta keep moving out to larger r, but this
is along a line of fixed t− r).

(If the reader wishes to argue that the most recent bi quanta are still not far enough from
the hole and can be influenced, he should try to build the argument in detail using a larger
space than (??) which includes several pairs instead of just one.)

Thus the most general evolution to timestep tn+1 is given by

χi → χi (29)

ψi → ψ(1)
i S(1) + ψ(2)

i S(2) (30)

where the state ψi of the (M, ci) evolves to a tensor product of states ψ(i)
i describing (M, ci)

and the S(i) which described the newly created pair. Note that unitarity of evolution gives

||ψ(1)
i ||2 + ||ψ(2)

i ||2 = 1 (31)

In the leading order evolution we had

ψ(1)
i = ψi, ψ(2)

i = 0 (32)

and we will use this fact below to define what we mean by ‘small’ corrections and ‘order unity’
corrections.

Putting all this together, the state (??) evolves at tn+1 to

|ΨM,c,ψb(tn+1)〉 =
∑

i

Ci[ψ
(1)
i S(1) + ψ(2)

i S(2)] χi (33)

(4) We wish to compute the entanglement entropy in the state (??), between the b quanta
that are outside the hole and the (M, c) quanta that are inside the hole. The b quanta outside
include the bi from all steps upto tn as well as the quantum bn+1 created in this last step of
evolution. We now wish compute Sent(tn+1) in terms of Sent(tn) given by (??) and the states

ψ(α)
i in (??).

We now define explicitly what we mean by a ‘small’ change in the evolution of a new pair.
Write the state (??) as

|ΨM,c,ψb(tn+1)〉 = S(1)
[

∑

i

Ciψ
(1)
i χi

]

+ S(2)
[

∑

i

Ciψ
(2)
i χi

]

≡ S(1)Λ(1) + S(2)Λ(2) (34)

Here we have defined the states

Λ(1) =
∑

i

Ciψ
(1)
i χi, Λ(2) =

∑

i

Ciψ
(2)
i χi (35)
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(This also happens for burning paper)



(b) The quanta in the hole from earlier steps, and the initial matter,   
     can mix up arbitrarily to a new state

ρp =

�
�ψ1|ψ1� �ψ1|ψ2�
�ψ2|ψ1� �ψ2|ψ2�

�
(64)

From (??) we are given that

||ψ2||2 = �ψ2|ψ2� ≡ �21 < �2 (65)

|�ψ1|ψ2�| ≡ �2 < � (66)

S(p) = (�21 − �22) ln
e

(�21 − �22)
+O(�3) < � (67)

SN+1 > SN + ln 2− 2� (68)

ds
2 = − (1− 2M

r
)dt2 +

dr2

(1− 2M
r )

+ r
2(dθ2 + sin2 θdφ2) (69)

r > 2M r < 2M t = constant r = constant (70)

O(�) (71)

|Ψ� =
�

Cmnψmχn χn ψm (72)

SN = −
�

i

|Ci|2 ln |Ci|2 (73)

|Ψ� =
�

i

Ciψiχi (74)

ψi → ψi ξ
(1) (75)

S
(1) =

1√
2
|0�|0�+ 1√

2
|1�|1�

S
(2) =

1√
2
|0�|0� − 1√

2
|1�|1�

(76)

ψi → ψ(1)
i ξ(1) + ψ(2)

i ξ(2) (77)

4

ψi

(Unitary evolution)

ψ(1)
i ,

ψ(2)
i

E = hν =
hc

λ
(38)

|�ψ�|H|ψ� − �ψ�|Hs.c.|ψ�| ≤ � (39)

lp � λ � Rs (40)

2� (41)

|ξ1� =
1√
2

�
|0�|0�+ |1�|1�

�
(42)

|ξ2� =
1√
2

�
|0�|0� − |1�|1�

�
(43)

SN+1 = SN + ln 2 (44)

S = Ntotal ln 2 (45)

|ψ� → |ψ1�|ξ1�+ |ψ2�|ξ2� (46)

||ψ2|| < � (47)

SN+1 < SN (48)

SN+1 > SN + ln 2− 2� (49)

S(A) = −Tr[ρA ln ρA] (50)

bN+1 cN+1 {b} {c} p = {cN+1 bN+1} (51)

S({b}+ p) > SN − � (52)

S(p) < � (53)

S(cN+1) > ln 2− � (54)

S({b}+ bN+1) + S(p) > S({b}) + S(cN+1) (55)

S(A+B) + S(B + C) ≥ S(A) + S(C) (56)

S({b}+ bN+1) > SN + ln 2− 2� (57)

S(A+B) ≥ |S(A)− S(B)| (58)

lp N
α
lp (59)

SN = S({b}) (60)

A = {b} B = p = {bN+1 + cN+1} (61)

A = {b} B = bN+1 C = cN+1 (62)

S({b}+ bN+1) + S(p) ≥ S({b}) + S(cN+1) (63)
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Evolution of the state from timestep N to N+1:
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ψ(1)
i ,

ψ(2)
i

E = hν =
hc

λ
(38)

|�ψ�|H|ψ� − �ψ�|Hs.c.|ψ�| ≤ � (39)

lp � λ � Rs (40)

2� (41)

|ξ1� =
1√
2

�
|0�|0�+ |1�|1�

�
(42)

|ξ2� =
1√
2

�
|0�|0� − |1�|1�

�
(43)

SN+1 = SN + ln 2 (44)

S = Ntotal ln 2 (45)

|ψ� → |ψ1�|ξ1�+ |ψ2�|ξ2� (46)

||ψ2|| < � (47)

SN+1 < SN (48)

SN+1 > SN + ln 2− 2� (49)

S(A) = −Tr[ρA ln ρA] (50)

bN+1 cN+1 {b} {c} p = {cN+1 bN+1} (51)

S({b}+ p) > SN − � (52)

S(p) < � (53)

S(cN+1) > ln 2− � (54)

S({b}+ bN+1) + S(p) > S({b}) + S(cN+1) (55)

S(A+B) + S(B + C) ≥ S(A) + S(C) (56)

S({b}+ bN+1) > SN + ln 2− 2� (57)

S(A+B) ≥ |S(A)− S(B)| (58)

lp N
α
lp (59)

SN = S({b}) (60)

A = {b} B = p = {bN+1 + cN+1} (61)

A = {b} B = bN+1 C = cN+1 (62)

S({b}+ bN+1) + S(p) ≥ S({b}) + S(cN+1) (63)
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|Ψ� =
�

i Ciψiχi

→
�

i Ci[ψ
(1)
i ξ(1) + ψ(2)

i ξ(2)]

Λ(1) =
�

i Ciψ
(1)
i χi

Λ(2) =
�

i Ciψ
(2)
i χi

Horizon is a ‘normal place’ :

≡ ξ(1)Λ(1) + ξ(2)Λ(2)



Theorem:  Small corrections to Hawking’s leading order 
                computation do NOT remove the entanglement

δSent

Sent
< 2�

Bound does not depend on the number of pairs N

A

B C

D

E = hν =
hc

λ
(38)

�ψ�|H|ψ� ≈ �ψ�|Hs.c.|ψ�+O(�) (39)

lp � λ � Rs (40)

2� (41)

|ξ1� = |0�|0�+ |1�|1� (42)

|ξ2� = |0�|0� − |1�|1� (43)

SN+1 = SN + ln 2 (44)

S = Ntotal ln 2 (45)

|ψ� → |ψ1�|ξ1�+ |ψ2�|ξ2� (46)

||ψ2|| < � (47)

SN+1 < SN (48)

SN+1 > SN + ln 2− 2� (49)

S(A) = −Tr[ρA ln ρA] (50)

bN+1 cN+1 {b} {c} p = {cN+1 bN+1} (51)

S({b}+ p) > SN − � (52)

S(p) < � (53)

S(cN+1) > ln 2− � (54)

S({b}+ bN+1) + S(p) > S({b}) + S(cN+1) (55)

S(A+B) + S(B + C) ≥ S(A) + S(C) (56)

S({b}+ bN+1) > S) + ln 2− 2� (57)

S(A+B) ≥ |S(A)− S(B)| (58)
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E = hν =
hc

λ
(38)

�ψ�|H|ψ� ≈ �ψ�|Hs.c.|ψ�+O(�) (39)

lp � λ � Rs (40)

2� (41)

|ξ1� = |0�|0�+ |1�|1� (42)

|ξ2� = |0�|0� − |1�|1� (43)

SN+1 = SN + ln 2 (44)

S = Ntotal ln 2 (45)

|ψ� → |ψ1�|ξ1�+ |ψ2�|ξ2� (46)

||ψ2|| < � (47)

SN+1 < SN (48)

SN+1 > SN + ln 2− 2� (49)

S(A) = −Tr[ρA ln ρA] (50)

3

etc.

Basic tool : Strong Subadditivity (Lieb + Ruskai ’73)

(SDM arXiv: 09091038) 



The Hawking argument                      ‘Theorem’ 

Can be made as rigorous as we want ... 
                                                         

(a) We either have a ‘Traditional horizon’, or ‘hair’

Traditional horizon

There is a good slicing at the horizon in 
which a neighbourhood of this horizon 
is low energy physics just like the one
in this room ....

Then the stretching of vacuum 
modes will create an entangled 
pair at each time step ... 

Sent keeps growing ...



(b) ‘Hair’ :  Anything else ...

If we do not have the standard vacuum pair 
production at the horizon, then there is no 
Hawking argument ... 
(This would remove the paradox)

Note that the corrections to low energy evolution have to be order 
unity, not ‘small’ ....



What do we have to do to resolve the paradox ?

In one sense very little, in another sense, a lot ...

Little, because all we have to show is that there is an effect that will 
obstruct normal physics at the horizon ...

But this has been very hard, since people tried but could not find 
hair ... ‘no hair theorem’ ...

‘t hooft:  infalling  quanta 
create large shifts in 
outgoing rays ...

Susskind:  strings at the horizon ... 
corrupt normal evolution ...



The basic difficulty can be seen from the earliest computations ...

horizon

singularity

People wrote down the wave equation for scalars, gauge fields, gravitons ... 
Looked for solutions with L=1,2, 3,...

If they had found such solutions, then one would expect that the entropy comes from 
horizon fluctuations, and there would be no information problem

But no hair was found ... “no hair theorem”

??



Why is it hard to find hair? 

Large relative momentum needed
to keep the rocket stationary 

Field modes have 
divergent
stress-energy

Trr → ∞

gtt = 0

pressureHorizon is an 
unstable place ...



But there might still be non-perturbative “hair” ?

Backreaction from the distortion is
self consistent ... no horizon forms

Hole radiates like ‘paper’
gtt �= 0

How do we find such solutions ?

String theory gives a new expansion parameter,  the ‘complexity of 
the microstate’ ...



Resolving the puzzle

(Avery, Balasubramanian, Bena, Chowdhury, de Boer, 
Gimon, Giusto, Keski-Vakkuri, Levi, Lunin, Maldacena, 
Maoz, Park, Peet, Potvin, Ross, Ruef, Saxena, Simon, 
Skenderis, Srivastava, Taylor, Turton, Warner ...)



The traditional expectation ...

|n�total = (J−,total
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n1n5(J−,total
−(2n−4))
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√
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V R
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coupling

strong
coupling

But it seems in string theory the opposite happens ...
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(SDM 97)

R ∼ [
g2α�3√n1n5np

RV ]
1
3 ∼ Rs



From (??) we are given that

||ψ2||2 = �ψ2|ψ2� ≡ �21 < �2 (65)

|�ψ1|ψ2�| ≡ �2 < � (66)

S(p) = (�21 − �22) ln
e

(�21 − �22)
+O(�3) < � (67)

SN+1 > SN + ln 2− 2� (68)

ds
2 = − (1− 2M

r
)dt2 +

dr2

(1− 2M
r )

+ r
2(dθ2 + sin2 θdφ2) (69)

r > 2M r < 2M t = constant r = constant (70)

4

The ‘no-hair’ theorem tells us that the black hole metric is unique:

But how did we get this metric ?

We take an ansatz where the metric coefficients had no 
dependence on angular variables or on the compact directions

ds2 = − f(r)dt2 + g(r)dr2 + r2dΩ2
2 + dzidzi

The solution we get is singular, however, at the origin, so we cannot 
be sure it is a solution of the full quantum gravity theory



Now let us look for solutions that have no spherical symmetry and 
the compact directions are also not trivially tensored

Then there are a large number of regular solutions - no horizon 
and no singularity - with the same M, Q, J as the black hole

‘Fuzzballs’

....



Now let us look for solutions that have no spherical symmetry and 
the compact directions are also not trivially tensored

Then there are a large number of regular solutions - no horizon 
and no singularity - with the same M, Q, J as the black hole

‘Fuzzballs’

....



Hair in string theory ....

Nature of the hair: 

Compact directions make
locally nontrivial fibrations over
the noncompact directionssmall compact 

direction circle
Angular sphere of 
noncompact directions

Thus the hair are fundamentally a nonperturbative construct involving 
the extra dimensions ...

l=0,1,2 3 ...



How does semiclassical 
intuition go wrong ?



 How does a collapsing shell become fuzzballs ?

??



Consider the amplitude for the shell to tunnel to a fuzzball state

Amplitude to tunnel is very small

But the number of states that one can tunnel 
to is very large !



Toy model:  Small amplitude to tunnel to a neighboring well, but there
                  are a correspondingly large number of adjacent wells

In a time of order unity, the wavefunction in the central well becomes a 
linear combination of states in all wells  (SDM 07)



 How long does this tunneling process take ?

If it takes longer than Hawking evaporation time then it does not help ...

ψL = ψS + ψA

ψ = e−iEStψS + e−iEAtψA

∆E = EA − ES

∆t =
π

∆E

1

ψL = ψS + ψA

ψ = e−iEStψS + e−iEAtψA

∆E = EA − ES

∆t =
π

∆E

1

The wavefunction tunnels to the other well in a time

ψL = ψS + ψA

ψ = e−iEStψS + e−iEAtψA

∆E = EA − ES

∆t =
π

∆E

1

where

Tunneling in the double well: 



For the collapsing shell ...

Thus the collapsing shell turns into a linear 
combination of fuzzball states in a time short
compared to Hawking evaporation time



The matrix model



If we define our gravity as the dual to a CFT:

(a) Remnant ?

(b) Slow leaking remnant ?

(c) No black hole ?

(d) No good local gravity theory ?

(e) Information in Hawking radiation ?

If there are no fuzzballs, then we cannot get (e) ...



c = 1 Matrix model:  A toy model of AdS/CFT

L = Tr
�1
2
Ṁ(t)2 − V (M)

�

M : N ×N matrix

λ

Eigenvalues form 
a 1-d fermi sea

r

Scattering of low energy pulses from potential wall agrees with
the scattering of pulses in 1+1 dim dilaton gravity + scalar

t



1+1 dilaton gravity has black holes ...
M

The matrix model is unitary,
so information cannot be lost ...

So we should find that evaporation
in 1+1 dim dilaton gravity is unitary ?

NO !! Low energy scattering agrees between matrix model dilaton gravity

But if we try to make a black hole in the matrix model ....



λ

(a) Pulse with enough energy to make black hole spill over and goes to a 
second asymptotic infinity :  ‘information loss’

(b) If we orbifold the two sides (e.g. susy theories), the pulse returns in 
crossing time: no black hole formation



What we do not get is a black hole, persisting for a time greater than 
crossing time by a factor                  , information coming out in Hawking 
radiation

(M/mpl)
α

(c) If we try to modify potential, gravity theory cannot in general be derived 
from a local lagrangian 

λ

No fuzzballs                  cannot get info in Hawking radiation        

No remnants and no information loss

Theory takes only way out:  no black hole formation ...



How do we avoid black hole formation in the matrix model ?

A pulse made of n quanta has small deviations from exact
dilaton gravity, because of interaction between the quanta

When the pulse becomes big enough to make a black hole, 
these interactions create order unity deviation from dilaton 
gravity

Large number of
mutual interactions
stop semiclassical collapse 
at horizon scale



Common questions about fuzzballs



(A) How many fuzzballs have you found ?  

fuzzballs black hole with traditional horizon

But if even one traditional black hole state exists, then we can choose it 
and get information loss/remnants ...

??



(B) How well can you describe generic fuzzballs ?

When KK monopoles are close,
D2 brane pairs will be excited 
between them ...  and so on ...



Why does this matter ?

Question: can it be that the more messy generic states
become ‘close’ to the vacuum for all practical purposes?

Then we have not learnt much by making the simple fuzzballs ...

But there is only one practical purpose relevant to the information puzzle: 
Does the evolution of low energy modes at the horizon differ by order 
unity from the traditional vacuum ?

As we take the limit to more generic states, the evolution of
these modes does NOT go towards evolution in the vacuum ...



Fuzzballs provide this structure.
But generic fuzzballs are 
complicated, so we can 
describe physics only in dual CFT

In the dual CFT it is hard 
to see locality, etc, so we
dont quite know the 
solution to the information 
problem

M

Information paradox
needs structure at 
the horizon, but we dont
quite know how to get it



Fuzzballs provide this structure.
Hawking evolution in generic 
fuzzballs shows no sign of being
vacuum evolution

AdS/CFT duality is correct, 
but is not useful for 
understanding whether 
there is structure at the 
horizon 

M

Information paradox
needs structure at 
the horizon

Can use picture to understand 
Complementarity, issues in
Cosmology, etc ...



The infall problem



The infall problem

    What happens to an object (E >> kT) that falls into the black hole? 
   
     What does an infalling observer ‘feel’ ?

??

Low energy radiation
modes are corrected by 
order unity, no information 
loss in process of creation

Is it possible that the dynamics of high
energy infalling objects can approximated 
by the traditional black hole geometry in 
some way?



‘t Hooft, Susskind:  Complementarity :  

Infalling observer get destroyed by Hawking radiation at horizon (so that 
information never falls into the hole)
BUT
In a dual description he continues to fall inside (so we take into account that 
the horizon is not a ‘special place’

Smooth evolution, no reason to 
change description at a regular point

Infalling observer feels 
no Hawking radiation

With the traditional picture of the black hole, 
people could see no way to 
make complementarity work ...



Now we know that black hole microstates are fuzzballs. let us see if we can do 
any better ...

Central part of eternal black hole diagram looks like a piece of 
Minkowski spacetime,  Horizons look like Rindler horizons

So complementarity looks as strange as asking that we get destroyed at a 
Rindler horizon, and in a dual description we continue past the horizon



Rindler space:  Accelerated observers see a thermal bath

t = R sinh τ

x = R cosh τ

Minkowski spacetime

Right Rindler
Wedge

Left Rindler
Wedge

R = R0

τ = τ0

t

x

R = R0An observer moving along 
sees a temperature 

T =
1

2πR0

The Minkowski vacuum can be 
written an an entangled sum of 
Rindler states 

|0�M =
�

k

e−
Ek
2π |Ek�L R�Ek|



An observation

If there is a scalar field    ,
then the Rindler states will
have a bath of scalar quanta

φ If      has a        interaction, 
then this bath of scalar quanta
will be interacting

φ φ3

The graviton is a field that is
always present, so we will have
a bath of (interacting) gravitons

Thus expect fully nonlinear 
quantum gravity near Rindler 
horizon



Rindler coordinates ‘end’ at 
the boundary of the wedge

Thus it is logical to expect that the gravity 
solution for Rindler states should also ‘end’

But this is exactly what fuzzball microstates do !

|0�M =
�

k

e−
Ek
2π |Ek�L R�Ek|

=
� ⊗

Thus we expect :



Black Holes : Israel (1976):  The two sides of the eternal black hole 
are the two entangled copies of a thermal system in 
thermo-field-dynamics

Re[t]Im[t]

Maldacena (2001):  This implies that the dual to the 
eternal black hole is two entangled copies of a CFT

Van Raamsdonk (2009):  CFT states are dual to 
gravity solutions ... so we should be able to write 
an entangled sum of CFT states as an entangled 
sum of gravity states ...



�
⊗ =

But what do we do with CFT states which are dual to black holes with a 
horizon ?

(Van Raamsdonk 
               2009)

⊗ = ??
horizon

But the lesson from fuzzballs is that there are no microstates with 
horizons !!  Thus there is only one ‘class’ of microstates, they just vary in 
their complexity



�
⊗ =

Thus we can expect that summing over fuzzball microstates will generate the 
eternal black hole spacetime 

(SDM + Plumberg 
                 2011)

Is it reasonable to expect that sums over (disconnected) gravitational 
solutions can be a different (connected) gravitational solution ?

Something like this happens in 2-d Euclidean CFT ...

The fuzzball microstates do not have horizons, but the eternal black 
hole spacetime does ...



(a) Low energy dynamics (E ∼ kT )

No horizon, radiation from ergoregions, so radiation 
like that from any warm body

no information loss since radiation depends on choice 
of microstate 

(b) Correlators in high energy infalling frame (E � kT )

ψk

ψk

for generic 
states ψk

�
⊗

m
ψm ψm

�ψk|Ô1Ô2|ψk� ≈
�

m

e
−βEm�ψm|Ô1Ô2|ψm�

≈



ψk ψk

�

k

e−τhk−τ̄ h̄k ⊗ =

ψk
=

�

k

e−τhk−τ̄ h̄k ⊗

=

Structure of state if continued 
inside

‘Sewing’ process in CFT

Sum over a set of messy 
entangled geometries equals 
a smooth geometry



|0�M = C
�

i e
−Ei

2 |Ei�L|Ei�R, C =
��

i e
−Ei

�− 1
2

M �0|ÔR|0�M = C2
�

i,j e
−Ei

2 e−
Ej
2 L�Ei|Ej�LR�Ei|ÔR|Ej�R

= C2
�

i e
−Ei

R�Ei|ÔR|Ei�R

R�Ek|ÔR|Ek�R ≈ 1�
l e

−El

�
i e

−Ei
R�Ei|ÔR|Ei�R = M �0|ÔR|0�M

Minkowski vacuum

Expectation value of an operator in the right wedge

Thus for suitable (high impact) operators, the expectation value in a single 
(generic) fuzzball equals the expectation value in the naive
extended geometry with horizons



Nonextremal states and Hawking radiation



Nonextremal states:  D1D5 + nonextremal energy

??



2 The non-extremal microstate geometries: Review

In this section we recall the microstate geometries that we wish to study, and explain how a
suitable limit can be taken in which the physics can be described by a dual CFT.

2.1 General nonextremal geometries

Let us recall the setting for the geometries of [13]. Take type IIB string theory, and compactify
10-dimensional spacetime as

M9,1 → M4,1 × T 4 × S1 (2.1)

The volume of T 4 is (2π)4V and the length of S1 is (2π)R. The T 4 is described by coordinates
zi and the S1 by a coordinate y. The noncompact M4,1 is described by a time coordinate t, a
radial coordinate r, and angular S3 coordinates θ,ψ,φ. The solution will have angular momenta
along ψ,φ, captured by two parameters a1, a2. The solutions will carry three kinds of charges.
We have n1 units of D1 charge along S1, n5 units of D5 charge wrapped on T 4 × S1, and np

units of momentum charge (P) along S1. These charges will be described in the solution by
three parameters δ1, δ5, δp. We will use the abbreviations

si = sinh δi, ci = cosh δi, (i = 1, 5, p) (2.2)

The metrics are in general non-extremal, so the mass of the system is more than the minimum
needed to carry these charges. The non-extremality is captured by a mass parameter M .

With these preliminaries, we can write down the solutions of interest. The general non-
extremal 3-charge metrics with rotation were given in [23]

ds2 = − f
√

H̃1H̃5

(dt2 − dy2) +
M

√

H̃1H̃5

(spdy − cpdt)2

+

√

H̃1H̃5

(
r2dr2

(r2 + a2
1)(r

2 + a2
2) − Mr2

+ dθ2

)

+

(
√

H̃1H̃5 − (a2
2 − a2

1)
(H̃1 + H̃5 − f) cos2 θ

√

H̃1H̃5

)

cos2 θdψ2

+

(
√

H̃1H̃5 + (a2
2 − a2

1)
(H̃1 + H̃5 − f) sin2 θ

√

H̃1H̃5

)

sin2 θdφ2

+
M

√

H̃1H̃5

(a1 cos2 θdψ + a2 sin2 θdφ)2

+
2M cos2 θ
√

H̃1H̃5

[(a1c1c5cp − a2s1s5sp)dt + (a2s1s5cp − a1c1c5sp)dy]dψ

+
2M sin2 θ
√

H̃1H̃5

[(a2c1c5cp − a1s1s5sp)dt + (a1s1s5cp − a2c1c5sp)dy]dφ

+

√

H̃1

H̃5

4
∑

i=1

dz2
i (2.3)
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where

H̃i = f + M sinh2 δi, f = r2 + a2
1 sin2 θ + a2

2 cos2 θ, (2.4)

The D1 and D5 charges of the solution produce a RR 2-form gauge field given by [6]

C2 =
M cos2 θ

H̃1
[(a2c1s5cp − a1s1c5sp)dt + (a1s1c5cp − a2c1s5sp)dy] ∧ dψ

+
M sin2 θ

H̃1
[(a1c1s5cp − a2s1c5sp)dt + (a2s1c5cp − a1c1s5sp)dy] ∧ dφ

−Ms1c1

H̃1
dt ∧ dy − Ms5c5

H̃1
(r2 + a2

2 + Ms2
1) cos2 θdψ ∧ dφ. (2.5)

The angular momenta are given by

Jψ = − πM

4G(5)
(a1c1c5cp − a2s1s5sp) (2.6)

Jφ = − πM

4G(5)
(a2c1c5cp − a1s1s5sp) (2.7)

and the mass is given by

MADM =
πM

4G(5)
(s2

1 + s2
5 + s2

p +
3

2
) (2.8)

It is convenient to define

Q1 = M sinh δ1 cosh δ1, Q5 = M sinh δ5 cosh δ5, Qp = M sinh δp cosh δp (2.9)

Extremal solutions are reached in the limit

M → 0, δi → ∞, Qi fixed (2.10)

whereupon we get the BPS relation

Mextremal =
π

4G(5)
[Q1 + Q5 + Q5] (2.11)

The integer charges of the solution are related to the Qi through

Q1 =
gα′3

V
n1 (2.12)

Q5 = gα′n5 (2.13)

Qp =
g2α′4

V R2
np (2.14)

2.2 Constructing regular microstate geometries

The solutions (2.3) in general have horizons and singularities. One can take careful limits of
the parameters in the solution and find solutions which have no horizons or singularities. In
[24] regular 2-charge extremal geometries were found while in [6, 7] regular 3-charge extremal
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(Jejalla, Madden, Ross 
Titchener ’05)



Structure of the geometry

There is no horizon

But there is an ERGOREGION

The geometry does not depend on t,
so ∂/∂t is a Killing vector

But this Killing vector is not timelike
everywhere:
It is SPACELIKE in the ergoregion

So even though the metric is independent of t,  any foliation with spacelike 
hypersurfaces will be TIME-DEPENDENT



Since the geometry of the slice keeps changing, the vacuum of the initial 
slice is not the vacuum on later slices, and we have particle pair creation
near the ergoregion

t=0

t=1

t=2

One member of the pair falls into the eregoregion, and tends to ‘cancel’
the frame dragging causing the ergoregion

The other member escapes to infinity as radiation



Smicro = 2π
√

n1n5np (152)

Sbek =
A

4G
= 2π

√
n1n5np = Smicro (153)

ni = n̄i (154)

X i N pi = wi ρ ρ Ni (155)

X1 X2 X3 w = {1, .5, .5} N = 2 (156)

a1 a2 a3 (157)

L1 L2 (158)

P =
∑

i

(ni + n̄i) pi (159)

S̃ = S − λ(Ebranes − E) = AN

N
∏

i=1

(
√

ni +
√

n̄i) − λ(2mini − E) (160)

abeckwith@uh.edu projectbeckwith1@yahoo.com

S ∼ E
D−1

D (161)

S ∼ E (162)

S = A(
√

n1 +
√

n̄1)(
√

n2 +
√

n̄2)(
√

n3 +
√

n̄3) . . . (
√

nN +
√

n̄N ) (163)

∼ E
N
2 (164)

SO(4) ≈ SU(2) × SU(2) (165)

(
1

2
,
1

2
) (166)

X1, X2, X3, X4 ψ+, ψ̃+, ψ−, ψ̃− ψ̄+, ¯̃ψ
+
, ψ̄−, ¯̃ψ

−
(167)

(0, 0) (0,
1

2
) (

1

2
, 0) (168)

nL nR { (169)

h12 ≡ Ψ !Ψ = 0 (170)

M4,1 → t, r, θ, ψ, φ (171)

S1 → y y : (0, 2πR) (172)

ClV̂ [l] V̂ (173)

N = n1n5 (174)
√

N − n
√

n ≈
√

N
√

n
dn

dt
∝ n (175)
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Scalar field

S1 → y y : (0, 2πR) (175)

ClV̂ [l] V̂ (176)

N = n1n5 (177)
√

N − n
√

n + 1 ≈
√

N
√

n + 1
dn

dt
∝ (n + 1) n (178)

ωR =
1

R
[−l − 2 − mψm + mφn] = ωgravity

R (179)

m = nL + nR + 1, n = nL − nR (180)

|λ − mψn + mφm| = 0, N = 0 (181)

λ = 0, mψ = −l, n = 0, N = 0 (182)

ωI = ωgravity
I (183)

|0〉 |ψ〉 〈0|ψ〉 ≈ 0 (184)

n1, n2, n3 n4 (185)

1/n1n2n3 (186)

(n1n5)
αlp (187)

n1n5

∑

k mk = n1n5 n5 (188)

n′
p = n1 n′

1 = n5,
∑

k mk = n′
pn

′
1 (189)

Smicro = 2π
√

2
√

n1n5 Smicro = 4π
√

n1n5 (190)

R2 (191)

Sbek =
A

2G
= Smicro (192)

∑

k mk = n1np (193)

1

!
(194)

∆E =
4π

n1n5L
(195)

g → 0 (196)

g nonzero (197)

∆TCFT = ∆Tgravity (198)

e−S ∼ e−GM2

(199)

eSbek ∼ eGM2

(200)

Ψ = ψ(x)e−iωt (201)
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where there is no incoming wave, but we still have an outgoing wave carrying energy out to
infinity. These instability frequencies are given by solutions to the transcendental equation

−e−iνπ Γ(1 − ν)

Γ(1 + ν)

(κ

2

)2ν
=

Γ(ν)

Γ(−ν)

Γ(1
2(1 + |ζ| + ξ − ν))Γ(1

2 (1 + |ζ|− ξ − ν))

Γ(1
2(1 + |ζ| + ξ + ν))Γ(1

2 (1 + |ζ|− ξ + ν))
(3.50)

We reproduce the solution to this equation, found in [14], in appendix B. In the large R limit
(2.27) the instability frequencies are real to leading order

ω " ωR =
1

R
(−l − mψm + mφn − |− λ − mψn + mφm|− 2(N + 1)) (3.51)

where N ≥ 0 is an integer. The imaginary part of the frequency is found by iterating to a
higher order; the result is

ωI =
1

R

(

2π

[l!]2

[

(ω2 − λ2

R2
)
Q1Q5

4R2

]l+1
l+1+NCl+1

l+1+N+|ζ|Cl+1

)

(3.52)

Note that ωI > 0, so we have an exponentially growing perturbation. Our task will be to
reproduce (3.51),(3.52) from the microscopic computation.

4 The Microscopic Model: the D1-D5 CFT

In this section we discuss the CFT duals of the geometries of [13]. Recall that we are working
with IIB string theory compactified to M4,1×S1×T 4. The S1 is parameterized by a coordinate
y with

0 ≤ y < 2πR (4.53)

The T 4 is described by 4 coordinates z1, z2, z3, z4. Let the M4,1 be spanned by t, x1, x2, x3, x4.
We have n1 D1 branes on S1, and n5 D5 branes on S1 × T 4. The bound state of these branes
is described by a 1+1 dimensional sigma model, with base space (y, t) and target space a
deformation of the orbifold (T 4)n1n5/Sn1n5

(the symmetric product of n1n5 copies of T 4). The
CFT has N = 4 supersymmetry, and a moduli space which preserves this supersymmetry. It
is conjectured that in this moduli space we have an ‘orbifold point’ where the target space is
just the orbifold (T 4)n1n5/Sn1n5

[28].
The CFT with target space just one copy of T 4 is described by 4 real bosons X1, X2, X3,

X4 (which arise from the 4 directions z1, z2, z3, z4), 4 real left moving fermions ψ1,ψ2,ψ3,ψ4

and 4 real right moving fermions ψ̄1, ψ̄2, ψ̄3, ψ̄4. The central charge is c = 6. The complete
theory with target space (T 4)n1n5/Sn1n5

has n1n5 copies of this c = 6 CFT, with states that
are symmetrized between the n1n5 copies. The orbifolding also generates ‘twist’ sectors, which
are created by twist operators σk. A detailed construction of the twist operators is given in
[19, 20], but we summarize here the properties that will be relevant to us.

The twist operator of order k links together k copies of the c = 6 CFT so that the Xi,ψi, ψ̄i

act as free fields living on a circle of length k(2πR). Thus we end up with a c = 6 CFT on a
circle of length k(2πR). We term each separate c = 6 CFT a component string. Thus if we are
in the completely untwisted sector, then we have n1n5 component strings, each giving a c = 6
CFT living on a circle of length 2πR. If we twist k of these component strings together by a
twist operator, then they turn into one component string of length k(2πR). In a generic CFT
state there will be component strings of many different twist orders ki with

∑

i ki = n1n5.
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infinity. These instability frequencies are given by solutions to the transcendental equation

−e−iνπ Γ(1 − ν)
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=
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Note that ωI > 0, so we have an exponentially growing perturbation. Our task will be to
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which gives

1

sin 2θ

d

dθ

(

sin 2θ
d

dθ
χ

)

+

[
(

ω2 − λ2

R2

)

(a2
1 sin2 θ + a2

2 cos2 θ)−
m2

ψ

cos2 θ
−

m2
φ

sin2 θ

]

χ + Λχ = 0

(3.43)

1

r

d

dr

(
g(r)

r

d

dr
h

)

+ (1 − ν2)h − (r2
+ − r2

−)

(
ζ2

r2 − r2
+
− ξ2

r2 − r2
−

)

h = 0 (3.44)

where

g(r) = (r2 − r2
−)(r2 − r2

+)

ξ ≡ ω(R − λϑ − mφn + mψm

ζ ≡ −λ − mψn + mφm

( ≡
c2
1c

2
5c

2
p − s2

1s
2
5s

2
p

s1c1s5c5

ϑ ≡ c2
1c

2
5 − s2

1s
2
5

s1c1s5c5
spcp

ν2 ≡ 1 + Λ −
(

ω2 − λ2

R2

)

(r2
+ + Ms2

1 + Ms2
5) − (ωcp −

λ

R
sp)

2M (3.45)

Introducing the dimensionless radial coordinate

x ≡
r2 − r2

+

r2
+ − r2

−
(3.46)

the radial equation becomes

∂x[x(x + 1)∂xh] +
1

4

[

κ2x + (1 − ν2) +
ξ2

x + 1
− ζ2

x

]

h = 0 (3.47)

where

κ2 ≡ (ω2 − λ2

R2
)(r2

+ − r2
−) (3.48)

In our large R limit we have a2
i (ω

2− λ2

R2 ) → 0, so the angular equation reduces to the Laplacian
on S3. Thus

Λ = l(l + 2) + O(a2
i (ω

2 − λ2

R2
)) (3.49)

3.2 The instability frequencies

The radial equation cannot be solved exactly, but we can solve it in an ‘outer region’ and
an ‘inner region’ and match solutions across the overlap of these regions. We reproduce this
computation of [14] in appendix A. The instability frequencies correspond to the situation
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Is this ‘Hawking radiation’ for this particular microstate ?

Radiation from the ergoregion

(Cardoso, Dias, Jordan, Hovdebo, Myers, ’06)
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Setting       
as bose and fermi thermal
distributions gives the
Hawking radiation spectrum
from the black hole 
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  We find
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(Callan-Maldacena 96, 
Dhar-Mandal-Wadia 96, 
Das-Mathur 96, 
Maldacena-Strominger 96)



Thus we can explicitly see the interior geometry for this microstate and 
unitary Hawking radiation carrying out information from the interior of the 
microstate

We can similarly find ergoregions for less symmetrical microstates : 

(Chowdhury+SDM 07, 08)



Classical geometry,
axial symmetry,
standard ergoregion,
enhanced emission

‘Star cluster’. Different
stars have ergoregions
with different orientations,
so there is no axial 
symmetry in the emission

A generic state is very 
quantum, with very 
‘shallow’ ergoregions,
and quanta leak out 
slowly as Hawking 
radiation

   

 

Special and generic states in gravity:  conjecture



Constructing 2-charge extremal fuzzballs



Making black holes in string theory
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(Dabholkar ’04)
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Can we get this entropy by a microscopic count of states ?

Open up string to its ‘covering space’
We have transverse vibrations carrying 
momentum up the string

L
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=
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1
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Smicro = ln[256] ∼ 0 (110)
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Smicro = Sbek = 0 (112)

Smicro = 4π
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n1np (113)

T 4 K3 (114)
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(Susskind ’93, Sen ’94)



The elementary string (NS1) does not have any LONGITUDINAL 
vibration modes

This is because it is not made up of
‘more elementary particles’ Not a mode for the 

elementary string

Thus only transverse oscillations are
permitted

This causes the string to spread over
a nonzero transverse area

Momentum is carried
by transverse
oscillations

A key point
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‘Naive
geometry’

An ‘actual 
geometry’



Making the geometry 

We know the metric of one straight strand 
of string 

We know the metric of a string
carrying a wave --  ‘Vachaspati transform’

We get the metric for many 
strands by superposing harmonic 
functions from each strand

(Dabholkar, Gauntlett,Harvey, Waldram 
’95, Callan,Maldacena,Peet ’95)

In our present case, we have a large
number of strands, so we ‘smear over
them to make a
continuous ‘strip’ (Lunin+SDM ’01)



In this case neighboring strands give very similar contributions to the harmonic functions in
(??), and we may replace the sum by an integral

n1�

s=1

→
� n1

s=0
ds =

� 2πRn1

y=0

ds

dy
dy (5.15)

Since the length of the compacification circle is 2πR we have

ds

dy
=

1
2πR

(5.16)

Also, since the vibration profile is a function of v = t− y we can replace the integral over y by
an integral over v. Thus we have

n1�

s=1

→ 1
2πR

� LT

v=0
dv (5.17)

where
LT = 2πRn1 (5.18)

is the total range of the y coordinate on the multiwound string. Finally, note that

Q
(i)
1 =

Q1

n1
(5.19)

We can then write the NS1-P solution as

ds
2
string = H[−dudv + Kdv

2 + 2Aidxidv] +
4�

i=1

dxidxi +
4�

a=1

dzadza

Buv =
1
2
[H − 1], Bvi = HAi

e
2φ = H (5.20)
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dv
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(5.22)

Ai = −Q1
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|�x− �F (v)|2

(5.23)

5.1 Obtaining the NS1-NS5 geometries

From (??) we see that we can perform S,T dualities to map the above NS1-P solutions to
NS1-NS5 solutions. For a detailed presentation of the steps (for a specific �F (v)) see [?]. The
computations are straightforward, except for one step where we need to perform an electric-
magnetic duality. Recall that under T-duality a Ramond-Ramond gauge field form C

(p) can
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Boundary area 
satisfies 

No longitudinal
mode Transverse

oscillations

S ∼ A

G



ρ(p) = |S(1)��S(1)|(Λ(1),Λ(1)) + |S(1)��S(2)|(Λ(1) Λ(2))
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S→ D5D1 (IIB) (108)

6

We can map the NS1 - P bound state to a D5 - D1 bound state
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(Lunin+SDM ’01,

Lunin+Maldacena+Maoz 02

Taylor 05, Skenderis+Taylor 06)

Geometry for D1-D5



D1-D5 
gravity
dual

NS1-P
geometry

   S,T
dualities

Dipole charges

true 
charge

dipole 
charge

+
True charges are D1, D5

Dipole charge is KK monopole

KKanti-
KK



Energy gaps exactly agree between the CFT and the gravity solution...

Wavefunctions
of supergravity
quanta

??

(so we must have fuzzballs ...)



Nonlocality



‘Over-stretching’ of slices

r=0 horizon

Rs × Sbek ∼ R3
s

G ∼ V
G

(a very long length)

Suppose that new nonlocal effects arose 
when a slice was stretched too much ...

Then the information problem would
be solved: lab physics is local because 
stretching is small, but black hole slices have 
nonlocal physics after they stretch enough 
to hold half the Hawking radiation ...

(SDM gr-qc/0007011,
Giddings hepth/0911.3395)



Maximum 
depth

V0

V0
2G

D1D5 extremal states:  it appears the space can be ‘stretched’ only 
upto a maximal depth, which is of the correct order ... 

(SDM hepth/0205192)



Spacelike slices are not just
an abstract manifold, but 
have a ‘thickness’

If we ‘stretch too much’, 
semiclassical physics breaks 
down, nonlocal effects start

But our Universe started with the size of a marble and ‘stretched’ to 3000 
Mega-parsecs ... and we seem to have normal physics today ...

But what happens if we apply this to the Universe ?

(SDM hepth/0305204)


