Stable Layers in the Solar System

(boundaries optional)

Jonathan L. Mitchell

Atmospheric & Oceanic Sciences Earth, Planetary & Space Sciences UCLA

[work in progress]

My original motivation

 Venus' sulfuric acid clouds deepen with lowering insolation, just like marine stratocumulus

Venus' clouds are global, variable, and account for a ~70% albedo

Venus in UV; Sanchez-Lavega et al. 2017

The big picture: What sets planetary albedo?

- Stratocumulus covers more area than any other cloud type on Earth (Wood 2012)
- Earth is an outlier, in the sense of having a large clear-sky component (Mars ~ doesn't have an atmosphere)
 - Venus global cloud deck of sulfuric acid, albedo of ~70%
 - Titan global stratospheric smog layer, albedo of ~55%
- Jupiter, Saturn, Uranus, Neptune have global and/or alternating zones of clouds

Exoplanet atmospheres have clouds of iron and rock...

If so, how do they form? Are they global? Diurnal?

Stratocumulus forms in stably stratified layers by topside longwave cooling

Wood 2012, Stevens 2006

A rough framework for cloud formation in stably stratified atmospheres

- Fundamentally, stratocumulus is driven by radiative cooling from the top.
- Clouds need to be optically thick to generate the driving buoyancy flux.
- A minimum flux of kinetic energy is required to prevent hydrometeors from settling out.
- In a bulk sense, radiative cooling balances latent and sensible heat fluxes and generates kinetic energy with some (given) efficiency, which must (at least in part) dissipate on hydrometeors.

Preliminaries: BL heat-engine efficiency

 $T_c = T_e - \Gamma_m h$ $T_c^4 \sim T_e^4 (1 - 4\Gamma_m h/T_e)$

Adiabatic layer must cool

 $T_c^4 \sim T_e^4 (1 - 4\Gamma_m h/T_e)$

Hydrometeors must not settle

 $\sim w_{\mathrm{term}}$

$$b_{\rm hyd} \sim C_d w_{\rm term}^2 / d$$

 $\sim C_d w^2 / d$

 $C_a w \Gamma_m \sim -\mathcal{R}$ $T_c^4 \sim T_e^4 (1 - 4\Gamma_m h/T_e)$

Cloud must be optically thick

Radius ~ 10microns Number density ~ 100-200 /cc -> optical depth unity requires ~50-100m layer

$$b_{\rm hyd} \sim C_d w^2 / d$$

$$C_a w \Gamma_m \sim -\mathcal{R}$$

$$T_c^4 \sim T_e^4 (1 - 4\Gamma_m h / T_e)$$

Work done on hydrometeors requires a minimum KE flux

 $F_{\rm KE} \sim N m_{\rm hyd} b_{\rm hyd} w_{\rm hyd} / A$

$$\tau \sim nd^2h \ge 1$$

$$b_{\rm hyd} \sim C_d w^2/d$$

$$C_a w \Gamma_m \sim -\mathcal{R}$$

$$T_c^4 \sim T_e^4 (1 - 4\Gamma_m h/T_e)$$

Work done on hydrometeors requires a minimum KE flux

Putting it together

Suspending hydrometeors and being optically thick requires...

Sorta amazing it doesn't depend on droplet size or number density.

Putting it all together

Putting it all together

Balance requires $F_{\rm KE} = \eta F_{\theta} \sim -\eta \mathcal{R}$

$$-\eta \mathcal{R} \ge C_d \rho_{\text{hyd}} \left(\frac{-\mathcal{R}}{C_p \rho h \Gamma_m}\right)^3$$

$$-\eta (\sigma T_c^4)^2 \ge \frac{C_d \rho_{\text{hyd}}}{(C_p \rho h \Gamma_m)^3}$$

-or-

$$1 - 8\Gamma_m h/T_e \ge \eta \frac{(C_p \rho h \Gamma_m)^3}{C_d \rho_{\rm hyd} \sigma^2 T_e^8}$$

-or-

Moist layers: Earth, Venus and Titan*

- Earth -> Few hundred meters (in PBL)
- Titan -> Few meters (in PBL)
- Venus -> Few meters (@40-60km)

- So I'm under-estimating
 - Stratocumulus is a "topping", not necessarily a "filling" mode
 - Lot's of order unity factors dropped

Venus and Jupiter as end-members

- Venus' cloud deck is ~global
 - Except at the poles where large buoyancy flux is removed, causing enhanced downwelling there? [akin to bottom-water formation]
 - Could polar downwelling balance upwelling over the rest of the globe?
 - How does this compare to the implied flux due to cloud granularity observed by Venus Express?
- Jupiter, being rotationally constrained, develops alternating up- and down-welling cells.
 - IR emission is concentrated in clear-sky downwelling regions, especially on the flanks of the equator
 - Polar region may host very deep convection, similarly to Venus. Perhaps we should be thinking about ocean analogies...

Jupiter model

[here be monsters]

EQ

Questions

- How does the mass budget close in a (nearly) global mode of stratocumulus?
- What happens in a very hot, moist climate?
- Are there general, guiding principles of planetary albedo?