The Determination of a Trend in a Multi-Scale Problem How Warm is it Getting?

JUAN M. RESTREPO

Department of Mathematics, Department of Statistics and Physical Oceanography Oregon State University

May 21, 2018

Something Must Account for Changing Mean

Increase of Extreme Events in a Warming World (PNAS 44, 2011), by Rahmstorf and Coumou.

The Trend Problem:

Define a set of simple universal rules with which to compute an underlying tendency, given a finite (non-stationary/multi-scale) data set.

Joint work with

Shankar Venkataramani (U. Arizona)

- H. Flaschka (U. Arizona) and
- D. Comeau (U. Arizona)

National Science Foundation

A Climate Signal...

Vostok Ice Core data, Temperature

Given a finite-time time series Y(i), i = 1, 2, ..., N,

The **Tendency** T(i) is an *Executive Summary* of Y(i)

- Captures essentials of histogram in the abscissa of Y(i); and
- Most essential multi scale information, derived from ordinate of Y(i).

The **Empirical Uncertainty** U(i) := Y(i) - T(i)

- is simple entropically,
- The histogram of U(i), is easy to parametrize

Given a finite-time time series Y(i), i = 1, 2, ..., N,

The **Tendency** T(i) is an *Executive Summary* of Y(i)

- Captures essentials of histogram in the abscissa of Y(i); and
- Most essential multi scale information, derived from ordinate of Y(i).

The **Empirical Uncertainty** U(i) := Y(i) - T(i)

- is simple entropically,
- The histogram of U(i), is easy to parametrize

General Procedure:

- Find a decomposition $Y(i) = \mathbf{B}^D + \sum_{i=1}^D \mathbf{R}^j(i)$
- Apply tendency criteria to pick $T(i) := \mathbf{B}^D + {\mathbf{R}^j(i)}_S, i = 1,...,N$.
 - B^D is a constant.
 - $\{R^{j}(i)\}_{S}$ is a function made up of a combination of *S* rotations.

The choice of decomposition is motivated by the

- Be non-parametric.
- Ability to handle multi-scale nature of a signal.
- Be lossless.

Given a sequence of real numbers $\{Y(i)\}_{i=1}^{N}$,

$$Y(i) = \mathbf{B}^D + \sum_{j=1}^{D} \mathbf{R}^{j}(i)$$

where

$$B^{j}(i) = B^{j+1}(i) + R^{j+1}(i), \quad j = 0,...,D,$$

and
 $B^{0}(i) := Y(i).$

 B^{j} are called *BASELINES*, and R^{j} are called *ROTATIONS*.

Frei and Osorio, Proc. Roy. Soc. London, (2006).

ITD Decomposition: No Low Frequency Slowdown

All Extrema Random Signal $Y = (-1)^i |z_i|$, z_i from $\mathcal{N}(\sigma = 4)$

Extrema spacing τ^0/τ^j ;

$$\|\mathbf{B}^j\|/\|Y\|$$

 $\tau^j/\tau^{j+1} \approx -0.41$

 $||B^{j}||/B^{j+1}|| \approx -0.61.$

How does the ITD (and EMD) work?

$$\mathscr{E}[B^j] := \{S^j, b^j\}.$$

 $\{S^j\}_1^{n_j}$ be locations of extrema of baselines, with values b^j .

ITD:

$${S^{j+1},b^{j+1}} = \mathscr{E}[(\mathbb{I} + M^j)b^j].$$

Self Similar Spectrum

ITD:
$${S^{j+1}, b^{j+1}} = \mathscr{E}[(\mathbb{I} + M^j)b^j].$$

- Spectrum($\mathbb{I} + M^j$): $\lambda_{\nu}^j = \cos^2(\pi k/n)$,
- e'value 1 corresponding to right e'vector consisting of all 1,
- e'value 0 corresponding to right e'vector consisting of $x_k = (-1)^k$.

Spectrum($\mathbb{I} + M^{j}$), for all levels *j*

Universality and Decay of the ℓ_2 of the Baselines

$$\{S^{j+1}, b^{j+1}\} = \mathscr{E}[(I+M^j)b^j]$$

at j+1, with $S^{j+1} \subseteq S^j$.

$$v := M^{j}b \sim \frac{1}{4}B''(x) + \frac{1}{2}p^{j}(x)B'(x).$$

$$v_k = \frac{1}{4}(b_{k-1} - 2b_k + b_{k+1}) + \frac{p_k'}{4}(b_{k+1} - b_{k-1}),$$

 $p_k^j \in (-1,1)$ given by

$$p_k^j = \frac{2\tau_k^j - \tau_{k-1}^j - \tau_{k+1}^j}{\tau_{k+1}^j - \tau_{k-1}^j}.$$

Hence, $(I+M^j)b^j$ is FTCD approximation of

$$\frac{\partial}{\partial t}B = \frac{1}{4}\frac{\partial^2}{\partial x^2}B + \frac{1}{2}p^j(x)\frac{\partial}{\partial x}B = \frac{1}{4w^j(x)}\frac{\partial}{\partial x}\left[w^j(x)\frac{\partial B}{\partial x}\right],$$

$$w^{j}(x) = \exp\left[2\int_{0}^{x} p^{j}(t)dt\right].$$

Distancing of Extremas and Decay of Baselines, with Level

All Extrema Random Signal $Y = (-1)^{i}|z_{i}|, z_{i}$ from $\mathcal{N}(\sigma = 4)$

Extrema spacing τ^0/τ^j ;

$$\|\mathbf{B}^j\|/\|Y\|$$

Model: $b_k^j \approx \mu^j (-1)^k + \alpha^j n_k$.

Since $(I+M^j)(-1)^k=0$ then $b^{j+1}=\alpha^j\mathscr{E}((I+M^j)\mathbf{n})$, where $\mathbf{n}=n_k$ is a vector of independent normal variates.

Estimating μ and α

Model:
$$b_k^j \approx \mu^j (-1)^k + \alpha^j n_k$$
.

Let $\mathbf{x} = (x_1, x_2, x_3)$, consecutive entries of the vector $(I + M^j)\mathbf{n}$, then

count ways x_i can be extrema •

Let x_1, x_2 and x_3 consecutive entries of the vector $(I + M^j)\mathbf{n}$, then

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \approx \frac{1}{4} \begin{pmatrix} 1 - p_1 & 2 & 1 + p_1 & 0 & 0 \\ 0 & 1 - p_2 & 2 & 1 + p_2 & 0 \\ 0 & 0 & 1 - p_3 & 2 & 1 + p_3 \end{pmatrix} \begin{pmatrix} n_1 \\ n_2 \\ n_3 \\ n_4 \\ n_5 \end{pmatrix} \equiv A\mathbf{n}.$$

where n_i independent normal, p_i are realizations. So x_1, x_2 and x_3 are jointly Gaussian with mean zero and covariance $\Sigma(p_1, p_2, p_3) = AA^T$ and the (conditional) joint density of x_1, x_2 and x_3 is given by

$$p(x_1, x_2, x_3 | p_1, p_2, p_3) = \frac{1}{\sqrt{8\pi^3 \text{Det}(\Sigma(p_1, p_2, p_3))}} \exp\left[-\frac{1}{2} \mathbf{x}^T \Sigma(p_1, p_2, p_3)^{-1} \mathbf{x}\right].$$

The Joint Density of the Spacing

Let $l_k = \tau_{k+1} - \tau_k$, then $p_k = \frac{l_k - l_{k-1}}{l_k + l_{k-1}}$. Assume every site has a constant probability of being an extremum, and no correlation between neighbors. Guess l^{j} is exponentially distributed (mean = 1)

The joint density of p_1, p_2 and p_3 :

$$\rho(p_1, p_2, p_3) = \frac{128(1 - p_1)(1 + p_2)(1 - p_2)(1 + p_3)}{(3 - p_1 + p_2 + p_1p_2)^3(3 - p_2 + p_3 + p_2p_3)^3}.$$

and

$$\Sigma_{av} = \int_{-1}^{1} dp_2 \int_{-1}^{1} dp_1 \int_{-1}^{1} dp_3 \Sigma(p_1, p_2, p_3) \rho(p_1, p_2, p_3)$$

$$= \begin{pmatrix} 0.41666... & 0.25 & 0.058227... \\ 0.25 & 0.41666... & 0.25 \\ 0.058227... & 0.25 & 0.41666... \end{pmatrix}.$$

We now obtain the joint density of x_1, x_2 and x_3 to get

$$p_{av}(x_1, x_2, x_3) \approx \frac{1}{\sqrt{8\pi^3 \mathrm{Det}(\Sigma_{av})}} \exp\left[-\frac{1}{2}\mathbf{x}^T \Sigma_{av}^{-1} \mathbf{x}\right].$$

We can also compute the mean and the variance of the distribution of the minima (maxima).

$$\mu = \frac{1}{\beta} \int_{-\infty}^{\infty} dx_3 \int_{x_3}^{\infty} dx_2 \int_{-\infty}^{x_2} dx_1 x_2 p(x_1, x_2, x_3) = 0.483883...$$

and

$$\alpha^2 = \frac{1}{\beta} \int_{-\infty}^{\infty} dx_3 \int_{x_3}^{\infty} dx_2 \int_{-\infty}^{x_2} dx_1 x_2^2 p(x_1, x_2, x_3) - \mu^2 = 0.302712...$$

From this, we obtain

$$(I+M^{j})\mathbf{n} \approx \mu(-1)^{k} + \alpha \mathbf{n}' = 0.483883 \times (-1)^{k} + 0.550193\mathbf{n}'.$$

Example Calculation

Vostok Ice Core data, Temperature

Finding the Tendency

• Find ITD:

$$Y(i) = \mathbf{B}^D + \sum_{j=1}^D \mathbf{R}^j(i),$$

$$\mathbf{B}^{j}(i) = \mathbf{B}^{j+1}(i) + \mathbf{R}^{j+1}(i)$$

• Find Tendency (picking j^* baseline)

$$T(i) := \mathbf{B}^{j^*}(i)$$

The Tendency T(i), the EMD, and the Vostok signal Y(i)

Time Series

The Histograms

Find Tendency

Choosing j^* among the baselines $\{B^j(i)\}_{j=1}^D$:

$$T(i) := \mathbf{B}^{j^*}(i)$$

The ABSISSA information:

- For j = 1,..,D compute $F^j := \text{histogram}[Y(i) B^j(i)]$
- Determine the Symmetry s^j of F^j via percentiles:

$$s^{j} := \frac{Pr_{75}^{j} - 2Pr_{50}^{j} - Pr_{25}^{j}}{(Pr_{75}^{j} - Pr_{25}^{j})}$$

Choosing j^* among the baseline $\{B^j(i)\}_{j=1}^D$:

$$T(i) := \mathbf{B}^{j^*}(i)$$

The ORDINATE information:

• Compute the Complexity c_i vector

$$c^j := \operatorname{corr}(\mathbf{B}^j, \mathbf{R}^j)$$

Analysis of the Moscow Data

Our analysis confirms Rahmstorf and Coumou's guess: the mean temperature increased, but not its variance:

Further Information

Juan M. Restrepo

http://www.math.oregonstate.edu/~restrepo

National Science Foundation WHERE DISCOVERIES BEGIN

A Multiscale Signal

$$Y(i) = \frac{1}{1.5 + \sin(2\pi t)} \cos[32\pi t_i + 0.2\cos(64\pi t_i)] + \frac{1}{(1.2 + \cos(2\pi t_i))};$$

for $t_i \in [0:0.0025:1]$.

Ocean Temperatures

The Composite Case

