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The talk

Background for non sea ice folk.

Background for non wave-ice interaction folk,
including the marginal ice zone.

Two modelling paradigms I and II, to be defined.

My focus has primarily been paradigm I.

But there is also a demand to operationalize paradigm
II models, e.g. in global climate models and
global-scale wave forecasting models such as
WAVEWATCH III R©.
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Sea ice 101 – a deterrent for aspiring modellers

Some convenient (or otherwise) over-simplified facts about sea ice . . .

It is cold (air temperature) at the top and warm (∼−1.8◦C) at the bottom, in situ.

Its properties depend on its growth history.

It has a complex structure composed of ice crystals, air and brine (and other salts)
plus, in some circumstances, natural organic matter.

It is anisotropic and spatially and temporally heterogeneous.

Its mechanical behaviour depends on strain rate and spatial scale.

It can appear in Nature as various types of continuous sheets (fast ice, grease ice,
nilas, etc.) or separate floes 1–2 m across (pancakes) to vast floes of 'km size.

Level sea ice thicknesses can range from O(mm) up to O(10 m) or even greater,
but pressure ridges can be up to 50 m keel-to-sail.

It may have snow on top and frazil crystals and/or platelets underneath.

The region of loose ice floes between the open ocean and the interior
quasi-continuous pack ice is often called the marginal ice zone (MIZ).

Surface gravity waves, up/downwelling, jets, streamers and bands, and eddies are
symptomatic of the MIZ.
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Wave/ice interaction 101

We know that ocean waves in the range of periods T≈4–20 s . . .

Reduce in amplitude as they travel through sea ice fields due to

dissipative energy loss
conservative wave scattering, i.e. redistribution of wave energy.

Break up ice floes, if waves are sufficiently energetic.

Move floes around.

With climate warming, we expect to see . . .

Weakened and more compliant Arctic summer sea ice.

Perennial Arctic sea ice becoming more seasonal.

More mobile ice floes, with a greater incidence of leads and polynyas.

A less compact ice canopy that resembles a MIZ.

As confirmed by satellite radar altimeter data, higher and longer ocean waves
generated globally (also locally because of larger aggregated fetches), which

penetrate further into the ice cover, as their amplitudes are larger
have greater destructive payload to pummel and break up the sea ice
promote further melting in summer or freezing in winter by helping winds and
currents move ice floes around.
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Seasonal effects of ocean waves entering ice fields1

1
Courtesy Alison Kohout 2013, with addendum
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MIZ genesis and maintenance due to waves

MIZ morphology

Typically composed of a random distribution of
small floes with radius r∼O(10–100) m.

Substantial wave activity typically exists in the
swell regime T =4–20 s, so that kr=
wave number×floe radius = O(1) and scattering
acts to redistribute wave energy.

Pancake ice where r/1 m is unlikely to scatter
waves.

MIZ created primarily by wave-induced ice breaking
and jostling.

Wave energy dissipation is also important.

Waves attenuate and radiate preferentially,
according to their frequency, viz.

shorter waves reduce in amplitude more quickly than longer
ones do (low pass filter);
shorter waves spread angularly more quickly than longer
ones do.
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Example. German TerraSAR-X image

Vortrag > Autor > Dokumentname > 09.11.2005Remote Sensing Technology Institute
DLR Oberpfaffenhofen
D-82234 Weßling 
Internet: www.dlr.de/caf 
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Ice and Sea State in Arctic Regions
Susanne Lehner1, Andrey Pleskachevsky1, Johannes Gemmrich2

1German Aerospace Center (DLR), Marine Remote Sensing,  2 Physics and Astronomy, University of Victoria, Canada

1. MOTIVATION: DATA AND SATELLITES

Radar satellites can provide survey and
observation of meteo-marine
parameters and sea ice conditions with
high resolution. Carrying active sensors,
radar satellites are the most prominent
equipment for research and surveillance
in high latitude regions due to their
independence of cloud coverage and
sunlight illumination. The latter is
especially important for monitoring in
Polar Regions, where optical remote
sensing observations are possible only in
infrared spectral range during polar
night.

2. METHODS AND ALGORITHMS

The SAR data are used for different oceanographic applications including ice: Ice
motion from image sequences, ice classification based on neuronal network, iceberg
detection adapted from ship detection algorithms and interaction with surface waves.

Ice Motion Ice classification Iceberg detection Interaction Ice-Waves

Methods and Applications for Sea Ice from TerraSAR‐X data

TerraSAR-X is an X-band polarimetric
SAR (Synthetic Aperture Radar)
designed to operate in different modes
with the highest resolution up to 1m.
TerraSAR-X images provide information
on surface wind and integrated sea
state parameters. Individual ocean
waves with wavelengths down to 30m
are detectable. Further, sea ice motion,
ice type classification, iceberg detection
and interaction of ocean waves with sea
ice are observable. Simultaneous wave
observations at a spatial coverage
sufficiently anger than typical ice floes
are required to address the wave
evolution in the marginal ice zone.
TerraSAR-X images span a range of up
to 50 km from which a spatial series of
wave spectra can be extracted.

TerraSAR-X Stripmap
Significant 
Wave height

1NM numerical           
model result

XWAVE
Inversion

Sea state: Integrated Parameters
empirical  X‐WAVE Algorithm  

SAR Image
calibration

XMOD
Inversion

2D-FFT, …,
Interpolation

NRCS

DIR

TerraSAR-X Stripmap Wind field

Surface Wind: XMOD Algorithm  

Incidence Angle

TerraSAR-X Stripmap  05.09.2010Wind XMOD Waves XWAVES

Hs
(m)

Tp
(s)

Dir
(°)

TS-X 2.2 7.6 237

buoy 2.0 7.7 -

Buoy NDBC_44027

Buoy NDBC_44027

Buoy wind=11.4m/s  (11.1m/s TS-X)

3. SEA ICE MOTION AND ICE MODELING

The TerraSAR-X data allow covering large areas and estimating the spatial distribution of
investigated characteristics and thus have been used for validation of ice drift models,
which are designed to optimize shipping routes.

TerraSAR-X ScanSAR
10 following images acquired over North Atlantic
on 22.09.2012   06:36-06:40 UTC.  
Vertical coverage of 1000km (each image covers 100km) 

Example: inhomogeneous  wind field and wave field from TerraSAR-X scene.  The whole set of 
information on wind, waves and ice is contained in the images

Ice Model setup bathymetry resolution ~2km

Barents Sea

• Resolution 1’x 5’
• Forced by NCEP data
• Climatological boundary conditions

• Resolution 1’x 5’
• Forced by NCEP data
• Climatological boundary conditions

Output:
Ice concentration 0-1
Ice thickness 0-5m
Ice velocity  m/s
Snow depth, 0-5m

Output:
Ice concentration 0-1
Ice thickness 0-5m
Ice velocity  m/s
Snow depth, 0-5m

First model results

Ice Thickness

Ice Concentration

TerraSAR-X ScanSAR scene ~100km 

First comparison of TerraSAR-X with results of ice drift model based on circulation HAMSOM 
(M. Dobrynin and T. Pohlmann).

NOAA AVHRR 05.02.2012 

Greenland Greenland 

4. WAVES PROPAGATION INTO THE SEA ICE

The significant wave height reaches 18m during a storm south of Greenland. The waves
are propagating into sea ice. With increasing distance to the ice edge the wave height
decreases accompanied by an increase of wavelength.

open ice

close ice

very close ice

fast ice

DMI

Weather situation in north Atlantic on 05.02.2013  

356m

319m

310m

TerraSAR-X- Stripmap 32km×50km  05. 02. 2013 

 Approximate wave direction

⇐ 32 km×50 km, 1-m-resolution
TerraSAR

X-band SAR image of wave propagation
into the Greenland Sea MIZ.2 A storm
located south of Greenland causes
substantial ocean waves to propagate into
the sea ice, where they are attenuated with
increasing distance from the ice edge with
an apparent growth of aggregated
wavelength and a possible broadening of
directional spread. The small growth in
wavelength is probably due to spectral
evolution caused by the preferential
attenuation of shorter period waves as
opposed to dispersion.

2
Lehner et al. (2013)
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Models of MIZ wave/ice interactions

There are two preeminent modelling paradigms for wave/ice interaction . . .

Paradigm I. Methodology that endeavours to represent the physics of each
constituent process as faithfully as possible through state variables, acknowledging
from the outset that approximations are inevitable.

Paradigm II. A continuum ersatz, which leads naturally into parameterizations
that can potentially easily be incorporated into global-scale wave forecasting
models such as WAVEWATCH III R© or global climate models.

But do such parameterizations faithfully represent waves propagating in the MIZ,

for example?

Moreover

Mostly all current models of wave propagation through sea ice use dxA=−αA to
describe how the wave amplitude A=A(x) reduces with distance x travelled, i.e.
they fit an exponential curve to data.3 Some observations suggest that a paradigm
II model of the form dxA=−αAn might be worth considering, arising from
nonlinear dissipation.

3
A(x) is a proxy wave amplitude normally derived from energy density spectra collected by buoys located at increasing

distances from the ice edge
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Paradigm I examples

Hydroelastic models of wave propagation into and within continuous sea ice,4

including across cracks, changes of thickness or other physical properties, open and
refrozen leads, pressure ridges, etc., and combinations of such features.

Viscous5 or viscoelastic6 surface layer models of grease ice or pancake ice at high
concentrations.

Representations of ocean waves entering and propagating in MIZs.7

Paradigm I models are constructed from physically plausible assumptions that can be
independently verified experimentally, e.g. using a Kirchhoff-Love plate or a viscoelastic
layer with prescribed state variables such as the elastic shear modulus G and viscosity µ,
floating on an inviscid ocean.

I am not saying such models are perfect or 100% accurate. I am arguing for the fidelity
of the parameterization and the strength of its link to physics.

4
e.g. Fox and Squire (1990, 1994), where the reflexion and transmission coefficients for surface gravity waves entering a

fast ice sheet are calculated precisely for the first time
5

Keller (1998), Carolis and Desiderio (2002)
6

Wang and Shen (2010), Zhao and Shen (2015a,b), Zhao et al. (2015)
7

e.g. Masson and Leblond (1989), Perrie and Hu (1996, 1997), Vaughan et al. (2009), Montiel et al. (2016), Montiel and
Squire (2017), . . .
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Canonical problem – a uniform semi-infinite sea ice sheet4

x

y

z

Open sea

Oblique long-crested plane waves

Sea ice sheet

θ

h

Density of
ice = ρ '

z = H

Density of
water = ρ

Many published solutions – most early ones assuming zero draught,
with a multitude of methods (eigenfunctions, integral equation).

Assume Φ(x, t)=Re
[
φ(x, z)e i(ly−ωt)].

Represent ice sheet by Kirchhoff-Love plate with flexural rigidity D.
Characteristic length and time defined Lc = 4

√
D/ρg , τc =

√
Lc/g .

Nondimensionalize. L=Lc (ωτc )−2/5 = 5
√

D/ρω2 and time with
respect to τ=τc =⇒ ice and wave properties embedded and ice
dispersion relation described by $=λ−µ=g/Lω2−hρ′/Lρ.

Define L(x, ∂x )=D(x)(∂2
x−l2)2 +λ−µm(x), such that D(x) and

m(x) are 0 for water or 1 for ice.

(
∇2−l2

)
φ(x, z)=0

L(x, ∂x )φz (x, 0)+φ(x, 0)=0

φx (x+
, z)−φx (x−, z)=φ(x+

, z)−φ(x−, z)=0, φz (x,H)=0

L−(∂x )φz (0+
, 0)=0, L+(∂x )φzx (0+

, 0)=0 with L±(∂x )=(∂2
x−l2)∓(1−ν)l2.

Radiation conditions =⇒φ(x, z)∼
{(

e ikx +Re−ikx)ϕ(z, k) as x→−∞
Te iα0xϕ0(z, α0) as x→∞.

Wave numbers are κ=(k2 +l2)1/2 and γ0 =(α2
0 +l2)1/2

.

s|T |2 =1−|R|2 links the reflection and transmission coefficients where s is the intrinsic admittance.

An algebraic solution8 is found for µ=0, viz. |R|=(k−α0)/(k+α0), |T |=2kα0/(k+α0), s=α0/kω2.

8
Tkacheva (2011)
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Tweaking the canonical 1

Propagation across cracks
N cracks located at points x=xn in the
closed finite interval [0, d ] is close to that
just set out, with minor changes as follows

φ(x, z)∼
{(

e iα0x +Re−iα0x
)
ϕ0(z, α0) as x→−∞

Te iα0xϕ0(z, α0) as x→∞

L(∂x )=(∂2
x−l2)2 +$, x∈(−∞,∞)\∪

{
(x−n , x

+
n )
}

For each xn,L−(∂x )φz (x±n , 0)=0

L+(∂x )φzx (x±n , 0)=0

|T |2 =1−|R|2, i.e. s=1.

Plots to the right show solutions found
using Green’s functions9

Upper. A snapshot of the surface displacement on either
side of a crack for an obliquely incident wave (θ=30◦)
from the left such that the wavelength/thickness ratio is
100 and the wavelength/depth ratio is 2.5.
Lower. Magnitude of the reflection and transmission
coefficients when θ=0 due to 5 randomly-spaced open
cracks located within 100 m of ice of thickness 1.0 m.
One standard deviation about the curve is also plotted in
each case.

−20 −10 0 10 20
0

5

10

15

20

0 5 10 15 20
0

0.5

1

|T
|

0 5 10 15 20
0

0.5

1

Period (s)

|R
|

9
Squire and Dixon (2001), Williams and Squire (2002), Evans and Porter (2003)
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Tweaking the canonical 2

Propagation across leads

Ice sheet Ice sheet

Incoming plane wave

Transmitted wave

Reflected wave

z

x

x = −d x = d

z = H

Gap

Two semi-infinite ice sheets are separated
by a gap of width 2d , which may be open
or refrozen.10(

D(x),m(x)
)

=(0, 0) for |x |<d

=(1, 1) for |x |>d

For x=±d ,L−(∂x )φz (±d±, 0)=0,

L+(∂x )φzx (±d±, 0)=0

|T |2 =1−|R|2, i.e. s=1.

Localized changes of thickness10

Thickness of any of the three plates may be set to zero.

I

θ

R

T

h0
h1

h2

d

Uniform plates

Sea water

x

z

y

Modified canonical system is

φ(x, z)∼
{(

e iα0x +Re−iα0x
)
ϕ0(z, α0) as x→−∞

Te iα2xϕ2(z, α2) as x→∞

(
D(x),m(x)

)
=


(D0,m0) for x<0

(D1,m1) for 0<x<d

(D2,m2) for x>d

For free edges xe =0 and xe =d

L−(∂x )φz (x±e , 0)=0L+(∂x )φzx (x±e , 0)=0

For frozen edges xe =0 and xe =d

φz (x+
e , 0)=φz (x−e , 0), φzx (x+

e , 0)=φzx (x−e , 0)

D(x+
e )L−(∂x )φz (x+

e , 0)=D(x−e )L−(∂x )φz (x−e , 0)

D(x+
e )L+(∂x )φzx (x+

e , 0)=D(x−e )L+(∂x )φzx (x−e , 0).

10
Squire and Dixon (2001), Chung and Linton (2005), Williams and Squire (2006) 12 / 30



Tweaking the canonical 3

Realistic sea-ice terrain11

A region of variable properties welded to the surrounding
sheets surrounded by uniform ice sheets. The operator is
redefined as follows

L(x, ∂x )=(∂2
x−l2)

[
D(x)(∂2

x−l2)
]

+ (1−ν)l2D′′(x)+λ−µm(x)

where

(
D(x),m(x)

)
=

{
(D(x),m(x)) for x∈(0, d),

(1, 1) for x 6∈(0, d)

φz (x+
c , 0)=φz (x−c , 0), φzx (x+

c , 0)=φzx (x−c , 0)

D(x+
c )L−(∂x )φz (x+

c , 0)=

D(x−c )L−(∂x )φz (x−c , 0)(
D(x+

c )L+(∂x )∂x +Dx (x+
c )L−(∂x )

)
φz (x+

c , 0)=(
D(x−c )L+(∂x )∂x +Dx (x−c )L−(∂x )

)
φz (x−c , 0)

The inclusion of draft12

The transition, which is modelled as an Euler–Bernoulli thin plate like the sea-ice that surrounds it, can be
frozen to the adjacent sea-ice plate or free to move independently of it. This is important as both situations
occur in nature, depending on whether freezing is occurring and on how long the arrangement has been in
place under steady state conditions. When the feature is unattached to the ice around it, it will be in hydro-
static equilibrium but this will not necessarily be the case when it is welded. The moment that is generated in
the latter case is ignored.

Apart from confirming that energy is conserved, which is done for all calculations, experimental validation
of the theory developed in this paper is problematical as no suitable data exist of sufficient accuracy. None-
theless, as noted hereinbefore, some work has been done in open water and the present model is robust enough
mathematically that we can allow the surrounding ice plate to have zero thickness to mimic the open water
case. The inclusion of surge, i.e., the to-and-fro motion of the solitary ice floe, is also possible here; this is
described in Appendix A. Other validation relies on a comparison of the approximate no-submergence case,
which is well documented and well tested in the literature, with the behaviour as submergence is progressively
introduced. The model performs well, allowing us to have confidence that the solution is accurate.

The mathematical system describing the problem is set out in Section 2 and the method of solution is
reported in Section 3 where a wide spacing approximation is also developed by invoking a result obtained
for two semi-infinite plates of different thickness. Some results are provided in Section 4. While by no means
exhaustive, these should assure the reader that the model is correct.

2. Equations and boundary conditions

Fig. 1 illustrates the situation that we are modelling. A plane flexural-gravity wave arrives at the central
transitional strip, i.e., the feature referred to above, from the left hand region and is partially reflected and
partially transmitted into the right hand region. The left and right hand plates both have thickness h0 while
the central strip has thickness h1. Subscripts of j = 0 or 1 will be used to denote quantities referring to a plate
with thickness hj; important quantities are the flexural rigidities and submergences of each plate, which are
defined as

Dj ¼
Ejh

3
j

12ð1� m2
j Þ
; rj ¼

qj

q
hj;

where Ej, mj and qj are the Young’s modulus, Poisson’s ratio and density of the plate in the jth region, respec-
tively, while q is the (constant) fluid density. The lower surfaces of each plate are located at z = rj, and the
central plate between the x = 0 and x = l planes. In the working below we will assume that h1 P h0 so that
the central strip sits lower than the outer plates (as indicated in the figure).

The amplitudes of the reflected and transmitted waves are R and T, respectively. R and T shall be called the
reflection and transmission coefficients, and the determination of their values is the main purpose of our
solution.

Fig. 1. The physical situation to be modelled. A plane flexural-gravity wave arrives from the left hand region and is partially reflected and
partially transmitted into the region beneath the right hand plate. The thicknesses of the outer plate are denoted h0, while the thickness of
the central transition is h1. All regions are modelled using an Euler–Bernoulli thin plate model. The bottom of a plate with thickness hj is
located at rj = qjhj/q, and the edges of the central strip are in the x = 0 and x = l planes (the coordinate axes are displaced to the right to
avoid clutter). The incident wave arrives at an angle h from normal incidence and the sea floor is given by z = H.

T.D. Williams, V.A. Squire / Wave Motion 45 (2008) 361–379 363

Scattering of normally incident waves by a 2-m-thick strip
of width (a) 10 m, (b) 20 m, (c) 50 m and (d) 100 m with
free edges floating on infinitely deep water between two
semi-infinite 1-m-thick sheets. Solid curves are for
realistic draught, dashed curves are for zero submergence.

boundary conditions at z = 0 (e.g., [3–14]), are providing an accurate description of what is actually occurring
and that these may potentially be extended to connect many such features together.

Fig. 6 compares the submergence and no-submergence cases again in open water but this time at different
water depths, with the infinite water depth case including submergence also plotted (dots) for reference. The
ice floe here is 1 m thick and 15 m wide. Notice that the infinite depth results replicate those at a specific depth
accurately for 60 m and 40 m, are in close proximity at 20 m although they begin to deviate as the period
increases, and, even at only 10 m depth, are nearby. The difference arises because when it is shallow the water
has to ‘squeeze’ through a smaller space relative to the depth of the surrounding water. At all depths there is a
systematic difference in the fine structure between the solid and dashed curves, designating submergence and
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Fig. 4. The scattering of normally incident waves by a 2-m-thick strip floating on infinitely deep water between two semi-infinite 1-m-thick
sheets, when submergence is allowed for (solid curves) and when it is not (dashed curves). The free edge conditions are applied and the
strip widths used in each plot are (a) 10 m, (b) 20 m, (c) 50 m and (d) 100 m.
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Fig. 5. The same configuration shown in Fig. 4 but for frozen edge conditions.

T.D. Williams, V.A. Squire / Wave Motion 45 (2008) 361–379 373

11
Williams and Squire (2004)

12
Bennetts et al. (2007), Squire and Williams (2008), Williams and Squire (2008)
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Flexural waves in continuous variable sea ice example13

(a) A 1670-km-long Arctic sea ice profile obtained in 1994 from submarine using upward looking
sonar; (b) the magnitude of the vertical displacement |A| of a 22 s ocean wave train as it
progresses through ice terrain for the entire 1670 km transect; (c) 10 km example of the
thickness profile used in the model found using isostasy, showing ridge sails and keels; and
(d) 10 km detail of |A|. All are plotted against the horizontal coordinate x km.
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Paradigm I in the MIZ, a 2(+1)D model of wave
scattering by a random MIZ14

Our model

Phase-resolving, linear wave scattering by random arrays of O(103–105) circular floes.

14
Montiel et al. (2016), Montiel and Squire (2017)
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The model

Physics and assumptions
Linear periodic water wave theory

Finite number of circular floes with
prescribed randomized radius and
thickness

Each floe is represented as a thin
elastic or viscoelastic plate

Directional spectra

Multiple scattering in deterministic
framework

Dissipative effects are essentially

neglected (for now), e.g. floe collisions

including ridge-building and rafting,

overwash, viscous damping, sea ice

inelasticity, turbulence, vortex shedding,

etc.
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Step 1: scattering by a single floe

Match the pressure and velocity fields at the interface between the
ice-covered and ice-free domains, using a local coordinate system.

Exterior eigenfunction expansions

Incident Field → φi
p(rp , θp , z)≈

M∑
m=0

ξm(z)
N∑

n=−N

a
(p)
m,nJn(kmrp) e inθp

Scattered Field → φs
p(rp , θp , z)≈

M∑
m=0

ξm(z)
N∑

n=−N

b
(p)
m,nHn(kmrp) e inθp

with ξm(z)=cosh km(z+h)/ cosh kmh and km the solutions of the open water dispersion relation
k tanh kh=α.

Floe interior eigenfunction expansion

Scattered Field → φf
p(rp , θp , z)≈

M∑
m=−2

ψm(z)
N∑

n=−N

c
(p)
m,nJn(κmrp) e inθp

with ψm(z)=coshκm(z+h)/ coshκm(h−d) and κm the solutions of the ice-covered dispersion
relation (βκ4 +1−αd)κ tanhκ(h−d)=α.
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Step 2: multiple scattering in a single strip

Single strip scattering matrix

Invoking Graf’s addition formula, we apply self-consistent interaction theory15, for
cylindrical waves which expresses the wave forcing on each ice floe as the coherent sum
of the ambient incident wave and the scattered wave fields originating from all the other
ice floes. The resulting solution is expressed in terms of cylindrical wave forms radiating
from all floes.

Mapping between incident and
scattered waves

Plane waves → cylindrical harmonics
→ plane waves

Discretization of directional range:(
A−0
A+

1

)
=S1

(
A+

0

A−1

)
where S1 is the scattering matrix.

15
Kagemoto & Yue (1986)
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Step 3: strip-clustering method

We combine the strips by solving a multiple reflection/transmission problem, as
each strip partially reflects and transmits the evolving directional wave spectrum
radiating from preceding adjacent strips.

Multiple strip interactions become a 1D problem

Solution A±j is obtained iteratively (S-matrix method) in terms incident amplitudes

A+
0 and A−J .

The interior field below each floe φF
p can then be calculated and the floe deflection

ηp=(1/α)∂zφ
F
p , z=−d if required.14
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MIZ examples

Models of MIZs showing zones and a band.

Upper plots show energy attenuation coefficients β appearing in E =E0e
−βx (left) and

distance to isotropy (right), for T = 6–15 s. Lower plots16 are comparisons of predicted
(colour) and observed (black) (a) energy spectra and (b) directional spread of the
transmitted field for the band experiment in the same period range.

Page 1 of 1

24/09/2017file:///C:/Users/squve27p/Documents/My%20laptop%20work/publications/2016%20p...



(a ) (b )

16
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Paradigm II examples

Unprecedented demand to embed ocean waves in global climate models or sea ice into

a wave forecasting model such as WAVEWATCH III R©, but . . .

Mass-loading and viscous models used to represent discontinuous sea ice, e.g. an MIZ.17

Continuous ice solutions, whether originally intended to be applicable to its solid form4 or
to other continuous forms6, but used as so called effective media to represent
composites of separate ice floes and cakes as found in the MIZ. (Attenuation is
introduced either by defining a complex shear modulus18 or by introducing
velocity-dependent damping.)

Unfortunately . . .

Mathematically, asymptotic behaviour should be checked and bounds sought on the
effective MIZ’s behaviour using homogenization theory but the latter is difficult.

To calibrate the model with data, attenuation is measured in situ and the model is tuned
by finding the best fit G and µ from the data set, i.e. the model is calibrated with the
very thing we wish to predict.

This causes variability and the possible occurrence of aberrant Gµ values, often larger
than those for solid ice, justified on the basis that Gµ now encapsulates all the dissipative
processes that affect waves. (A shear modulus G comparable with that for titanium!)

17
e.g. Lamb (1916), Wadhams (1973), Weber (1987), Keller (1998), Newyear and Martin (1999), Liu and

Mollo-Christensen (1988), Liu et al. (1991, 1992), Squire (1993), Carolis and Desiderio (2002), . . .
18

Gµ=G−iωρµ, where ρ is ice density
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Current position19

Paradigm II in the MIZ

When used to represent the MIZ, the two favoured continuous ice sheet models4,6 are invoked

as effective media. Recall that they . . .

are built for continuous ice, not an MIZ composed of >>>10,000s of separate ice floes.

include a shear modulus GGG and a viscosity µµµ that have no physical meaning whatsoever
and, in fact, can be physically nonsense as there is no way to relate the wave and ice
conditions to Gµ in a general sense because the model is simply best-fitted to an
observational outcome that only exists for the duration of the experiment.

But note,

Each includes commensurate propagating wave modes but the viscoelastic layer model6

also permits a rich set of legitimate roots that include flexural, longitudinal and surface
waves, which range far and wide in parameter space and can be very close together in the
complex plane making unambiguous root detection very challenging.

Both use ice viscosity µ to represent overall dissipation, yet its effect is reduced as
concentration decreases which is counterintuitive as more, not less, dissipation is likely to
occur as concentration decreases.

Indeed, should we even allow for G 6=0, as nobody has ever observed anything other than
open water dispersion in the MIZ? Why not just assume a viscous (layer) model? What
physical justification can there be for a multitude of separated ice floes being elastic?

19
Mosig et al. (2015)
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A nonlinear ansatz

Exploring an alternative to A=A0e
−αx for paradigm II MIZ

parameterizations

Instead of the usual ode for exponential decay with distance travelled, x , i.e.
dxA=−αA, where α=Im(k)>0 denotes the spatial attenuation coefficient, we
propose dxA=−αAn.

This has solution A(1−n) =A
(1−n)
0 −(1−n)αx , where n and α are unknown

parameters to be found, and A0 is a constant representing the amplitude A at x=0.

When n=0,A=A0−αx , i.e. a linear law

When n=1,A=A0e
−αx , i.e. exponential decay.

In principle, n can take on other values of course.

While, obviously, this gives an extra degree of freedom for data fitting, we
foreshadow that n can be guesstimated by synthesizing results of in situ field data
and, potentially SAR, relating to spectral form and the properties of α(ω) or the
energy attenuation coefficient β(ω).
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Some observations. A snapshot from experiment WA3,
collected in the Beaufort Sea in October 2015

The figure shows the significant wave height attenuation profiles and
directional spreading profiles for both the SWIFT and wave buoys. The
sea ice is predominantly pancake ice.

24 / 30



Correlation analysis of n against Hs0

Median of n for 10 binned Hs values, also showing the percentage of linear
decaying profiles, i.e. for n<0.1 . . .

For Hs/3 m, dxHs=−αHs, with α=(4.49±0.45)×10−6 m−1

For Hs'3 m, dxHs=−α, with α=(5.73±0.54)×10−6.
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Energy density and power n

Left panels show n versus E0, created from clusters of E0 that each contain about 100 estimated
values. Each point on the plot gives the mean of this sample of E0 values versus the median of
the corresponding sample of n values. The transition between n=1 and n=0 occurs at
E0∼1.5 m2s. The median of n versus the mean of the frequency calculated as the mean of all
the frequency samples corresponding to the E0 samples in a bin is shown in the middle panels.
There is a dependence on frequency which follows closely the dependence on energy because the
two are strongly correlated. The right panels show the percentage of linearly decaying profiles in
each E0 bin.
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But, is there any physical justification for increasing the
degrees of freedom by using dxA=−αAn?

Yes – a granular floe jostling model

A back-of-the-envelope analysis of pancake ice subjected to waves produces the
same ode, i.e. dxA=−αAn, by invoking collisions using granular flow theory.20

This ode actually arises from the power-law fluid

σ
(d)
ij =2µ(·)ε̇ij =2

(
1
2
M−1τ (1−n))ε̇ij =2

(
1
2
M−

1
n ε̇

1−n
n
)
ε̇ij ,

where M is constant, ε̇ij is the strain rate tensor and ε̇=
√

1
2
ε̇ij ε̇ij is effective strain

rate.

It implies that viscosity is not constant, as for Newtonian flow. Power-law fluids

have a strain-rate-dependent apparent viscosity µ(·)∝ ε̇
1−n
n .

The value that the index n takes on determines the way the material deforms . . .

when n>1, the viscosity µ(·) decreases as strain rate increases and the material is
described as pseudoplastic;
when 0≤n<1, µ(·) increases with increasing strain rate and it is said to be dilatant.

20
Shen and Squire (1998)
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Is there a clever way of guessing n for waves in sea ice?

Shorter period waves reduce in amplitude more rapidly than longer ones in sea

ice, i.e. attenuation increases as frequency and strain rate increase ⇒ the process

exhibits apparent dilatancy when taken as a whole.

Field experiments suggest α(ω)∝ω2−3, with α(ω)∝ω2 (inverse proportionality to
wavelength) common.21

Yet models being trialed in WAVEWATCH III R© display α(ω) ∝ ω11, ω7, ω
7/2, ω3

asymptotic proportionality.

In the experiment we also found that the actual energy density E0∝ω−4 over the
mid- to high-frequency bands where dxA=−αAn is postulated to hold, so A0 and
A will both reduce following ω−2.

We can argue that, for α(ω)∝ω2 to hold under this constraint, we must have n=2
with the result that α=(A−1−A−1

0 )/x .

21
Wadhams (1975), Meylan et al. (2014), herein
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Choosing n without a dispersion relation

(a) Pierson-Moskowitz spectrum E0(f ). (b) The partially obscured green bar graph is an RMS
amplitude spectrum A0(f ) created from E0(f ) by integrating across frequency bands of width
0.01 Hz with the central frequency at the mid-point. A0(f ) is plotted as a bar graph to
emphasize that each amplitude is valid over a frequency band, e.g. from 0.2–0.21 Hz with a
central frequency 0.205 Hz, rather than at a single frequency. The magenta and yellow spectral
amplitudes show how A0 evolves exponentially as x increases. (c) Spectral amplitudes
constructed in the same manner as for (b), but for linear decay. Identical values for the constant
of proportionality in α∝f 2 and the distances from the ice edge are used for (b) and (c), chosen
to emphasize the disparity between the two types of attenuation. It is the relativity between the
same colours in plots (b) and (c) that is important, rather than the absolute values.
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Thanks for listening. In conclusion . . .

Paradigm I models, based on state variables, are well advanced and have been
tested positively in situ.

While not doubting that they are needed, paradigm II parameterizations are at an
earlier stage of development with disputable (or absent) physics.

Because dissipation in the MIZ is highly nonlinear, dxA=−αA may not be the best
point to start a parameterization, unless we are absolutely sure that the wave
slopes are modest, as it constrains data fitting to a decaying exponential shape.

The added generality provided by the extra degree of freedom arising from
dxA=−αAn potentially gives advantages to parameterization in global climate
models or global-scale wave forecasting models, especially if the parameters α (or
β) and n can be constrained.

Questions
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