A CONTEMPORARY CHRONICLE OF
OCEAN WAVE / SEA ICE INTERACTION

RESEARCH: CONTEXT, MODELS, DELUSIONS
AND IMPACTS

Vernon Squire
University of Otago, New Zealand

Kavli Institute
20th—24* May 2018
Santa Barbara, USA

I I l I I Isaac Newton Institute % OTAGO

for Mathematical Sciences




The talk

o Background for non sea ice folk.



The talk

o Background for non sea ice folk.

o Background for non wave-ice interaction folk,
including the marginal ice zone.



The talk

o Background for non sea ice folk.

o Background for non wave-ice interaction folk,
including the marginal ice zone.

o Two modelling paradigms I and II, to be defined.



The talk

o Background for non sea ice folk.

o Background for non wave-ice interaction folk,
including the marginal ice zone.

o Two modelling paradigms I and II, to be defined.

o My focus has primarily been paradigm L.



The talk

o Background for non sea ice folk.

o Background for non wave-ice interaction folk,
including the marginal ice zone.

o Two modelling paradigms I and II, to be defined.
o My focus has primarily been paradigm L.

o But there is also a demand to operationalize paradigm
II models, e.g. in global climate models and
global-scale wave forecasting models such as
WAVEWATCH I11®.



The talk

o Background for non sea ice folk.

o Background for non wave-ice interaction folk,
including the marginal ice zone.

o Two modelling paradigms I and II, to be defined.
o My focus has primarily been paradigm L.

o But there is also a demand to operationalize paradigm
II models, e.g. in global climate models and
global-scale wave forecasting models such as
WAVEWATCH I11®.



Sea ice 101 — a deterrent for aspiring modellers

Some convenient (or otherwise) over-simplified facts about sea ice . ..

@ It is cold (air temperature) at the top and warm (~—1.8°C) at the bottom, in situ.
O lIts properties depend on its growth history.

@ It has a complex structure composed of ice crystals, air and brine (and other salts)
plus, in some circumstances, natural organic matter.

Q@ It is anisotropic and spatially and temporally heterogeneous.
@ Its mechanical behaviour depends on strain rate and spatial scale.

@ It can appear in Nature as various types of continuous sheets (fast ice, grease ice,
nilas, etc.) or separate floes 1-2m across (pancakes) to vast floes of Zkm size.

O Level sea ice thicknesses can range from O(mm) up to O(10 m) or even greater,
but pressure ridges can be up to 50 m keel-to-sail.

@ It may have snow on top and frazil crystals and/or platelets underneath.

@ The region of loose ice floes between the open ocean and the interior
quasi-continuous pack ice is often called the marginal ice zone (MIZ).

O Surface gravity waves, up/downwelling, jets, streamers and bands, and eddies are
symptomatic of the MIZ.



Wave/ice i

We know that ocean waves in the range of periods T~x~4-20s ...

@ Reduce in amplitude as they travel through sea ice fields due to

o dissipative energy loss
O conservative wave scattering, i.e. redistribution of wave energy.

@ Break up ice floes, if waves are sufficiently energetic.

@ Move floes around.
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We know that ocean waves in the range of periods T~x~4-20s ...

@ Reduce in amplitude as they travel through sea ice fields due to

o dissipative energy loss
O conservative wave scattering, i.e. redistribution of wave energy.

@ Break up ice floes, if waves are sufficiently energetic.
@ Move floes around.
With climate warming, we expect to see ...
Weakened and more compliant Arctic summer sea ice.
Perennial Arctic sea ice becoming more seasonal.
More mobile ice floes, with a greater incidence of leads and polynyas.

A less compact ice canopy that resembles a MIZ.

© 6 ©6 0 o

As confirmed by satellite radar altimeter data, higher and longer ocean waves
generated globally (also locally because of larger aggregated fetches), which

o penetrate further into the ice cover, as their amplitudes are larger

o have greater destructive payload to pummel and break up the sea ice

o promote further melting in summer or freezing in winter by helping winds and
currents move ice floes around.



Seasonal effects of ocean waves entering ice fields!

Winter

Ice break-up due to wave
induced stress, strain and
fatigue

New ice
formation

|

Broken-up ice floes are now more mobile, with
added capability to create patches of open water

/

Light fresh water Dense salty water

1Courtesy Alison Kohout 2013, with addendum




MIZ genesis and maintenance due to waves

S 4 - 2
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MIZ morphology

Typically composed of a random distribution of
small floes with radius r~O(10-100) m.

Substantial wave activity typically exists in the
swell regime T=4-20s, so that kr=

wave number X floe radius = O(1) and scattering
acts to redistribute wave energy.

Pancake ice where r<1m is unlikely to scatter
waves.

MIZ created primarily by wave-induced ice breaking
and jostling.

Wave energy dissipation is also important.

Waves attenuate and radiate preferentially,
according to their frequency, viz.

@ shorter waves reduce in amplitude more quickly than longer
ones do (low pass filter);

O shorter waves spread angularly more quickly than longer
ones do.



Example. German TerraSAR-X image

TerraSAR-X- Stripmap 32km%50km 05. 02. 2013

32 km x50 km, 1-m-resolution
TerraSAR

X-band SAR image of wave propagation
into the Greenland Sea MIZ.2 A storm
located south of Greenland causes
substantial ocean waves to propagate into
the sea ice, where they are attenuated with
increasing distance from the ice edge with
an apparent growth of aggregated
wavelength and a possible broadening of
directional spread. The small growth in
wavelength is probably due to spectral
evolution caused by the preferential
attenuation of shorter period waves as

m.“ /e opposed to dispersion.

ANAARN Approximate wave direction 3 X

2Lehnc—.\r et al. (2013)



Models of MIZ wave/ice interactions

There are two preeminent modelling paradigms for wave/ice interaction . ..

o Paradigm I. Methodology that endeavours to represent the physics of each
constituent process as faithfully as possible through state variables, acknowledging
from the outset that approximations are inevitable.

o Paradigm II. A continuum ersatz, which leads naturally into parameterizations
that can potentially easily be incorporated into global-scale wave forecasting
models such as WAVEWATCH 11I® or global climate models.

But do such parameterizations faithfully represent waves propagating in the MIZ,

for example?
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Moreover

O Mostly all current models of wave propagation through sea ice use diA=—aA to
describe how the wave amplitude A=A(x) reduces with distance x travelled, i.e.
they fit an exponential curve to data.®> Some observations suggest that a paradigm
II model of the form dyA=—aA" might be worth considering, arising from
nonlinear dissipation.

3A(x) is a proxy wave amplitude normally derived from energy density spectra collected by buoys located at increasing
distances from the ice edge



Paradigm I examples

0 Hydroelastic models of wave propagation into and within continuous sea ice,*
including across cracks, changes of thickness or other physical properties, open and
refrozen leads, pressure ridges, etc., and combinations of such features.

@ Viscous® or viscoelastic® surface layer models of grease ice or pancake ice at high
concentrations.

0 Representations of ocean waves entering and propagating in MIZs.”

Paradigm I models are constructed from physically plausible assumptions that can be
independently verified experimentally, e.g. using a Kirchhoff-Love plate or a viscoelastic
layer with prescribed state variables such as the elastic shear modulus G and viscosity u,
floating on an inviscid ocean.

| am not saying such models are perfect or 100% accurate. | am arguing for the fidelity
of the parameterization and the strength of its link to physics.

4 .. . .
e.g. Fox and Squire (1990, 1994), where the reflexion and transmission coefficients for surface gravity waves entering a
fast ice sheet are calculated precisely for the first time

5Keller (1998), Carolis and Desiderio (2002)
6Wang and Shen (2010), Zhao and Shen (2015a,b), Zhao et al. (2015)

7e.g. Masson and Leblond (1989), Perrie and Hu (1996, 1997), Vaughan et al. (2009), Montiel et al. (2016), Montiel and
Squire (2017), ...



Canonical problem — a uniform semi-infinite sea ice shee

Oblique long-crested plane waves @ Many published solutions — most early ones assuming zero draught,

with a multitude of methods (eigenfunctions, integral equation).

Q Assume ®(x, t)=Re [p(x, z)e"(/y_“’t)]

@ Represent ice sheet by Kirchhoff-Love plate with flexural rigidity D.
Characteristic length and time defined L. = ¢/D/pg, 7c=+/Lc/e.

@ Nondimensionalize. L:LC(WTC)72/5: % D/pw? and time with
respect to 7=7, = ice and wave properties embedded and ice
dispersion relation described by =\ —p=g/Lw? —hp’/Lp.

Density of
water=p

Q Define L(x, BX):D(X)(Bf — 1224 X — um(x), such that D(x) and
m(x) are O for water or 1 for ice.

(V=P ¢(x, 2)=0

L(x, 8x)bz(x, 0)+(x,0)=0

dx (T, 2) = bx(x T, 2)=b(x", 2) = B(x T, 2)=0, pz(x, H)=0
L_(84)$2(07,0)=0, £1(8:)¢=x (0", 0)=0 with £ (84)=(82— ) F (1 —v)/.

ikx —ikx
R k -
Radiation conditions == ¢(x, z)~ (eiat € )¢z, k) as x— oo
Te'“0%pq(z, avg) as x—c0.
Wave numbers are m:(szrlZ)l/2 and 'yO:(aSJrlz)l/z.

s| T|2:1— H?|2 links the reflection and transmission coefficients where s is the intrinsic admittance.

An algebraic solution® is found for ;1 =0, viz. |R|=(k—ag)/(k+ag), | T|=2keag/(k+ag), s=cg/kw?.

8Tkacheva (2011)



Tweaking the canonical 1

Propagation across cracks

N cracks located at points x=x, in the
closed finite interval [0, d] is close to that
just set out, with minor changes as follows

(efQOXJFRe*""‘OX)ng(z, ) as x— —00
o(x, 2) {Tefaox¢0(z, ) as x— 0o
£(0:)=(8F = P+, x€ (=00, o)\ U {(x, s %)) }
For each x,, £ (3x)¢z( 5 ):0

L1 (B¢ (xE, 0)=0
ITI?=1—|R|?,ie. s=1.

Plots to the right show solutions found
using Green's functions®

Upper. A snapshot of the surface displacement on either
side of a crack for an obliquely incident wave (§=30°)
from the left such that the wavelength/thickness ratio is
100 and the wavelength/depth ratio is 2.5.

Lower. Magnitude of the reflection and transmission
coefficients when =0 due to 5 randomly-spaced open
cracks located within 100 m of ice of thickness 1.0 m.
One standard deviation about the curve is also plotted in
each case.

gSquire and Dixon (2001), Williams and Squire (2002), Evans and Porter (2003)



Tweaking the canonical 2

Propagation across leads

Reflected wave
Transmitted wave

—_—
Incoming plane wave

Gap
Ice sheet | * | Ice sheet
d| x=d

X = —
z

t=H

Two semi-infinite ice sheets are separated
by a gap of width 2d, which may be open
or refrozen.10

(D(x), m(x))=(0,0) for |x|]<d

=(1,1) for |x|>d
For x=+d, L_(8x)¢.(£d*,0)=0,
L (0x)¢zx(£d*,0)=0
|T|?P=1—|R)?, ie. s=1.

Localized changes of thickness®

Thickness of any of the three plates may be set to zero.

Uniform plates

_ x
k”—,{ ¥ Sea water

Modified canonical system is

(e’.o‘U’(JrRef’.o‘OX)a,ao(z7 ag) as x— —oo
Te'“2%py(z, a2)

¢(><,Z)~{

as X —» o0

(Do, mg) for x<0
(D(x), m(x))=4 (D1, my) for 0<x<d
(Dy, mp) for x>d

For free edges xe =0 and xe=d

£ (8)¢2(x,0)=0L4 (8x)dax (5", 0)=0

For frozen edges xe =0 and xe=d

D2(xg 5 0)=bz(x , 0), bax (67, 0)=hx(xg, 0)
D(x )L~ (Bx)bz(xg > 0)=D(x; )L (Bx)bz(x; ,0)

D(xg )L+(x)ax(xg , 0)=Dlxg )L+ (Bx)bax(xs ,0).

10Squire and Dixon (2001), Chung and Linton (2005), Williams and Squire (2006)



Tweaking the canonical 3

Realistic sea-ice terrain®!

A region of variable properties welded to the surrounding
sheets surrounded by uniform ice sheets. The operator is
redefined as follows

£(x, 8x)=(9; =) [D(x)(@; — 1)
+ (1=v)PD" (x)+ A — pum(x)
where

_J(D(x), m(x)) for x€ (0, d),
(PG, ’"(X))*{u, 1) for x&(0, d)

b2(x0, 0)=¢2(x. , 0), bax(x) , 0)=ebax (x,0)
D(x)L_(8x)p=(x] , 0)=
D)L —(Bx)dz(xC,0)
(DOF)L1(8:) 8+ Dx () £ (84)) b2 (7, 0)=
(D(XT )£+ (8x)0x + Dx (x7 )L — (9x)) b2 (T, 0)

1]'Williams and Squire (2004)

The inclusion of draft!?

Scattering of normally incident waves by a 2-m-thick strip
of width (a) 10m, (b) 20m, (c) 50m and (d) 100 m with
free edges floating on infinitely deep water between two
semi-infinite 1-m-thick sheets. Solid curves are for
realistic draught, dashed curves are for zero submergence.

b 1
=05
fr )
\
W
510 15 2 51 15 20
Wave period / s Wave period / s
c 1 d !
=05 =05
| R
3 N
510 15 2 510 15 20
Wave period /s Wave period / s

12 Bennetts et al. (2007), Squire and Williams (2008), Williams and Squire (2008)



Flexural waves in continuous variable sea ice example!3

(a) A 1670-km-long Arctic sea ice profile obtained in 1994 from submarine using upward looking
sonar; (b) the magnitude of the vertical displacement |A| of a 22's ocean wave train as it
progresses through ice terrain for the entire 1670 km transect; (c) 10 km example of the
thickness profile used in the model found using isostasy, showing ridge sails and keels; and

(d) 10km detail of |A|. All are plotted against the horizontal coordinate x km.

L L L L L L L L
0 200 400 600 800 1000 1200 1400 1600

. . A ! . . f A
120 121 122 123 124 125 126 127 128 129 130
x (km)

13Vaughan et al. (2009), Squire et al. (2009)

Amplitude attenuation coefficients a
appearing in  A=Ape~ ¥ , as a function
of period T. The cross plotted just below
the curve at T=10s shows a for no
viscosity when the decay is all due to
scattering. The functional shape is
a(T)=2x10"2 exp(—0.386T), roughly,
which was unanticipated but the wave

periods are rather long.

Period (s)



Paradigm I in the MIZ, a 2(4+1)D model of wave

scattering by a random MIZ

Our model

Phase-resolving, linear wave scattering by random arrays of O(10%-10°) circular floes.

14Montiel et al. (2016), Montiel and Squire (2017)
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inelasticity, turbulence, vortex shedding,

neglected (for now), e.g. floe collisions
including ridge-building and rafting,
overwash, viscous damping, sea ice

prescribed randomized radius and
etc.

thickness
elastic or viscoelastic plate

O Linear periodic water wave theory
framework

o Finite number of circular floes with
@ Each floe is represented as a thin
O Multiple scattering in deterministic
O Dissipative effects are essentially

Physics and assumptions
@ Directional spectra

©
2
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Step 1: scattering by a single floe

Match the pressure and velocity fields at the interface between the
ice-covered and ice-free domains, using a local coordinate system.

Exterior eigenfunction expansions

{m(z) Z a(rrlva_)n-]n(kmrp) eian

Incident Field —  ¢},(r,, 0. 2)~

Em(2) Z bﬁf,)an(kmrp) einf

Scattered Field —  ¢}(rp, 0p, 2)~

with £m(z)=cosh km(z+h)/ cosh kmh and kn, the solutions of the open water dispersion relation
k tanh kh=a.

Floe interior eigenfunction expansion

M N
Scattered Field — <b;(rp.9p,z)z Z Ym(z) Z cﬁﬁ)nJ,,(nzmrp)ei”"p
m=—2 n=—N

with ¢m(z)=cosh km(z+h)/ cosh km(h—d) and km the solutions of the ice-covered dispersion
relation (Bx*+1—ad)ktanh k(h—d)=a.



Step 2: multiple scattering in a single strip

Single strip scattering matrix

Invoking Graf’s addition formula, we apply self-consistent interaction theory®, for
cylindrical waves which expresses the wave forcing on each ice floe as the coherent sum
of the ambient incident wave and the scattered wave fields originating from all the other
ice floes. The resulting solution is expressed in terms of cylindrical wave forms radiating
from all floes.

O

© Mapping between incident and

A (T (x) scattered waves

=
—~
=
=

o Plane waves — cylindrical harmonics
— plane waves

0 Discretization of directional range:

Ay N\ Ay
( Al )_sl< A

where S; is the scattering matrix.

Ag (x

~—

X2 ATF
e

=+
3

[e18Ne
X scele®
BEx Ain

15 Kagemoto & Yue (1986)



Step 3: strip-clustering method

We combine the strips by solving a multiple reflection/transmission problem, as

each strip partially reflects and transmits the evolving directional wave spectrum
radiating from preceding adjacent strips.

Multiple strip interactions become a 1D problem

Ag

1S
Ay

AL = As
— | So || S3
AT Ay

Ay

Ay

Ss

+
As

o Solution Aji is obtained iteratively (S-matrix method) in terms incident amplitudes

Aj and A7

@ The interior field below each floe gzﬁg can then be calculated and the floe deflection

1p=(1/a):¢p,

z=—d if required.*



MIZ examples

Models of MIZs showing zones and a band.
(a)
Upper plots show energy attenuation coefficients 3 appearing in E=E0e_BX (left) and

distance to isotropy (right), for T=6-15s. Lower plots16 are comparisons of predicted
(colour) and observed (black) (a) energy spectra and (b) directional spread of the

transmitted field for the band experiment in the same period range.

s
410 200
3
e
=
1
. S ——
6 7 8 9 10 11 12 13 14 15 6 7 8910 1? 12.13 1415
T (s)
wnel sue?  soue 2one 4 (@) 107 (b) 50
(© Band < 40
.‘E) ‘0—2 %
@ =
g % 30
T E
el — y=0Pasm™!
%" — 7 =200Pasm~! g 20
| 1073 = 400Pasm~! ]
7 =600Pasm™! A
-+ 1101 (water station)| A 10 + 1101 (water station)|
— 1102 (water station) — 1102 (water station)
104
6 7 8 9 10 11 12 13 14 15 6 7 8 9 10 11 12 13 14 15
T (s) T (s)

16Squire and Montiel (2016)



Paradigm II examples

Unprecedented demand to embed ocean waves in global climate models or sea ice into
a wave forecasting model such as WAVEWATCH N®, but ...

O Mass-loading and viscous models used to represent discontinuous sea ice, e.g. an MIZ.7

@ Continuous ice solutions, whether originally intended to be applicable to its solid form* or
to other continuous forms®, but used as so called effective media to represent
composites of separate ice floes and cakes as found in the MIZ. (Attenuation is
introduced either by defining a complex shear modulus'® or by introducing
velocity-dependent damping.)

Unfortunately ...

@ Mathematically, asymptotic behaviour should be checked and bounds sought on the
effective MIZ's behaviour using homogenization theory but the latter is difficult.

@ To calibrate the model with data, attenuation is measured in situ and the model is tuned
by finding the best fit G and i from the data set, i.e. the model is calibrated with the
very thing we wish to predict.

@ This causes variability and the possible occurrence of aberrant G, values, often larger

than those for solid ice, justified on the basis that G;, now encapsulates all the dissipative
processes that affect waves. (A shear modulus G comparable with that for titanium!)

17e.g. Lamb (1916), Wadhams (1973), Weber (1987), Keller (1998), Newyear and Martin (1999), Liu and
Mollo-Christensen (1988), Liu et al. (1991, 1992), Squire (1993), Carolis and Desiderio (2002), ...

1
SGN:G—iwp,u, where p is ice density



9

Current position?

Paradigm II in the MIZ

When used to represent the MIZ, the two favoured continuous ice sheet models*® are invoked
as effective media. Recall that they ...

@ are built for continuous ice, not an MIZ composed of >10,000s of separate ice floes.

@ include a shear modulus G and a viscosity g that have no physical meaning whatsoever
and, in fact, can be physically nonsense as there is no way to relate the wave and ice
conditions to G, in a general sense because the model is simply best-fitted to an
observational outcome that only exists for the duration of the experiment.

But note,

O Each includes commensurate propagating wave modes but the viscoelastic layer model®
also permits a rich set of legitimate roots that include flexural, longitudinal and surface
waves, which range far and wide in parameter space and can be very close together in the
complex plane making unambiguous root detection very challenging.

@ Both use ice viscosity i to represent overall dissipation, yet its effect is reduced as
concentration decreases which is counterintuitive as more, not less, dissipation is likely to
occur as concentration decreases.

@ Indeed, should we even allow for G#0, as nobody has ever observed anything other than
open water dispersion in the MIZ? Why not just assume a viscous (layer) model? What
physical justification can there be for a multitude of separated ice floes being elastic?

19 Mosig et al. (2015)



A nonlinear ansatz

Exploring an alternative to A=Ape™** for paradigm II MIZ
parameterizations

Qo

Instead of the usual ode for exponential decay with distance travelled, x, i.e.
dxA=—aA, where a=Im(k)>0 denotes the spatial attenuation coefficient, we

propose dxyA=—aA".
This has solution A~ A(()lf")f(lfn)ocx, where n and « are unknown
parameters to be found, and Ay is a constant representing the amplitude A at x=0.

When n=0, A=Ap—ax, i.e. a linear law

When n=1, A=Ape™ ?%, i.e. exponential decay.

@ In principle, n can take on other values of course.

@ While, obviously, this gives an extra degree of freedom for data fitting, we

foreshadow that n can be guesstimated by synthesizing results of in situ field data
and, potentially SAR, relating to spectral form and the properties of a(w) or the

energy attenuation coefficient S(w).



Some observations. A snapshot from experiment WA3,

collected in the Beaufort Sea in October 2015

The figure shows the significant wave height attenuation profiles and
directional spreading profiles for both the SWIFT and wave buoys. The
sea ice is predominantly pancake ice.

Wave buoys, mean direction and transects
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Correlation analysis of n against Hsy

Median of n for 10 binned Hs values, also showing the percentage of linear
decaying profiles, i.e. for n<0.1 ...

0 For Hs<3m, diHs=—aHs, with a=(4.49+0.45)x10"° m™!

0 For HsZ3m, diHs=—a, with a=(5.7340.54) x107°.

Median n value per Hs bin (SWIFT data) Median n value per Hs bin (WB data)
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Energy density and power n

Left panels show n versus Egp, created from clusters of Ey that each contain about 100 estimated
values. Each point on the plot gives the mean of this sample of Ey values versus the median of
the corresponding sample of n values. The transition between n=1 and n=0 occurs at
Eg~1.5m?s. The median of n versus the mean of the frequency calculated as the mean of all
the frequency samples corresponding to the Ep samples in a bin is shown in the middle panels.
There is a dependence on frequency which follows closely the dependence on energy because the
two are strongly correlated. The right panels show the percentage of linearly decaying profiles in
each Ep bin.
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But, is there any physical justification for increasing the

degrees of freedom by using d,A=—aA"?

Yes — a granular floe jostling model
@ A back-of-the-envelope analysis of pancake ice subjected to waves produces the
same ode, i.e. d,A=—aA", by invoking collisions using granular flow theory.?’
@ This ode actually arises from the power-law fluid

1.1=n
n

€ n )é,-j,

d . —1 1— . —
a,(-j ):2/L(’)EU:2(%M 7 "))65:2(%M
where M is constant, é;; is the strain rate tensor and é=4/ %e’;je',y is effective strain
rate.
o It implies that viscosity is not constant, as for Newtonian flow. Power-law fluids

1—n
have a strain-rate-dependent apparent viscosity u(-) océ n .

@ The value that the index n takes on determines the way the material deforms ...

o when n>1, the viscosity u(-) decreases as strain rate increases and the material is
described as pseudoplastic;
o when 0<n<1, u(-) increases with increasing strain rate and it is said to be dilatant.

20Shen and Squire (1998)



Is there a clever way of guessing n for waves in sea ice?

Qo

Shorter period waves reduce in amplitude more rapidly than longer ones in sea

ice, i.e. attenuation increases as frequency and strain rate increase = the process

exhibits apparent dilatancy when taken as a whole.

o Field experiments suggest a(w)ocw? ™3, with a(w)ocw? (inverse proportionality to
wavelength) common.?!

o Yet models being trialed in WAVEWATCH II® display a(w) o w',w’,w’”? w?

asymptotic proportionality.

@ In the experiment we also found that the actual energy density Eyocw ™ over the
mid- to high-frequency bands where dyA=—aA" is postulated to hold, so Ay and

A will both reduce following w™2.

o We can argue that, for a(w)ocw? to hold under this constraint, we must have n=2
with the result that a=(A"'—A;")/x.

21Wadhams (1975), Meylan et al. (2014), herein



Choosing n without a dispersion relation

(a) Pierson-Moskowitz spectrum Eq(f). (b) The partially obscured green bar graph is an RMS
amplitude spectrum Ao (f) created from Ep(f) by integrating across frequency bands of width
0.01 Hz with the central frequency at the mid-point. Ag(f) is plotted as a bar graph to
emphasize that each amplitude is valid over a frequency band, e.g. from 0.2-0.21 Hz with a

central frequency 0.205 Hz, rather than at a single frequency. The magenta and yellow spectral
amplitudes show how Ag evolves exponentially as x increases. (c) Spectral amplitudes
constructed in the same manner as for (b), but for linear decay. Identical values for the constant
of proportionality in ceoxf? and the distances from the ice edge are used for (b) and (c), chosen
to emphasize the disparity between the two types of attenuation. It is the relativity between the
same colours in plots (b) and (c) that is important, rather than the absolute values.
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Thanks for listening. In conclusion ...

@ Paradigm I models, based on state variables, are well advanced and have been
tested positively in situ.

o While not doubting that they are needed, paradigm II parameterizations are at an
earlier stage of development with disputable (or absent) physics.

@ Because dissipation in the MIZ is highly nonlinear, diA=—aA may not be the best
point to start a parameterization, unless we are absolutely sure that the wave
slopes are modest, as it constrains data fitting to a decaying exponential shape.

@ The added generality provided by the extra degree of freedom arising from
dyA=—aA" potentially gives advantages to parameterization in global climate
models or global-scale wave forecasting models, especially if the parameters « (or
B) and n can be constrained.

Questions
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