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TURBULENCE+WAVES IN THE VERY STABLE
ATMOSPHERIC SURFACE LAYER: 8 pm to 4 am

Canopy Horizontal
Array Turbulence Study
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MOTIVATION

Stratified stable boundary-layers (SBLs) are ubiquitous in the
atmosphere and ocean

Climate projections and weather forecasts are (very) sensitive to
their SBL parameterization (Holtslag et al, 2013)

Vertical layering from refractive index turbulence in SBLs
Impacts all forms of propagation, light beams, radio waves,
sounds (Wyngaard et al, 2001)

Air quality (Weil, 2012)
Nocturnal low level jets and stratified turbulence are often the

design point for loads on wind turbines over the Great Plains
(Kelley et al, 2004)



SBL MODELING.:
Single-Column Models vs LES
Cuxtart et al (2006), Beare et al (20006)
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Operational: 1st order closure,
Heat flux wh = —Kp(00/02)



Coherent Structures in Geophysical Boundary Layers
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LARGE EDDY SIMULATION
OF CANONICAL STABLE BOUNDARY LAYERS

High latitude Arctic boundary layer

— Homogeneous lower boundary temperature < Initial state
LES R

— 400 x 400 x 400 m domain

— Mesh (2003, 5123,10243) 100 m

— Spacing A = (2,0.78,0.39) m <—

— 900,000 timesteps, 2.9 x 10° core hours —<—
— Geostrophic wind U, = (8,0) ms™* v
— Stability z;/L = (0,1.7,2.4,3.2,6.0)

— Boundary layer depth z; < 200 m

v

— Gradient Richardson number R; = §- 6"9/ (auh) < 0.25 (weakly stable)

— Incompressible Bousinessq flow model, CFL limited timestep
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WIND AND TEMPERATURE PROFILES
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VERTICAL PROFILES OF SCALAR FLUXES: z;/L = 1.7
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Flow is horizontally homogeneous, what makes net
horizontal scalar fluxes?



FLUCTUATIONS IN THE TEMPERATURE FIELD



POTENTIAL TEMPERATURE CONTOURS IN AN XZ PLANE
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POTENTIAL TEMPERATURE CONTOURS IN AN XZ PLANE




TEMPERATURE FIELD IN X-Y PLANE
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DECREASING STRATIFICATION ?



CONTOURS OF PASSIVE SCALAR C IN STABLY

STRATIFIED NEUTRAL FLOW
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TEMPERATURE CONTOURS IN STABLY STRATIFIED

FLOW OVER 2D BUMPS, ak = 0.3
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OBSERVATIONS OF TEMPERATURE PROFILES
FROM A VIRTUAL” TOWER



CONTOURS OF VERTICAL TEMPERATURE GRADIENT
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INSTANTANEOUS VERTICAL PROFILES OF TEMPERATURE
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Extreme Gradients in the Nocturnal Boundary Layer: Structure, Evolution, and
Potential Causes

Ben B. BALSLEY, RoD G. FREHLICH, MICHAEL L. JENSEN, AND YANNICK MEILLIER
CIRES, University of Colorado, Boulder, Colorado
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Fi. 9. Vertical profile of potential temperature obtained from 1-s
values of the cold-wire temperature sensor and the pressure sensor
on package 2 during the 07130731 UTC ascent.




INSTANTANEOUS TEMPERATURE PROFILES
OBSERVED FROM THE TALL TOWER IN CASES-99
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DYNAMICS NEAR A SCALAR FRONT



3D ISOSURFACE OF SWIRL COLORED BY VERTICAL VORTICITY




3D ISOSURFACE OF SWIRL COLORED BY VERTICAL VORTICITY

/

/




3D ISOSURFACE OF SWIRL COLORED BY VERTICAL VORTICITY




3D ISOSURFACE OF SWIRL COLORED BY VERTICAL VORTICITY
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3D ISOSURFACE OF SWIRL COLORED BY VERTICAL VORTICITY




CONDITIONAL HORIZONTAL FLOW VECTORS OVERLAYING
TEMPERATURE FIELD NEAR A FRONT 2z/z; = 0.2
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VERTICAL AND HORIZONTAL TEMPERATURE FLUXES
IN STABLY STRATIFIED FLOW
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Local Free Convection, Similarity, and the Budgets of
Shear Stress and Heat Flux

J. C. Wyncaarp, O. R. CorE anp Y. Izumr
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F1c. 4. Ratio of horizontal and vertical components of heat flux.

The curve is the local free convection prediction.

— 00

wh ~ Tw2—
0z’

The same procedure gives the vertical heat flux (wA)
budget

b 90+ g awd A6ap
——-+w2——-—-02+ +— ===, (13)
or az K dz p az

and the horlzontal heat flux (uf) budget

—Ffwb’ -_i—uw + + 0. (19)



EPILOGUE: VERTICAL VORTICITY
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SUMMARY

LES of canonical SBL with 10242 mesh, /A = 0.39m

Organized coherent temperature fronts

— Can span the entire depth of the SBL up to the low level jet
— Tilted in the streamwise direction

— Spatial scale | as z;/L 1

Between fronts scalars are vertically well mixed, or even unstable, staircase
pattern

Propagating fronts are sources of large-scale intermittency, and induce vertical
and horizontal momentum and scalar fluxes

Based on conditional sampling

— Fronts are caused by upstream and downstream vortical structures
— Scales are in the energy containing range

— Robust for varying stratification z;/L = |0, 6]

— Interpretation similar to hairpin packets discussed by Adrian (2007)

LES results are supported by observations in wind tunnels, upper ocean, and
CASES-99



