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• Oceanic oxygen:  How biology and physics compete to set 
subsurface oxygen levels and oxygen minimum zones 
(OMZs) 

• The importance of the Arabian Sea OMZ, and how eddies 
influence it 

• Parameterized oxygen fluxes in climate models generally 
too small 

• Revisiting the eddy parameterization problem, suggesting a 
modest change to improve parameterized BGC tracer 
fluxes 
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WOA 2009

… mostly at eastern boundaries
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Hypoxic:  lethal for many species
Suboxic:  denitrification

Oxygen at 400m
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Indian Ocean:  … and so less ventilated 



WOA 2009
Oxygen at 400m

• Among the most productive (> 300 gC m-2 yr-1)
• 2/3 of dust deposited in ocean à Indian 

Ocean
• Thickest Oxygen Minimum Zone (150-1200m)
• Largest suboxic zone
• 1/2 of global N loss due to denitrification and 

anammox
• A globally significant source of N2O (3rd most 

important LLGHG)
• Potential to modulate climate on geological 

timescales 
• Extreme seasonality & complex dynamics 

(monsoon reversal, coastal upwelling, offshore 
advection, winter convection, eddies,…)

• Two blooms per year! … 

Focus on Arabian Sea .. why?



Arabian Sea:  Two blooms per year

Summer Winter

Summer monsoon winds
drives upwelling along 
Somali coast

Winter monsoon winds
drives convection at  
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Abstract The combination of high biological production and weak oceanic ventilation in regions, such
as the northern Indian Ocean and the eastern Pacific and Atlantic, cause large-scale oxygen minimum zones
(OMZs) that profoundly affect marine habitats and alter key biogeochemical cycles. Here we investigate the
effects of eddies on the Arabian Sea OMZ—the world’s thickest—using a suite of regional model
simulations with increasing horizontal resolution. We find that isopycnal eddy transport of oxygen to the
OMZ region limits the extent of suboxia so reducing denitrification, increasing the supply of nitrate to
the surface, and thereby enhancing biological production. That same enhanced production generates
more organic matter in the water column, amplifying oxygen consumption below the euphotic zone, thus
increasing the extent of hypoxia. Eddy-driven ventilation likely plays a similar role in other low-oxygen
regions and thus may be crucial in shaping marine habitats and modulating the large-scale marine
nitrogen cycle.

1. Introduction

Oceanic concentrations of oxygen are set by a competition between physical transport and biological con-
sumption: oxygen dissolved into the ocean’s surface is transported downward by ocean currents (ventilation)
and consumed as an oxidant in the bacterial decomposition of organic matter (remineralization) that is the
byproduct of planktonic production. In regions where productivity is high and ventilation is weak, as is the
case in the northern Indian Ocean and the eastern tropical Pacific and Atlantic, the limited replenishment of
oxygen depleted by remineralization results in large oxygen minimum zones (OMZs). These have profound
effects on marine habitats and biogeochemical cycles [Codispoti et al., 2001; Gray et al., 2002; Vaquer-Sunyer
and Duarte, 2008; Gruber, 2011]: at moderate levels of oxygen deficiency (hypoxia) the growth, survival, and
reproductive success of higher trophic animals such as crustacea and fishes are impeded; at even lower
oxygen levels (suboxia), nitrate replaces oxygen (denitrification) as the oxidant in remineralization, depleting
the inventory of bioavailable nitrogen, the main macronutrient of marine productivity. Mesoscale and sub-
mesoscale eddies complicate the picture further, affecting both biological production and ventilation rates
in several oxygen-depleted zones [Falkowski et al., 1991; Oschlies and Garçon, 1998; Lévy et al., 2001; Gruber
et al., 2011; Resplandy et al., 2011; McCreary et al., 2013; Duteil et al., 2014; Bettencourt et al., 2015] in ways that
remain poorly understood.

Several studies have demonstrated that mesoscale and submesoscale phenomena enhance biological pro-
ductivity in oligotrophic open ocean environments [Falkowski et al., 1991; McGillicuddy et al., 1998; Oschlies
and Garçon, 1998; Lévy et al., 2001] and suppress it in eastern boundary coastal upwelling systems [Lathuilière
et al., 2010, 2011; Gruber et al., 2011; Lachkar and Gruber, 2011]. On the other hand, other studies have sug-
gested that eddies enhance ocean mixing in regions of sluggish circulation in the Atlantic and Pacific shadow
zones and in the North Indian Ocean, potentially contributing to the ventilation of oxygen deficient zones
[Resplandy et al., 2011; McCreary et al., 2013; Gnanadesikan et al., 2013; Brandt et al., 2015; Bettencourt et al.,
2015]. This complex role of eddies poses an especially difficult challenge for eddy parameterizations used in
coarse resolution simulations—the large discrepancies between observations of OMZs and their represen-
tation in global ocean models suggest that this challenge has not yet been met [Gnanadesikan et al., 2013;
Cabré et al., 2015]. An extensive understanding of the role of eddies in low-oxygen environments is therefore
needed to improve its parameterization and thus predictions of global oxygen distributions in future oceans
and climate.
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Changes in ventilation rates can have complicated 
responses:

Increased transport ➔ increased O2 supply

But also:
Increased transport ➔ increased nutrient supply

➔ increased productivity ➔ increased remineralization
➔ decreased O2

Moreover..
If increased transport increases O2 & reduces suboxia 

➔ decreased denitrification ➔ more NO3 
➔ more productivity ➔ less O2!  



Res:         1/3o,1/6o,/12o,1/24o X 32 
Forcing:    COADS, QuikSCAT 
BC:           SODA reanalysis 
Time:        12 yr spin-up, 8 yr analysis 
Biology:    NH4, NO3, P, Z, Ds, Dl, O2

BathymetryROMS Simulations

BGC based on 
Gruber et al. (2006)
[but no carbon cycle
in these runs]
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Figure 1. Horizontal distributions and volume fractions of oxic and suboxic conditions in the Arabian Sea. O2 concentrations at 250 m depth in winter
(December–February) in the Arabian Sea as simulated at (a) 1/3∘, (b) 1/6∘, (c) 1/12∘, (d) 1/24∘, and (e) from World Ocean Atlas 2009 data set. (f ) Oxic, suboxic,
and hypoxic (4 < O2 < 60 mmol m−3) volume fractions as simulated at different resolutions in the top 1000 m.

A more detailed evaluation of this simulation shows that the model reproduces relatively well the observed
seasonal variability of the surface circulation and in particular the seasonal reversal of the Somali Current
(Figure S4 in the supporting information). Furthermore, the magnitude and the spatial distribution of the eddy
activity are generally well captured by the model (Figure S5 in the supporting information). The model also
successfully captures the observed sea surface height anomalies and sea surface temperature patterns and
reproduces generally well the temperature and salinity distributions in the subsurface (see Figures S6–S11
in the supporting information). Similarly, simulated biological variables such as surface chlorophyll a, nitrate,
and oxygen show a decent agreement with observations in both seasons despite some local biases in the
northern Arabian Sea (see Figures S12–S16 in the supporting information). In particular, the location and
the intensity of oxygen minimum zone (OMZ) is relatively well reproduced. A more detailed description of the
model evaluation is provided in the supporting information.

3. Effects of Eddies on O2 Distributions and Denitrification

In the coarse resolution simulations, suboxic waters (here, O2 < 4 mmol m−3) fill vast swaths of the northern
Arabian Sea at depth, in disagreement with observations that indicate suboxia is limited to a region in the
northeastern Arabian Sea (Figure 1). On the other hand, the coarse resolution simulations also overestimate
the spatial extent of oxic waters (here O2 > 60 mmol m−3) in the southern Arabian Sea in comparison with
observations (Figure 1). With horizontal resolution refinement, the oxygen distribution at depth gradually
improves: the extent of suboxia contracts and that of hypoxia (O2 < 60 mmol m−3) expands, resulting in the
observed compression of habitats of oxygen-sensitive species. These changes that improve model agreement
with observations are also associated with a dampening of horizontal oxygen gradients (Figure 1; see also
Figure S17 in the supporting information). Relative to the coarse (1∕3∘) resolution simulation, the volume of
suboxic waters in the highest-resolution (1∕24∘) simulation is reduced by 38% in the top 1000 m. Additionally,
the volume of oxic waters, and hence the potential habitat size, is reduced by around 10% in the same layer
(Figure 1e).
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Abstract The combination of high biological production and weak oceanic ventilation in regions, such
as the northern Indian Ocean and the eastern Pacific and Atlantic, cause large-scale oxygen minimum zones
(OMZs) that profoundly affect marine habitats and alter key biogeochemical cycles. Here we investigate the
effects of eddies on the Arabian Sea OMZ—the world’s thickest—using a suite of regional model
simulations with increasing horizontal resolution. We find that isopycnal eddy transport of oxygen to the
OMZ region limits the extent of suboxia so reducing denitrification, increasing the supply of nitrate to
the surface, and thereby enhancing biological production. That same enhanced production generates
more organic matter in the water column, amplifying oxygen consumption below the euphotic zone, thus
increasing the extent of hypoxia. Eddy-driven ventilation likely plays a similar role in other low-oxygen
regions and thus may be crucial in shaping marine habitats and modulating the large-scale marine
nitrogen cycle.

1. Introduction

Oceanic concentrations of oxygen are set by a competition between physical transport and biological con-
sumption: oxygen dissolved into the ocean’s surface is transported downward by ocean currents (ventilation)
and consumed as an oxidant in the bacterial decomposition of organic matter (remineralization) that is the
byproduct of planktonic production. In regions where productivity is high and ventilation is weak, as is the
case in the northern Indian Ocean and the eastern tropical Pacific and Atlantic, the limited replenishment of
oxygen depleted by remineralization results in large oxygen minimum zones (OMZs). These have profound
effects on marine habitats and biogeochemical cycles [Codispoti et al., 2001; Gray et al., 2002; Vaquer-Sunyer
and Duarte, 2008; Gruber, 2011]: at moderate levels of oxygen deficiency (hypoxia) the growth, survival, and
reproductive success of higher trophic animals such as crustacea and fishes are impeded; at even lower
oxygen levels (suboxia), nitrate replaces oxygen (denitrification) as the oxidant in remineralization, depleting
the inventory of bioavailable nitrogen, the main macronutrient of marine productivity. Mesoscale and sub-
mesoscale eddies complicate the picture further, affecting both biological production and ventilation rates
in several oxygen-depleted zones [Falkowski et al., 1991; Oschlies and Garçon, 1998; Lévy et al., 2001; Gruber
et al., 2011; Resplandy et al., 2011; McCreary et al., 2013; Duteil et al., 2014; Bettencourt et al., 2015] in ways that
remain poorly understood.

Several studies have demonstrated that mesoscale and submesoscale phenomena enhance biological pro-
ductivity in oligotrophic open ocean environments [Falkowski et al., 1991; McGillicuddy et al., 1998; Oschlies
and Garçon, 1998; Lévy et al., 2001] and suppress it in eastern boundary coastal upwelling systems [Lathuilière
et al., 2010, 2011; Gruber et al., 2011; Lachkar and Gruber, 2011]. On the other hand, other studies have sug-
gested that eddies enhance ocean mixing in regions of sluggish circulation in the Atlantic and Pacific shadow
zones and in the North Indian Ocean, potentially contributing to the ventilation of oxygen deficient zones
[Resplandy et al., 2011; McCreary et al., 2013; Gnanadesikan et al., 2013; Brandt et al., 2015; Bettencourt et al.,
2015]. This complex role of eddies poses an especially difficult challenge for eddy parameterizations used in
coarse resolution simulations—the large discrepancies between observations of OMZs and their represen-
tation in global ocean models suggest that this challenge has not yet been met [Gnanadesikan et al., 2013;
Cabré et al., 2015]. An extensive understanding of the role of eddies in low-oxygen environments is therefore
needed to improve its parameterization and thus predictions of global oxygen distributions in future oceans
and climate.
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Eddy fluxes shape the oxygen inventory 



Eddy fluxes shape the oxygen inventory 
O2 accumulation driven mostly by increased lateral transport…



Oxygen is important.   

Crucial OMZ structure depends strongly on eddy 
fluxes. 

Are eddy oxygen fluxes captured in climate 
models?



Bopp et al. (2013) 
Earth system models are pretty bad at O2

~hypoxic ~suboxic

Present-day global average oxygen 
inventories 

L. Bopp et al.: Multiple stressors of ocean ecosystems in the 21st century 6231

Table 2. Observed and modeled present-day global average of sea surface temperature (�C), surface pH (pH unit), dissolved oxygen
(mmolm�3), volumes of waters (1015 m3) in which O2 is less than 80, 50 and 5mmolm�3, net primary productivity (PgC yr�1) and
export production of organic particles at 100m (PgC yr�1). Interannual standard deviations, when meaningful, are also indicated in parenthe-
sis. Observed estimates are from Reynolds et al. (2008) for SST, computed using DIC and alkalinity from Key et al. (2004) for surface pH,
from WOA (2009) for O2 content, from Bianchi et al. (2012) for the volumes of low oxygen waters, from Behrenfeld et al. (1997) for NPP.
All data are from 1990–1999 except satellite-derived NPP from 1997–2006, and oxygen quantities from climatologies (n.a.= not available).

SST pH O2 vol 80 vol 50 vol 5 NPP EXP
content

�C (�) mmolm�3 1015 m3 1015 m3 1015 m3 PgC/y PgC/y

OBS 18.32 8.10 178 126 60.4 2.4 52.1

MODEL
CESM1-BGC 18.68 8.08 190 133 79.3 16.4 54.4 7.7

(0.13) (0.004) (0.25) (0.08)
CMCC-ESM 18.21 8.05 201 34.1 20.8 6.2 33.3 n.a

(0.09) (0.003) (1.07)
GFDL-ESM2G 18.10 8.09 184 167 116 50.4 63.8 4.9

(0.13) (0.004) (0.37) (0.02)
GFDL-ESM2M 18.54 8.09 169 166 108 34.1 78.7 7.4

(0.12) (0.004) (0.51) (0.1)
HadGEM2-ES 18.00 8.10 176 54.2 16.9 0.4 35.3 5.4

(0.07) (0.004) (0.48) (0.07)
IPSL-CM5A-LR 17.28 8.08 148 259 12.5 0.8 30.9 6.6

(0.12) (0.004) (0.29) (0.09)
IPSL-CM5A-MR 17.76 8.08 136 363 225 2.4 33.3 7.0

(0.13) (0.004) (0.40) (0.09)
MPI-ESM-LR 17.90 8.09 173 168 107 51.4 56.6 8.1

(0.19) (0.004) (1.69) (0.27)
MPI-ESM-MR 18.22 8.09 172 189 121 47 52.5 7.4

(0.11) (0.005) (1.49) (0.21)
NorESM1-ME 17.69 8.09 231 111 84.5 48.1 40.6 7.9

(0.10) (0.004) (0.91) (0.18)

poorly for others (e.g., IPSL-CM5A-MR performs well for
NPP (R = 0.6), but poorly for surface pH (R = 0.2).
Global mean values of present-day SST, surface pH,

oceanic O2 content, and integrated NPP also show some
striking differences between models, and when compared
to observations. This is especially true for the globally av-
eraged O2 concentration, with some models clearly under-
oxygenated (e.g., IPSL-CM5As) and other models over-
oxygenated (e.g., NorESM1-ME). For NPP also, some mod-
els simulate global integrated values as low as 30.9 PgC yr�1
(IPSL-CMA-MR), whereas others simulate NPP as high as
78.7 PgC yr�1 (GFDL-ESM2M). While these model differ-
ences in reproducing present-day patterns and values may ex-
plain some of the differences in the model projections we de-
tail below, they also lead us to use relative quantities when
comparing NPP changes or O2 changes, as done in the rest
of the manuscript.

3.1 Changes of multiple stressors at the global scale

The ocean warms because it takes up much of the additional
heat that accumulates in the Earth system due to increas-

ing greenhouse gas concentrations. The intensity of simu-
lated sea surface warming in the coming decades is mostly
dictated by the RCP scenario, i.e., by the amount of green-
house gases emitted to the atmosphere, with an inter-model
range depending on the strength of the simulated climate
feedbacks. From the 1990s to the 2090s, model-mean global
average SST increases by +2.73 (±0.72), +1.58 (±0.48),
+1.28 (±0.56) and +0.71 (±0.45) �C for RCP8.5, RCP6.0,
RCP4.5 and RCP2.6, respectively (Fig. 3, Table 3). Note that
because of our model selection process, these model-mean
values would differ from the standard CMIP5 analyses that
include a wider selection of models. This simulated increase
is, as expected, lower than for global-mean air surface tem-
perature, which amounts to +4.2, +2.5, +1.9 and +1.0 �C
for the same four RCP scenarios and from 1960–1990 to the
end of the 21st century (Knutti and Sedlacek, 2012).
The model spread for each scenario is used as an estimate

of uncertainty around the model-mean projection. Part of this
model spread is due to internal variability simulated by the
climate models. However, most of it arises frommodel differ-
ences in (1) the way RCP scenarios are set up (i.e., aerosols

www.biogeosciences.net/10/6225/2013/ Biogeosciences, 10, 6225–6245, 2013
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Increasing isopycnal tracer diffusion helps
Gnanadesikan, Bianchi, Pradal (2013)

generation of ocean diapycnal mixing, atmospheric gravity
wave drag, radiation, and cloud physics identical to the
higher-resolution ESM2.1 model. The background diffu-
sion coefficient in the ocean is 1 ! 10"5 m2/s. The control
model produces a reasonable climate with global RMS
SST (sea surface temperature) errors of around 1.7°C and
tropical RMS SST errors around 1.4°C, a North Atlantic
Overturning of ~20Sv, and an El Niño–Southern Oscillation
that is close to observed amplitude. Galbraith et al. [2011]
provide more details. The formation of deep waters in the
North Pacific in the control is too strong, as reflected by the
oxygen field (Figure S1) which fails to capture the extension
of low oxygen waters into this region.
[6] The biogeochemical component is the Biology, Light,

Iron Nutrient, and Gasses (BLING) code [Galbraith et al.,
2010]. This code uses the nutrient, light, and temperature
produced by the model to compute phytoplankton growth
rates. These growth rates are then used to solve for a
steady state biomass and associated uptake rates of iron
and nutrient. The fraction of nutrient exported as particu-
late matter depends on the growth rate and temperature,
with the export fit to the data set of Dunne et al.
[2005]. Organic material sinks with a constant velocity
of 16 m/day over the top 80 m, with the sinking velocity
increasing by 0.05 m/day/m below that depth. The rate of
remineralization of organic material depends on the
oxygen concentration,

γPOP ¼ γPOP0 ! O2½ %2

k2O2 þ O2½ %2
; (1)

with kO2 = 20 μM following the TOPAZ model used in
ESM2.1., [Dunne et al., 2010].
[7] Results were generated from a control version of the

model which had been spun up for 1500 years with a diffu-
sion coefficient of 800 m2/s. The model was initialized with
ocean data from the World Ocean Atlas 2001 and run with
constant 1860 radiative conditions. At year 1500, lateral
diffusion coefficients were changed to values of 400, 1200,
and 2400 m2/s, and the model was allowed to equilibrate
for 500 years. Only 1.5–7.5% of the total change in suboxic
volume occur in the final century. Most of the adjustment
of suboxic volumes occur within the first 150 years.

2.2. Estimating Aredi From Data
[8] Consider the oxygen budget within closed isosurfaces

of oxygen. When a time average is taken, long-term advec-
tion of oxygen by the mean flow across mean isosurfaces
drops to zero, as any mass flux into the enclosed volume
must be balanced by a mass flux which leaves the volume
at the same concentration of oxygen as the entering flux.
This means that the dominant fluxes are associated with
some sort of time-varying advection associated with eddy
or wave processes, represented by diffusion coefficients.
Letting the diffusion coefficient across isopycnal surfaces

Figure 1. Hypoxia and suboxia in the ocean. (a) Thickness of hypoxic water column (O2 < 88 μM) from Bianchi
et al. [2012] correction to World Ocean Atlas 2005 data set. (b) Same as Figure 1a but for suboxic column thickness
(O2 < 20 μM). (c) Volume of water with O2 less than some threshold (horizontal axis) in data (thick black line) and
five published Earth System Models (colored lines). Biases averaged over the 10 thresholds shown (10–100 μM).
(d) Same as Figure 1c but with four versions of ESM2Mc with different lateral diffusion coefficients Aredi.

GNANADESIKAN ET AL.: MESOSCALE DIFFUSIVITY AND HYPOXIA

5195

Implicates role of mesoscale eddy transport in 
structuring  global oxygen



How can climate model representations of 
oxygen and other BGC tracers be improved? 

Revisit the parameterization problem…



Solutions: 
• Veronis (1975):  Tracers diffuse along isopycnals, models const z 
• Redi (1982):  Rotated isopycnal mixing tensor (κredi) 
• Gent & McWilliams (1990):  Adiabatic thickness diffusion (v*, κgm)  
• Visbeck et al. (1997) & others:  Flow-dependent GM coefficient 
• Griffies (1998):  Redi & GM = symmetric and antisymmetric mixing 

tensors… 
             … and beautiful, efficient numerical form if we set κredi = κgm

…A brief history

Two major problems in early models: 
• Water masses diffused away 
• Isopycnals too steep

Parameterized eddy fluxes

e.g. Gent (2011) 
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Alternate derivation:  
GM stirring = lateral downgradient buoyancy flux, with 
compensating vertical flux, to make b an adiabatic tracer:

So

v0b0 ·rb = u0b0 ·rhb+ w0b0@zb = 0

u0b0 ⌘ �gmrhb ) w0b0 = gm|rhb|2/@zb

And GM bolus velocity is

isopycnals to be nearly vertical. Missing was the e↵ect of baroclinic instability, which acts to adi-
abatically convert the potential energy stored in such steep fronts into baroclinic eddies. Models
with a resolution of a degree or two fail to resolve most of this process, which has a peak near
the internal deformation scale. Increasing 

I

in the Redi parameterization doesn’t help with the
density field, since a di↵usivity directed exactly along the isopycnal cannot change the surface itself.

To resolve this problem, GM proposed a parameterization that was adiabatic, and removed
potential energy stored in isopycnal slopes. Starting in the context of an isopycnal coordinate
framework, GM showed that a down-gradient flux of isopycnal thickness, even with a constant
di↵usivity, accomplished both tasks: the fact that only thickness is di↵used means there is no
exchange of mass between isopycnal layers — the mixing is adiabatic. To make this work in z-
coordinate models, the isopycnal equations with thickness di↵usion are converted back to Cartesian
coordinates.

In the z-coordinate form, the along-isopycnal di↵usion becomes an additional adiabatic, non-
divergent velocity field — the Bolus velocity v⇤. The process can be formulated in terms of the
antisymmetric mixing tensor A as above (Gri�es, 1998). In the z-coordinate framework, the
parameterization amounts to downgradient lateral di↵usion of density, with a vertical eddy flux
that maintains adiaticness. Demanding that the paramterized flux be adiabatic in its e↵ect on
density (or buoyancy b), one requires the parameterization of

v0b0 ·rb = u0b0 ·r
h

b+ w0b0 b
z

= 0

where r
h

is the horizontal gradient, and u = (u, v) the horizontal velocity. Thus

w0b0 = �u0b0 ·r
h

b/b
z

= u0b0 · s

where s = �r
h

b/b
z

is the local isopycnal slope. If we parameterize the lateral buoyancy flux as

u0b0 = �gmr
h

b = gmsbz, then w0b0 = �gm|s|2bz.

The bolus velocity in this parameterization is thus

v⇤
gm = �@

z

(gms) + ẑr
h

· (gms).

If we want to allow for lateral anisotropy in the GM part, too, we could write

u0b0 = �Kgmr
h

b = (Kgms)bz

(here take s as a column vector) with Kgm a 2 ⇥ 2 symmetric matrix (which has 3 independent
components, and can thus be diagonalized to find the major and minor di↵usion directions along
an isopycnal). To ensure the overall mixing parameterization is adiabatic, one demands

w0b0 = (Kgms) · sbz.

How would we relate this to the antisymmetric stirring matrix A? Wrting

Kgm =


K11 Ko

Ko K22

�
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u0q0 ⇡ f@z

✓
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@zb

◆

Neglecting momentum flux, the QG PV flux, averaged  
horizontally over a patch of ocean:

Downgradient PV flux (neglecting β)

★

Smith & Marshall (2009). See also Killworth (1997), 
Treguier et al (1997)

q@zs ⇡ @z (gms)

Quasigeostrophic theory



Smith & Marshall (2009)

as in (3.2) (recall that a horizontal average is denoted
by an overbar and that relative vorticity fluxes vanish in
this average for homogeneous statistics). Using the re-
lationship between PV and buoyancy fluxes (2.3) and
thermal wind balance yields the relation

kq
›S

›z
! b

f
y

! "
5

›

›z
kbSð Þ: ð4:3Þ

If b is negligible, then a constant kb and constant kq can
be consistent (though they need not be); otherwise,
constant diffusivities cannot be consistent with one an-
other. The lhs and rhs of (4.3) (dotted into S) are plotted
in Fig. 13, showing that the two diffusivity functions are,
indeed, consistent with one another. The dashed–dotted
line shows the lhs of (4.3) without the b term—the de-
viation of this curve from the other two clearly shows that
b is not negligible, so PV and buoyancy diffusion cannot
be approximated as equal to one another.

c. The effective diffusivity

Given such a large difference between PV and buoy-
ancy diffusion, how will a truly passive tracer be mixed?
We address this question by computing the effective
diffusivity of the simulated flow. The effective diffusivity,
pioneered by Nakamura (1996) (see also Shuckburgh
and Haynes 2003; Marshall et al. 2006), is a diagnostic
measure of the enhancement of mixing in high-Peclet
number flows by the advective stretching and folding of
tracer contours. It is an intrinsic measure of the mixing
ability of the flow itself, independent of the tracer.

The effective diffusivity for the simulation discussed
above is computed as follows: a passive tracer is added
to the steady-state flow at each vertical level, obeying
the advection–diffusion equation

›C

›t
1 u9 1 ÆUæð Þ $ $HC 5 k=2

HC;

FIG. 12. Simulated, estimated, and measured diffusivities (m2 s21). QGPV diffusivity (kq,
solid line) and buoyancy diffusivity (kb, dashed line) were computed by dividing cross-stream
eddy fluxes by the negative of their cross-stream mean gradients (both plotted in Fig. 11).
Where the QGPV mean gradient is less than b/10, kq is computed by taking a weighted
average of values above and below that level. The dashed–dotted line is the effective
diffusivity keff of the flow computed by transforming an advected tracer into area coordinates
(see text for details). The dotted line with squares is the estimate from (2.4), using the same
multiplicative factor as used in the linear eddy stress estimate in Fig. 10. The dotted line with
circles is an eddy mixing-length estimate, computed as Keddy 5 0.5Veddy Leddy, where Veddy is
shown in Fig. 8, and Leddy is an estimate of the eddy length scale from the kinetic energy
spectrum (Fig. 9). The crosses are band-passed, shear-coordinate estimates from the South
Station measurements of PR00 (consistent with the PR00 stress measurements shown in
Fig. 10).
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If b is negligible, then a constant kb and constant kq can
be consistent (though they need not be); otherwise,
constant diffusivities cannot be consistent with one an-
other. The lhs and rhs of (4.3) (dotted into S) are plotted
in Fig. 13, showing that the two diffusivity functions are,
indeed, consistent with one another. The dashed–dotted
line shows the lhs of (4.3) without the b term—the de-
viation of this curve from the other two clearly shows that
b is not negligible, so PV and buoyancy diffusion cannot
be approximated as equal to one another.

c. The effective diffusivity

Given such a large difference between PV and buoy-
ancy diffusion, how will a truly passive tracer be mixed?
We address this question by computing the effective
diffusivity of the simulated flow. The effective diffusivity,
pioneered by Nakamura (1996) (see also Shuckburgh
and Haynes 2003; Marshall et al. 2006), is a diagnostic
measure of the enhancement of mixing in high-Peclet
number flows by the advective stretching and folding of
tracer contours. It is an intrinsic measure of the mixing
ability of the flow itself, independent of the tracer.

The effective diffusivity for the simulation discussed
above is computed as follows: a passive tracer is added
to the steady-state flow at each vertical level, obeying
the advection–diffusion equation
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FIG. 12. Simulated, estimated, and measured diffusivities (m2 s21). QGPV diffusivity (kq,
solid line) and buoyancy diffusivity (kb, dashed line) were computed by dividing cross-stream
eddy fluxes by the negative of their cross-stream mean gradients (both plotted in Fig. 11).
Where the QGPV mean gradient is less than b/10, kq is computed by taking a weighted
average of values above and below that level. The dashed–dotted line is the effective
diffusivity keff of the flow computed by transforming an advected tracer into area coordinates
(see text for details). The dotted line with squares is the estimate from (2.4), using the same
multiplicative factor as used in the linear eddy stress estimate in Fig. 10. The dotted line with
circles is an eddy mixing-length estimate, computed as Keddy 5 0.5Veddy Leddy, where Veddy is
shown in Fig. 8, and Leddy is an estimate of the eddy length scale from the kinetic energy
spectrum (Fig. 9). The crosses are band-passed, shear-coordinate estimates from the South
Station measurements of PR00 (consistent with the PR00 stress measurements shown in
Fig. 10).
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where, during this computation, the mean velocity is
held to its steady value ÆUæ (recall that the energy and
scale of the flow do not change after the mean velocity
has adjusted to a steady state). Two different initial
conditions were used: the first was a sinusoidal profile,

Cðx; y; z; t 5 0Þ5 sin
2py

L

! "
# 1

2
;

where L is the horizontal domain extent and $H is the
horizontal gradient operator. The second is based on
the mean PV gradient so as to make the tracer as much
like the PV field as possible. Specifically, we let C(x, y,
z, t 5 0) 5 G(z)y, where GðzÞ 5 n $ $Q (i.e., the cross-
stream mean PV gradient rotated to the y direction,
because the mean does not rotate with depth and the
flow is isotropic) and make the substitution C 5 G(f 1
y), where f 5 f(x, y, z, t) solves

›f

›t
1 u9 1 ÆUæð Þ $ $Hf 1 y9 1 ÆVæ 5 k=2

Hf;

with f (x, y, z, t 5 0) 5 0. The tracer f is simulated, and
the tracer C is reconstructed from f.

In both cases, the tracer is diffused horizontally with
coefficient k 5 42 m2 s21—this value ensures that the
Batchelor scale

ffiffiffiffiffiffiffiffiffi
k=s

p
is resolved (s is the horizontal

strain rate, computed for the steady state). At each time
and vertical level, the tracer field is converted to area
coordinates A 5 A (C), and the squared equivalent
length (see Shuckburgh and Haynes 2003)

L2
eq 5 L2

eqðAÞ5
1

ð›C=›AÞ2
›

›A

ð

A
$Cj j2 dA

is calculated for a discrete range of 100 tracer values
between the maximum 1/2 and minimum 21/2. Lapla-
cian diffusion erodes the maxima and minima slightly,
but for all tracer contour values near the middle of the
range, the equivalent length rather quickly settles to a
steady-state value, reflecting a balance between stirring
and mixing. From the steady-state range and central
tracer contour values, a mean is taken (denoted by
angle brackets); this value is used to compute the ef-
fective diffusivity via

keff 5 k
ÆLeqæ
Lmin

! "2

;

where Lmin is the minimum tracer contour length—with
the sinusoidal initial condition used here, Lmin 5 2.

Remarkably, both initial conditions (one with knowl-
edge of the mean PV gradient, the other without) pro-
duce nearly identical profiles of effective diffusivity.

FIG. 13. Test of consistency of kq and kb with one another and assessment of the effects of
b on the diffusivities. The solid line is the left-hand side of (4.3) and the dashed line is the
right-hand side of that equation. The dashed–dotted line is the left-hand side of (4.3) with b
set to 0.
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Eddy fluxes from wind/buoyancy forced MITgcm channel 
model

Abernathey, Ferreira, Klocker (2013)

Multiple-tracer method for zonal avg:

terclockwise lower cell, analogous to the Antarctic-Bottom-Water
branch of the global MOC (Ito and Marshall, 2008); and a clockwise
mid-depth cell, analogous to the upper branch of the global MOC
(Marshall and Speer, 2012). There is also a shallow subduction re-
gion in the north of the domain that can be viewed as a mode-water
formation region.

The fact that our model has non-zero interior residual circula-
tion also implies that there are non-zero gradients and eddy fluxes
of potential vorticity (PV) in the interior. These PV fluxes are di-
rectly related to the residual transport (Andrews et al., 1987;
Plumb and Ferrari, 2005). The presence of non-zero interior PV is
a key property that allows us to demonstrate the similarity in
the mixing of dynamically passive tracers and floats to the dynam-
ically active mixing of PV. In the following sections, the velocity
field from the equilibrated model will be used to advect passive
tracers and particles.

It should be noted that, because our model has no topography,
the wind stress is balanced by bottom frictional drag rather than
topographic form drag. This means that the model has a very large
barotropic zonal mean flow, leading to an unrealistically large zo-
nal transport (approx. 800 Sv). The thermal-wind induced trans-
port, however, is much more realistic (approx. 100 Sv). Given the
known importance of the mean flow in suppressing meridional
mixing in the ACC (Abernathey et al., 2010; Ferrari and Nikurashin,
2010), it is reasonable to ask whether this flow will affect the mea-
sured mixing rates. In fact, we do not expect this unrealistic zonal
transport to affect our results substantially. This is because the
suppression factor due to the mean flow is proportional to
ðU " cÞ2, where U is the mean zonal velocity and c is the eddy phase
speed (Ferrari and Nikurashin, 2010). The addition of a barotropic
mean flow translates the eddies along with it, augmenting U and c
similarly (Klocker and Marshall, 2013, manuscript submitted to J.
Phys. Oceanogr.). It is the relative propagation that depends on the
PV gradient. In the simplest case, consider a barotropic Rossby
wave in the presence of a mean flow: the dispersion relation is
U " c ¼ b=k2 where b is the planetary vorticity gradient and k is
the wavenumber. In our case, the dispersion relation is more com-
plex, but the same principle applies.

The great advantage of using a domain without topography is
the zonal symmetry, which permits us to focus only on meridional
mixing rates, rather than the much more difficult problem of two-
dimensional mixing. Indeed many of our diagnostics (e.g. Keff ) can-
not be applied locally in two dimensions. The zonal average also
serves to eliminate the contribution of rotational fluxes, which
can contaminate the down-gradient nature of the eddy flux (Mar-
shall and Shutts, 1981).

3. Perfect mixing diagnostics

The ‘‘perfect’’ mixing diagnostics are quantities which can be
calculated only with very detailed synoptic knowledge of the flow.
Such diagnostics provide the most complete characterization of
mixing and transport possible. They are straightforward to extract
from numerical models but nearly impossible for the real ocean. By
contrast, in the atmosphere, some perfect diagnostics can be calcu-
lated directly from observations (e.g.Nakamura and Ma, 1997) or
from reanalysis products (e.g.Haynes and Shuckburgh, 2000a;
Haynes and Shuckburgh, 2000b).

Observational problems aside, the interpretation of perfect mix-
ing diagnostics still poses a challenge. Different diagnostics have
been used throughout the literature to characterize eddy mixing,
and the relationship between these diagnostics is not always obvi-
ous. Our purpose here is to consolidate many different diagnostics
in one place and show their relationship. A similar study was made
for the atmosphere by Plumb and Mahlman (1987) hereafter

PM87, who also review some theoretical aspects. Here we basically
repeat their methodology for this ACC-like flow.

Below each diagnostic is described and discussed individually. A
summary comparison of all the perfect isopycnal diffusivities can
be found in the discussion at the end of this section (Section 3.3)
and in Fig. 8.

3.1. Passive tracers

Our starting point is to examine the mixing of passive tracers.
Passive tracers obey an advection–diffusion equation of the form

@c
@t
þ v &rc ¼ jr2c þ C; ð2Þ

where c is the tracer concentration, v is the velocity field, j is a
small-scale diffusivity, and C is a source or sink. We will focus on
cases where C ¼ 0 and the diffusive term is negligible for the
large-scale budget of c. (Some small-scale diffusion is necessary
for mixing to occur, and likewise it is impossible to eliminate diffu-
sion completely from numerical models. But for flows of large
Péclet number, diffusion is an important term only in the tracer var-
iance budget, not the mean tracer budget itself.)

3.1.1. Diffusivity tensor
PM87 performed a detailed study of the transport characteris-

tics of a model atmosphere using passive tracers. Here we briefly
review their definition of K, the diffusivity tensor, which we view
as the most complete diagnostic of eddy transport. The reader is re-
ferred to Plumb and Mahlman, 1987 or Bachman and Fox-Kemper
(2013) for a more in-depth discussion.

Taking a zonal average of (2) (indicated by an overbar) and
neglecting the RHS terms, we obtain

@c
@t
þ v &rc ¼ "r & Fc; ð3Þ

where Fc ¼ ðv 0c0;w0c0Þ is the eddy flux of tracer in the meridional
plane. The diffusivity tensor K relates this flux to the background
gradient in each direction; it is defined by

Fc ¼ "K &rc: ð4Þ

This equation is underdetermined for a single tracer, but PM87 used
multiple tracers with different background gradients to calculate it.
This method has also recently been applied by Bachman and Fox-
Kemper (2013) in an oceanic context.

We found K by solving (4) for six independent tracers. In this
case, (4) is overdetermined, and the ‘‘solution’’ is a least-squares
best fit (Bratseth, 1998; Bachman and Fox-Kemper, 2013). The ini-
tial tracer concentrations used were as follows:
c1 ¼ y; c2 ¼ z; c3 ¼ cosðpy=LyÞ cosðpz=HÞ; c5 ¼ sinðpy=LyÞ sinðpz=HÞ;
c5 ¼ sinðpy=LyÞ sinð2pz=HÞ; c6 ¼ cosð2py=LyÞ cosðpz=HÞ. (We exper-
imented with different initial concentrations, but found the results
to be insensitive to this detail, provided many tracers with differ-
ent gradients were used.) The tracers were allowed to evolve from
these initial conditions for one year. (An experiment with two
years of evolution produced very similar results.) Fc and rc were
calculated for each tracer by performing a zonal and time average
over the one-year period and then over an ensemble of 20 different
years. In matrix form, the equation solved to find Kðy; zÞ was

v 0c01 v 0c02 . . . v 0c06
w0c01 w0c02 . . . w0c06

" #

¼ "
Kyy Kyz

Kzy Kzz

! "
@c1=@y @c2=@y . . . @c6=@y
@c1=@z @c2=@z . . . @c6=@z

! "
;

ð5Þ

where each element of K at each point in ðy; zÞ space is a least-
squares estimate that minimizes the error across all tracers. In
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terclockwise lower cell, analogous to the Antarctic-Bottom-Water
branch of the global MOC (Ito and Marshall, 2008); and a clockwise
mid-depth cell, analogous to the upper branch of the global MOC
(Marshall and Speer, 2012). There is also a shallow subduction re-
gion in the north of the domain that can be viewed as a mode-water
formation region.

The fact that our model has non-zero interior residual circula-
tion also implies that there are non-zero gradients and eddy fluxes
of potential vorticity (PV) in the interior. These PV fluxes are di-
rectly related to the residual transport (Andrews et al., 1987;
Plumb and Ferrari, 2005). The presence of non-zero interior PV is
a key property that allows us to demonstrate the similarity in
the mixing of dynamically passive tracers and floats to the dynam-
ically active mixing of PV. In the following sections, the velocity
field from the equilibrated model will be used to advect passive
tracers and particles.

It should be noted that, because our model has no topography,
the wind stress is balanced by bottom frictional drag rather than
topographic form drag. This means that the model has a very large
barotropic zonal mean flow, leading to an unrealistically large zo-
nal transport (approx. 800 Sv). The thermal-wind induced trans-
port, however, is much more realistic (approx. 100 Sv). Given the
known importance of the mean flow in suppressing meridional
mixing in the ACC (Abernathey et al., 2010; Ferrari and Nikurashin,
2010), it is reasonable to ask whether this flow will affect the mea-
sured mixing rates. In fact, we do not expect this unrealistic zonal
transport to affect our results substantially. This is because the
suppression factor due to the mean flow is proportional to
ðU " cÞ2, where U is the mean zonal velocity and c is the eddy phase
speed (Ferrari and Nikurashin, 2010). The addition of a barotropic
mean flow translates the eddies along with it, augmenting U and c
similarly (Klocker and Marshall, 2013, manuscript submitted to J.
Phys. Oceanogr.). It is the relative propagation that depends on the
PV gradient. In the simplest case, consider a barotropic Rossby
wave in the presence of a mean flow: the dispersion relation is
U " c ¼ b=k2 where b is the planetary vorticity gradient and k is
the wavenumber. In our case, the dispersion relation is more com-
plex, but the same principle applies.

The great advantage of using a domain without topography is
the zonal symmetry, which permits us to focus only on meridional
mixing rates, rather than the much more difficult problem of two-
dimensional mixing. Indeed many of our diagnostics (e.g. Keff ) can-
not be applied locally in two dimensions. The zonal average also
serves to eliminate the contribution of rotational fluxes, which
can contaminate the down-gradient nature of the eddy flux (Mar-
shall and Shutts, 1981).

3. Perfect mixing diagnostics

The ‘‘perfect’’ mixing diagnostics are quantities which can be
calculated only with very detailed synoptic knowledge of the flow.
Such diagnostics provide the most complete characterization of
mixing and transport possible. They are straightforward to extract
from numerical models but nearly impossible for the real ocean. By
contrast, in the atmosphere, some perfect diagnostics can be calcu-
lated directly from observations (e.g.Nakamura and Ma, 1997) or
from reanalysis products (e.g.Haynes and Shuckburgh, 2000a;
Haynes and Shuckburgh, 2000b).

Observational problems aside, the interpretation of perfect mix-
ing diagnostics still poses a challenge. Different diagnostics have
been used throughout the literature to characterize eddy mixing,
and the relationship between these diagnostics is not always obvi-
ous. Our purpose here is to consolidate many different diagnostics
in one place and show their relationship. A similar study was made
for the atmosphere by Plumb and Mahlman (1987) hereafter

PM87, who also review some theoretical aspects. Here we basically
repeat their methodology for this ACC-like flow.

Below each diagnostic is described and discussed individually. A
summary comparison of all the perfect isopycnal diffusivities can
be found in the discussion at the end of this section (Section 3.3)
and in Fig. 8.

3.1. Passive tracers

Our starting point is to examine the mixing of passive tracers.
Passive tracers obey an advection–diffusion equation of the form

@c
@t
þ v &rc ¼ jr2c þ C; ð2Þ

where c is the tracer concentration, v is the velocity field, j is a
small-scale diffusivity, and C is a source or sink. We will focus on
cases where C ¼ 0 and the diffusive term is negligible for the
large-scale budget of c. (Some small-scale diffusion is necessary
for mixing to occur, and likewise it is impossible to eliminate diffu-
sion completely from numerical models. But for flows of large
Péclet number, diffusion is an important term only in the tracer var-
iance budget, not the mean tracer budget itself.)

3.1.1. Diffusivity tensor
PM87 performed a detailed study of the transport characteris-

tics of a model atmosphere using passive tracers. Here we briefly
review their definition of K, the diffusivity tensor, which we view
as the most complete diagnostic of eddy transport. The reader is re-
ferred to Plumb and Mahlman, 1987 or Bachman and Fox-Kemper
(2013) for a more in-depth discussion.

Taking a zonal average of (2) (indicated by an overbar) and
neglecting the RHS terms, we obtain

@c
@t
þ v &rc ¼ "r & Fc; ð3Þ

where Fc ¼ ðv 0c0;w0c0Þ is the eddy flux of tracer in the meridional
plane. The diffusivity tensor K relates this flux to the background
gradient in each direction; it is defined by

Fc ¼ "K &rc: ð4Þ

This equation is underdetermined for a single tracer, but PM87 used
multiple tracers with different background gradients to calculate it.
This method has also recently been applied by Bachman and Fox-
Kemper (2013) in an oceanic context.

We found K by solving (4) for six independent tracers. In this
case, (4) is overdetermined, and the ‘‘solution’’ is a least-squares
best fit (Bratseth, 1998; Bachman and Fox-Kemper, 2013). The ini-
tial tracer concentrations used were as follows:
c1 ¼ y; c2 ¼ z; c3 ¼ cosðpy=LyÞ cosðpz=HÞ; c5 ¼ sinðpy=LyÞ sinðpz=HÞ;
c5 ¼ sinðpy=LyÞ sinð2pz=HÞ; c6 ¼ cosð2py=LyÞ cosðpz=HÞ. (We exper-
imented with different initial concentrations, but found the results
to be insensitive to this detail, provided many tracers with differ-
ent gradients were used.) The tracers were allowed to evolve from
these initial conditions for one year. (An experiment with two
years of evolution produced very similar results.) Fc and rc were
calculated for each tracer by performing a zonal and time average
over the one-year period and then over an ensemble of 20 different
years. In matrix form, the equation solved to find Kðy; zÞ was

v 0c01 v 0c02 . . . v 0c06
w0c01 w0c02 . . . w0c06

" #

¼ "
Kyy Kyz

Kzy Kzz

! "
@c1=@y @c2=@y . . . @c6=@y
@c1=@z @c2=@z . . . @c6=@z

! "
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where each element of K at each point in ðy; zÞ space is a least-
squares estimate that minimizes the error across all tracers. In
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3.2.3. Buoyancy diffusivity
The horizontal buoyancy diffusivity is an important yet prob-

lematic quantity, defined as

Kb ¼ "
v 0b0

by
: ð18Þ

For quasigeostrophic, adiabatic eddies, this quantity is equal to the
Gent and McWilliams (1990) transfer coefficient (Treguier et al.,
1997), which plays a central role in the parameterization of eddy-
induced advection in numerical models (Gent et al., 1995; Griffies,
1998) and in the theory of the Southern Ocean overturning circula-
tion (Marshall and Radko, 2003; Nikurashin and Vallis, 2012). It is
commonly also referred to as the GM coefficient or the ‘‘thickness
diffusivity.’’ The term thickness diffusivity is especially problematic
when mixing rates are spatially variable; in this case it can be
shown that the isopycnal thickness diffusion is not equal to Kb

and, in fact, that isopycnal thickness diffusion is more closely re-
lated to PV diffusion (see discussion in Section 3 Gent et al., 1995,
of who were aware of the distinction). Nevertheless, knowledge of
Kb is a very important quantity, since nearly all numerical models
use the Gent–McWilliams parameterization. In the full three-
dimensional case (as opposed to the zonally averaged case consid-
ered here), a different value of Kb is defined for each of the distinct
components (zonal and meridional) of the horizontal flux (Griffies,
1998).

Kb is not, properly speaking, a diffusivity at all in the Fickian
sense. This is because, in the adiabatic interior, the eddy buoyancy
flux Fb (of which v 0b0 is only one component) is directed almost en-
tirely perpendicular to the buoyancy gradient (Griffies, 1998; Plumb
and Ferrari, 2005). There is no down-gradient eddy flux of

buoyancy, only a ‘‘skew flux.’’ In Section 3.1.1, we observed that
the mixing angle a in the interior satisfies a ’ "by=bz. This means
that the contribution to v 0b0 from "Drb is due only to the diapyc-
nal diffusvity D0zz, which is negligibly small, and consequently that
the eddy buoyancy fluxes are captured by L alone (in fact by a sin-
gle scalar v). Using (4) and (6), we see that

Kb ’ v=sb; ð19Þ

where sb ¼ "by=bz is the mean isopycnal slope. The buoyancy diffu-
sivity Kb is related to the eddy-induced streamfunction v and the
isopycnal slope, i.e. to the advective part of the eddy transport,
not the diffusive part. This relation is in fact a key assumption of
the Gent and McWilliams (1990) parameterization.

We have plotted both sides of (19) as well as a scatter plot of
their relationship in Fig. 7, illustrating the similarity between the
two quantities. (The small differences between Kb and v=sb can
be attributed to diabatic effects.) Comparison with Fig. (2) reveals
significant differences between Kb and D0yy. Noting the different
color scales used in Figs. 7 and 2, it is evident that overall magni-
tude of Kb is roughly half that of D0yy. Significant differences in spa-
tial structure are also present. For instance, Kb has its highest
values at the bottom and top of the water column, while D0yy has
its maximum at mid-depth. It is particularly important to point
out these differences because it is quite common to assume that
D0yy ¼ Kb in the context of eddy parameterization (Gent and McWil-
liams, 1990; Gent et al., 1995; Griffies, 1998). Such an assumption
is clearly not supported by our simulations. Similarly, Liu et al.
(2012) used an adjoint-based method to infer Kb and then dis-
cussed the results in terms of the mixing-length ideas of Ferrari
and Nikurashin (2010), which are more relevant to D0yy of Kiso

eff .
Our results, in addition to those of previous authors (SM09;

Fig. 6. Left panel: mean meridonal/ isopycnal Ertel PV gradient qb
%P%y , plotted in buoyancy space. (Multiplication by the factor qb

% gives the same units as the QGPV gradient
in Fig. 5.) Middle: eddy Ertel PV flux qb

%v̂ P̂% . Right: Ertel PV diffusiviy KP . As in Fig. 5, the gradient has been masked where its absolute value is less than b=2. The masked areas
are colored gray. The black contours indicate the 5%, 50%, and 95% levels of the surface buoyancy cumulative distribution function.

Fig. 7. (left) horizontal buoyancy diffusivity Kb calculated from (18). (center) v=sb . (right) Scatter plot of the two quantities.
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general the fit is very good, with R2 > 0:99 in much of the domain
and R2 > 0:9 nearly everywhere. A more detailed discussion of the
errors involved in the diffusivity inversion can be found in Appendix
A.

It is most informative to decompose K into two parts,

K ¼ LþD; ð6Þ

where L is an antisymmetric tensor and D is symmetric. Because
the flux due to L is normal to rc, its effects are advective, rather
than diffusive (Plumb, 1979; Plumb and Mahlman, 1987; Griffies,
1998). Using this fact, we can rewrite (3) as

@c
@t
þ ðv þ vyÞ %rc ¼ r % ðD %rcÞ; ð7Þ

where vy ¼ ðvy;wyÞ is an eddy-induced effective transport velocity,
defined by a streamfunction v, such that

vy ¼ &@v=@z; wy ¼ @v=@y ð8Þ

and

L ¼
0 &v
v 0

! "
: ð9Þ

Under adiabatic conditions, v is approximately equal to the trans-
formed-Eulerian-mean eddy-induced streamfunction, or the ‘‘bolus
transport’’ streamfunction in thickness-weighted isopycnal coordi-
nates. Again, for more detailed discussion, the reader is referred
to PM87.

Because L is advective in nature (and does not appear in the tra-
cer variance budget), all of the actual mixing due to eddies is con-
tained in D (Nakamura, 2001). Since D is symmetric, it can be
diagonalized by coordinate rotation. Let Ua be the rotation matrix
for angle a. In the rotated coordinate system, the flux due to D is

&UaDrc ¼ &UaDUT
aUarc ¼ &D0Uarc; ð10Þ

where D0 ¼ UaDUT
a. Solving for the a that makes D0 diagonal, we

find

tan 2a ¼ 2Dyz

Dyy & Dzz
: ð11Þ

The rotated matrix,

D0 ¼
D0yy 0

0 D0zz

" #

ð12Þ

describes the eddy diffusion along (D0yy, the major-axis diffusivity)
and across (D0zz, the minor-axis diffusivity) the plane defined by a,
which we call the mixing angle. For small a, it is convenient to
approximate a ’ Dyz=Dyy;D0yy ’ Dyy, and D0zz ’ Dzz & D2

yz=Dyy.
The physical interpretation of K is therefore best summarized

by four quantities: v;a;D0yy, and D0zz. The most relevant for this
study, which is concerned with isopycnal mixing, are D0yy and a,
the major axis diffusivity and the mixing angle, which are plotted
in Fig. 2. From this figure, we see that the mixing angle is along iso-
pycnals throughout most of the domain, except close the surface,
where the mixing acquires a more horizontal character. This pat-
tern is consistent with the paradigm that ocean eddies mix adia-
batically in the interior and diabatically in the ‘‘surface diabatic
layer,’’ i.e. the layer over which isopycnals outcrop (Treguier
et al., 1997; Cerovecki and Marshall, 2008). Consequently, D0yy

can be described as an isopycnal eddy diffusivity in most of the
interior. Because of the small aspect ratio, and consequently small
a;D0yy ’ Dyy is a very good approximation.

An obvious feature in the spatial structure of D0yy is a pro-
nounced peak at mid-depth (approx. 1200 m). Enhanced isopycnal
mixing at a mid-depth ‘‘critical layer’’ is a general feature of baro-
clinically unstable jets (Green, 1970; Killworth, 1997). Many stud-
ies have confirmed the presence of an enhanced mid-depth mixing
layer in the ACC (Smith and Marshall, 2009; Abernathey et al.,
2010; Naveira-Garabato et al., 2011; Klocker et al., 2012a). Our
highly idealized model evidently shares this behavior. It is also
important to note, though, that D0yy varies even more strongly with
y, with the strongest mixing being in the center of the channel.

3.1.2. Eddy-induced advection
The streamfunction v, derived from the anti-symmetric part

of K, describes an eddy-induced advective transport in the
meridional plane. For statistically steady, adiabatic conditions,
this circulation is expected to approximately equal both the

Fig. 2. The major-axis diffusivity tensor D0yy , contoured in color, with the mixing angle a indicated by the black dashes. The mean isopycnals are shown in white contours
(contour interval 0.5 !C), and the baroclinc component of the zonal-mean velocity is shown in grey (contour interval 1 cm s&1).
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transformed-Eulerian-mean eddy-induced circulation and the
eddy-driven ‘‘bolus transport’’ in isopycnal thickness-weighted
averaging (PM87; McIntosh and McDougall, 1996). A complete dis-
cussion and comparison of these different conventions for defining
eddy-induced advection is beyond the scope of this paper, which is
focused on isopycnal mixing. Here we simply note that v is indeed
quite close to the eddy-induced transport W! diagnosed by Aberna-
they et al. (2011), calculated as Wiso (the thickness-weighted circu-
lation defined in (1)) minus the Eulerian component. As seen in
Fig. 3, the spatial structure and magnitude are quite close, but v
contains more small scale variance. This similarity supports the no-
tion that the transport processes at work in our model are not
heavily tracer dependent, and that the transport of passive tracers,
buoyancy, and mass can be characterized accurately by a single
tensor K.

3.1.3. Nakamura effective diffusivity
The framework developed by Nakamura (1996) has gained

widespread use in assessing lateral mixing in the ocean and atmo-
sphere (Nakamura and Ma, 1997; Haynes and Shuckburgh, 2000a;
Haynes and Shuckburgh, 2000b; Marshall et al., 2006; Abernathey
et al., 2010; Klocker et al., 2012a). This framework relies on a tra-
cer-based coordinate system, in which the flux across tracer isosur-
faces can be characterized by an effective diffusivity, which
depends only on the instantaneous tracer geometry. A similar con-
cept was developed by Winters and D’Asaro (1996).

The effective diffusivity is defined as

Keff ¼ j L2
e

L2
min

; ð13Þ

where Le is the equivalent length of a tracer contour that has been
stretched by eddy stirring and Lmin is the minimum possible length

of such a contour, in this case, simply the domain width in the zonal
direction. For further background and details regarding the Keff cal-
culation, the reader is referred to Marshall et al. (2006).

As described in the preceding section, the model was con-
structed to be as adiabatic as possible, with explicit horizontal
and vertical diffusion set to zero. However, the effective diffusivity
framework requires a constant small-scale background horizontal
diffusivity j. Therefore, in the tracer advection for the effective dif-
fusivity experiments, we used an explicit horizontal diffusivity of
j ¼ 50 m2 s%1. Analysis of the tracer variance budget indicated that
numerical diffusion elevated this value slightly, to 55 m2 s%1. We
performed our experiments by initializing a passive tracer with
concentration c ¼ y and allowing it to evolve under advection
and diffusion for two years. Every month, a snapshot of c and T
was output. This procedure was repeated for 10 consecutive two-
year periods, to create a smooth ensemble-average picture of the
evolution of Keff over two years.

The 3D tracer field must be sliced into 2D surfaces in order to
compute Keff ðyÞ. The most straightforward way to accomplish this
is to examine surfaces of c at constant z; we call this KH

eff . However,
since the mixing angle is along isopycnals, a more physically rele-
vant choice is to project c into isopycnal coordinates; the effective
diffusivity computed from this projection we call Kiso

eff . Abernathey
et al. (2010) tried both methods, and here we do the same.

After two months, the overall magnitude of both Keff calcula-
tions stabilizes and remains roughly constant, as does the spatial
structure of Kiso

eff . The spatial structure of KH
eff , on the other hand,

continues to evolve over the two year period, departing further
and further from Kiso

eff . The results of one Keff ensemble calculation
(at 10 months) are shown in Fig. 4. Comparing this figure with
Fig. 2, we see that Kiso

eff is very similar in magnitude and spatial
structure to D0yy. This agreement between these two diagnostics,

Fig. 4. Nakamura effective diffusivity calculated on a passive tracer after 10 months of evolution. Values shown are an average over an ensemble of 10 independent tracer-
release experiments. In the left panel, KH

eff was calculated on slices of c at constant z (horizontal). In the middle panel, Kiso
eff was calculated on slices of c at constant T (isopycnal).

The right panel shows Kiso
eff mapped back to depth space using the mean isopycnal depths.

Fig. 3. (left) The streamfunction v, derived from the anti-symmetric part of K, multiplied by Lx (the domain width) to give units of Sv (106 m3 s%1). (right) The eddy-induced
bolus transport streamfunction W! from Abernathey et al. (2011), calculated as Wiso (the thickness-weighted circulation) minus the Eulerian component.
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terclockwise lower cell, analogous to the Antarctic-Bottom-Water
branch of the global MOC (Ito and Marshall, 2008); and a clockwise
mid-depth cell, analogous to the upper branch of the global MOC
(Marshall and Speer, 2012). There is also a shallow subduction re-
gion in the north of the domain that can be viewed as a mode-water
formation region.

The fact that our model has non-zero interior residual circula-
tion also implies that there are non-zero gradients and eddy fluxes
of potential vorticity (PV) in the interior. These PV fluxes are di-
rectly related to the residual transport (Andrews et al., 1987;
Plumb and Ferrari, 2005). The presence of non-zero interior PV is
a key property that allows us to demonstrate the similarity in
the mixing of dynamically passive tracers and floats to the dynam-
ically active mixing of PV. In the following sections, the velocity
field from the equilibrated model will be used to advect passive
tracers and particles.

It should be noted that, because our model has no topography,
the wind stress is balanced by bottom frictional drag rather than
topographic form drag. This means that the model has a very large
barotropic zonal mean flow, leading to an unrealistically large zo-
nal transport (approx. 800 Sv). The thermal-wind induced trans-
port, however, is much more realistic (approx. 100 Sv). Given the
known importance of the mean flow in suppressing meridional
mixing in the ACC (Abernathey et al., 2010; Ferrari and Nikurashin,
2010), it is reasonable to ask whether this flow will affect the mea-
sured mixing rates. In fact, we do not expect this unrealistic zonal
transport to affect our results substantially. This is because the
suppression factor due to the mean flow is proportional to
ðU " cÞ2, where U is the mean zonal velocity and c is the eddy phase
speed (Ferrari and Nikurashin, 2010). The addition of a barotropic
mean flow translates the eddies along with it, augmenting U and c
similarly (Klocker and Marshall, 2013, manuscript submitted to J.
Phys. Oceanogr.). It is the relative propagation that depends on the
PV gradient. In the simplest case, consider a barotropic Rossby
wave in the presence of a mean flow: the dispersion relation is
U " c ¼ b=k2 where b is the planetary vorticity gradient and k is
the wavenumber. In our case, the dispersion relation is more com-
plex, but the same principle applies.

The great advantage of using a domain without topography is
the zonal symmetry, which permits us to focus only on meridional
mixing rates, rather than the much more difficult problem of two-
dimensional mixing. Indeed many of our diagnostics (e.g. Keff ) can-
not be applied locally in two dimensions. The zonal average also
serves to eliminate the contribution of rotational fluxes, which
can contaminate the down-gradient nature of the eddy flux (Mar-
shall and Shutts, 1981).

3. Perfect mixing diagnostics

The ‘‘perfect’’ mixing diagnostics are quantities which can be
calculated only with very detailed synoptic knowledge of the flow.
Such diagnostics provide the most complete characterization of
mixing and transport possible. They are straightforward to extract
from numerical models but nearly impossible for the real ocean. By
contrast, in the atmosphere, some perfect diagnostics can be calcu-
lated directly from observations (e.g.Nakamura and Ma, 1997) or
from reanalysis products (e.g.Haynes and Shuckburgh, 2000a;
Haynes and Shuckburgh, 2000b).

Observational problems aside, the interpretation of perfect mix-
ing diagnostics still poses a challenge. Different diagnostics have
been used throughout the literature to characterize eddy mixing,
and the relationship between these diagnostics is not always obvi-
ous. Our purpose here is to consolidate many different diagnostics
in one place and show their relationship. A similar study was made
for the atmosphere by Plumb and Mahlman (1987) hereafter

PM87, who also review some theoretical aspects. Here we basically
repeat their methodology for this ACC-like flow.

Below each diagnostic is described and discussed individually. A
summary comparison of all the perfect isopycnal diffusivities can
be found in the discussion at the end of this section (Section 3.3)
and in Fig. 8.

3.1. Passive tracers

Our starting point is to examine the mixing of passive tracers.
Passive tracers obey an advection–diffusion equation of the form

@c
@t
þ v &rc ¼ jr2c þ C; ð2Þ

where c is the tracer concentration, v is the velocity field, j is a
small-scale diffusivity, and C is a source or sink. We will focus on
cases where C ¼ 0 and the diffusive term is negligible for the
large-scale budget of c. (Some small-scale diffusion is necessary
for mixing to occur, and likewise it is impossible to eliminate diffu-
sion completely from numerical models. But for flows of large
Péclet number, diffusion is an important term only in the tracer var-
iance budget, not the mean tracer budget itself.)

3.1.1. Diffusivity tensor
PM87 performed a detailed study of the transport characteris-

tics of a model atmosphere using passive tracers. Here we briefly
review their definition of K, the diffusivity tensor, which we view
as the most complete diagnostic of eddy transport. The reader is re-
ferred to Plumb and Mahlman, 1987 or Bachman and Fox-Kemper
(2013) for a more in-depth discussion.

Taking a zonal average of (2) (indicated by an overbar) and
neglecting the RHS terms, we obtain

@c
@t
þ v &rc ¼ "r & Fc; ð3Þ

where Fc ¼ ðv 0c0;w0c0Þ is the eddy flux of tracer in the meridional
plane. The diffusivity tensor K relates this flux to the background
gradient in each direction; it is defined by

Fc ¼ "K &rc: ð4Þ

This equation is underdetermined for a single tracer, but PM87 used
multiple tracers with different background gradients to calculate it.
This method has also recently been applied by Bachman and Fox-
Kemper (2013) in an oceanic context.

We found K by solving (4) for six independent tracers. In this
case, (4) is overdetermined, and the ‘‘solution’’ is a least-squares
best fit (Bratseth, 1998; Bachman and Fox-Kemper, 2013). The ini-
tial tracer concentrations used were as follows:
c1 ¼ y; c2 ¼ z; c3 ¼ cosðpy=LyÞ cosðpz=HÞ; c5 ¼ sinðpy=LyÞ sinðpz=HÞ;
c5 ¼ sinðpy=LyÞ sinð2pz=HÞ; c6 ¼ cosð2py=LyÞ cosðpz=HÞ. (We exper-
imented with different initial concentrations, but found the results
to be insensitive to this detail, provided many tracers with differ-
ent gradients were used.) The tracers were allowed to evolve from
these initial conditions for one year. (An experiment with two
years of evolution produced very similar results.) Fc and rc were
calculated for each tracer by performing a zonal and time average
over the one-year period and then over an ensemble of 20 different
years. In matrix form, the equation solved to find Kðy; zÞ was

v 0c01 v 0c02 . . . v 0c06
w0c01 w0c02 . . . w0c06

" #

¼ "
Kyy Kyz

Kzy Kzz

! "
@c1=@y @c2=@y . . . @c6=@y
@c1=@z @c2=@z . . . @c6=@z

! "
;

ð5Þ

where each element of K at each point in ðy; zÞ space is a least-
squares estimate that minimizes the error across all tracers. In
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3.2.3. Buoyancy diffusivity
The horizontal buoyancy diffusivity is an important yet prob-

lematic quantity, defined as

Kb ¼ "
v 0b0

by
: ð18Þ

For quasigeostrophic, adiabatic eddies, this quantity is equal to the
Gent and McWilliams (1990) transfer coefficient (Treguier et al.,
1997), which plays a central role in the parameterization of eddy-
induced advection in numerical models (Gent et al., 1995; Griffies,
1998) and in the theory of the Southern Ocean overturning circula-
tion (Marshall and Radko, 2003; Nikurashin and Vallis, 2012). It is
commonly also referred to as the GM coefficient or the ‘‘thickness
diffusivity.’’ The term thickness diffusivity is especially problematic
when mixing rates are spatially variable; in this case it can be
shown that the isopycnal thickness diffusion is not equal to Kb

and, in fact, that isopycnal thickness diffusion is more closely re-
lated to PV diffusion (see discussion in Section 3 Gent et al., 1995,
of who were aware of the distinction). Nevertheless, knowledge of
Kb is a very important quantity, since nearly all numerical models
use the Gent–McWilliams parameterization. In the full three-
dimensional case (as opposed to the zonally averaged case consid-
ered here), a different value of Kb is defined for each of the distinct
components (zonal and meridional) of the horizontal flux (Griffies,
1998).

Kb is not, properly speaking, a diffusivity at all in the Fickian
sense. This is because, in the adiabatic interior, the eddy buoyancy
flux Fb (of which v 0b0 is only one component) is directed almost en-
tirely perpendicular to the buoyancy gradient (Griffies, 1998; Plumb
and Ferrari, 2005). There is no down-gradient eddy flux of

buoyancy, only a ‘‘skew flux.’’ In Section 3.1.1, we observed that
the mixing angle a in the interior satisfies a ’ "by=bz. This means
that the contribution to v 0b0 from "Drb is due only to the diapyc-
nal diffusvity D0zz, which is negligibly small, and consequently that
the eddy buoyancy fluxes are captured by L alone (in fact by a sin-
gle scalar v). Using (4) and (6), we see that

Kb ’ v=sb; ð19Þ

where sb ¼ "by=bz is the mean isopycnal slope. The buoyancy diffu-
sivity Kb is related to the eddy-induced streamfunction v and the
isopycnal slope, i.e. to the advective part of the eddy transport,
not the diffusive part. This relation is in fact a key assumption of
the Gent and McWilliams (1990) parameterization.

We have plotted both sides of (19) as well as a scatter plot of
their relationship in Fig. 7, illustrating the similarity between the
two quantities. (The small differences between Kb and v=sb can
be attributed to diabatic effects.) Comparison with Fig. (2) reveals
significant differences between Kb and D0yy. Noting the different
color scales used in Figs. 7 and 2, it is evident that overall magni-
tude of Kb is roughly half that of D0yy. Significant differences in spa-
tial structure are also present. For instance, Kb has its highest
values at the bottom and top of the water column, while D0yy has
its maximum at mid-depth. It is particularly important to point
out these differences because it is quite common to assume that
D0yy ¼ Kb in the context of eddy parameterization (Gent and McWil-
liams, 1990; Gent et al., 1995; Griffies, 1998). Such an assumption
is clearly not supported by our simulations. Similarly, Liu et al.
(2012) used an adjoint-based method to infer Kb and then dis-
cussed the results in terms of the mixing-length ideas of Ferrari
and Nikurashin (2010), which are more relevant to D0yy of Kiso

eff .
Our results, in addition to those of previous authors (SM09;

Fig. 6. Left panel: mean meridonal/ isopycnal Ertel PV gradient qb
%P%y , plotted in buoyancy space. (Multiplication by the factor qb

% gives the same units as the QGPV gradient
in Fig. 5.) Middle: eddy Ertel PV flux qb

%v̂ P̂% . Right: Ertel PV diffusiviy KP . As in Fig. 5, the gradient has been masked where its absolute value is less than b=2. The masked areas
are colored gray. The black contours indicate the 5%, 50%, and 95% levels of the surface buoyancy cumulative distribution function.

Fig. 7. (left) horizontal buoyancy diffusivity Kb calculated from (18). (center) v=sb . (right) Scatter plot of the two quantities.
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based on quite different methods, is expected but nevertheless
encouraging. KH

eff , on the other hand, while having the right general
magnitude, has significant differences in spatial structure. From
this we conclude that KH

eff is somewhat misleading diagnostic;
since the mixing angle a is aligned with the isopycnals, it is not
physically justified to examine the tracer on level surfaces. Kiso

eff ,
on the other hand, is a robust diagnostic of isopycnal mixing.

3.2. Active tracers

Now we compute flux-gradient diffusivities for active tracers.
By active tracers we mean scalars which are advected by the flow
but which also affect the dynamics of the flow. The active tracers
we consider are potential vorticity (both planetary Ertel and qua-
si-geostrophic varieties) and buoyancy. Also, unlike the passive
tracers, these active tracers are forced at the surface, and their zo-
nal means have reached a steady-state equilibrium. Therefore, it is
interesting to ask whether they experience the same diffusivity as
the passive tracers.

3.2.1. QGPV diffusivity
Quasi-geostrophic theory predicts that stirring by mesoscale

eddies will lead to a down-gradient flux of quasi-geostophic poten-
tial vorticity (QGPV) in the ocean interior (Rhines and Young,
1982). Although this down-gradient relationship cannot be ex-
pected to hold locally at every point in the ocean, it is much more
robust in a zonally-averaged context, which eliminates rotational
fluxes from the enstrophy budget (Marshall and Shutts, 1981; Wil-
son and Williams, 2004). Although our model is based on primitive
equations, certain quasi-geostrophic quantities can nevertheless
be calculated (Treguier et al., 1997). Of interest here is the eddy
QGPV flux1

v 0q0 ¼ f0
@

@z
v 0b0

bz

 !

ð14Þ

and the background meridional QGPV gradient

Q y ¼ b$ f0
@sb

@z
; ð15Þ

where sb ¼ $ð@b=@yÞ=ð@b=@zÞ is the mean isopycnal slope. The
QGPV diffusivity is then defined as

Kq ¼ $v 0q0=Q y: ð16Þ

The importance of the QGPV flux in the momentum budget is dis-
cussed in Treguier et al. (1997).

All three of these quantities are plotted in Fig. 5. First we note
that, where Qy is nonzero, there is indeed a strong anti-correlation
between Qy and v 0q0, supporting the notion of a down-gradient
transfer of QGPV. This is reflected by the fact that Kq is positive
nearly everywhere. (The relationship breaks down near the sur-
face, which we attribute to the presence of strong forcing terms
and an unstratified mixed layer, making the QG approximation it-
self invalid.) Furthermore, comparing Fig. 5 with Fig. 2, we see a
strong resemblance between Kq and D0yy, both in magnitude and
spatial structure. The calculation of Kq involves computing many
derivatives in both y and z. We expected to find a very noisy result,
and are consequently pleasantly surprised by this agreement. Kq is
also very similar to Kiso

eff , supporting the choice by Abernathey et al.
(2010) to equate these quantities in a diffusive closure for the eddy
QGPV flux.

3.2.2. Isopycnal planetary ertel PV diffusivity
Through the well-known correspondence between the quasige-

ostrophic framework and analysis in isopycnal coordinates, the
QGPV flux can be recast as a flux of Ertel potential vorticity along
isopycnals (Andrews et al., 1987). Analysis of the tracer variance
budget in isopycnal coordinates also supports a down-gradient dif-
fusive closure for the PV flux in this framework (Jansen and Ferrari,
2013). Here we calculate the along-isopycnal Ertel PV diffusivity
directly. In our context, the Ertel PV is very well captured by the
planetary approximation, in which relative vorticity is neglected;
our definition of Ertel PV is therefore P ¼ f@b=@z.

The isopycnal diffusivity of Ertel potential vorticity is defined as

KP ¼ $v̂bP%= @P%

@y
: ð17Þ

The $⁄ symbol indicates a generalized thickness-weighted zonal
average along isopycnals, and the ^ symbol the anomaly from that
average. (For further details of thickness-weighted averaging in iso-
pycnal coordinates and associated notation, the reader is referred to
Jansen and Ferrari (2013).) All the factors in (17) are plotted in
Fig. 6, in buoyancy space rather than depth. The strong similarity
between the fluxes and gradients in the QG and isopycnal frame-
works confirms the mathematical correspondence between these
two forms of analysis. Furthermore, the spatial structure and mag-
nitude of KP in the interior is quite similar to Kiso

eff (Fig. 4, middle)
and, when mapped back to depth coordinates (not plotted), to D0yy

and Kq. The down-gradient nature of the flux also clearly breaks
down in the surface layer, due to factors such as the presence of
strong forcing terms and the intermittent outcropping of
isopycnals.

Fig. 5. Left panel: mean meridonal QGPV gradient Qy . Middle: eddy QGPV flux v 0q0 . Right: QGPV diffusivity Kq . The left two quantities were masked where bz < 2& 10$7 s$1

(i.e. weak stratification) to avoid dividing by this small number. Kq was additionally masked in places where jQyj < b=2, where the QGPV gradient crosses zero. The masked
areas are colored gray.

1 The QGPV flux also includes a Reynolds-stress term @yðu0v 0Þ. In our model, this
term is an order of magnitude smaller, as expected from standard oceanographic
scaling arguments (Vallis, 2006), and has therefore been neglected. Consistently, the
relative vorticity gradient has also been neglected in the definition of Qy.
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general the fit is very good, with R2 > 0:99 in much of the domain
and R2 > 0:9 nearly everywhere. A more detailed discussion of the
errors involved in the diffusivity inversion can be found in Appendix
A.

It is most informative to decompose K into two parts,

K ¼ LþD; ð6Þ

where L is an antisymmetric tensor and D is symmetric. Because
the flux due to L is normal to rc, its effects are advective, rather
than diffusive (Plumb, 1979; Plumb and Mahlman, 1987; Griffies,
1998). Using this fact, we can rewrite (3) as

@c
@t
þ ðv þ vyÞ %rc ¼ r % ðD %rcÞ; ð7Þ

where vy ¼ ðvy;wyÞ is an eddy-induced effective transport velocity,
defined by a streamfunction v, such that

vy ¼ &@v=@z; wy ¼ @v=@y ð8Þ

and

L ¼
0 &v
v 0

! "
: ð9Þ

Under adiabatic conditions, v is approximately equal to the trans-
formed-Eulerian-mean eddy-induced streamfunction, or the ‘‘bolus
transport’’ streamfunction in thickness-weighted isopycnal coordi-
nates. Again, for more detailed discussion, the reader is referred
to PM87.

Because L is advective in nature (and does not appear in the tra-
cer variance budget), all of the actual mixing due to eddies is con-
tained in D (Nakamura, 2001). Since D is symmetric, it can be
diagonalized by coordinate rotation. Let Ua be the rotation matrix
for angle a. In the rotated coordinate system, the flux due to D is

&UaDrc ¼ &UaDUT
aUarc ¼ &D0Uarc; ð10Þ

where D0 ¼ UaDUT
a. Solving for the a that makes D0 diagonal, we

find

tan 2a ¼ 2Dyz

Dyy & Dzz
: ð11Þ

The rotated matrix,

D0 ¼
D0yy 0

0 D0zz

" #

ð12Þ

describes the eddy diffusion along (D0yy, the major-axis diffusivity)
and across (D0zz, the minor-axis diffusivity) the plane defined by a,
which we call the mixing angle. For small a, it is convenient to
approximate a ’ Dyz=Dyy;D0yy ’ Dyy, and D0zz ’ Dzz & D2

yz=Dyy.
The physical interpretation of K is therefore best summarized

by four quantities: v;a;D0yy, and D0zz. The most relevant for this
study, which is concerned with isopycnal mixing, are D0yy and a,
the major axis diffusivity and the mixing angle, which are plotted
in Fig. 2. From this figure, we see that the mixing angle is along iso-
pycnals throughout most of the domain, except close the surface,
where the mixing acquires a more horizontal character. This pat-
tern is consistent with the paradigm that ocean eddies mix adia-
batically in the interior and diabatically in the ‘‘surface diabatic
layer,’’ i.e. the layer over which isopycnals outcrop (Treguier
et al., 1997; Cerovecki and Marshall, 2008). Consequently, D0yy

can be described as an isopycnal eddy diffusivity in most of the
interior. Because of the small aspect ratio, and consequently small
a;D0yy ’ Dyy is a very good approximation.

An obvious feature in the spatial structure of D0yy is a pro-
nounced peak at mid-depth (approx. 1200 m). Enhanced isopycnal
mixing at a mid-depth ‘‘critical layer’’ is a general feature of baro-
clinically unstable jets (Green, 1970; Killworth, 1997). Many stud-
ies have confirmed the presence of an enhanced mid-depth mixing
layer in the ACC (Smith and Marshall, 2009; Abernathey et al.,
2010; Naveira-Garabato et al., 2011; Klocker et al., 2012a). Our
highly idealized model evidently shares this behavior. It is also
important to note, though, that D0yy varies even more strongly with
y, with the strongest mixing being in the center of the channel.

3.1.2. Eddy-induced advection
The streamfunction v, derived from the anti-symmetric part

of K, describes an eddy-induced advective transport in the
meridional plane. For statistically steady, adiabatic conditions,
this circulation is expected to approximately equal both the

Fig. 2. The major-axis diffusivity tensor D0yy , contoured in color, with the mixing angle a indicated by the black dashes. The mean isopycnals are shown in white contours
(contour interval 0.5 !C), and the baroclinc component of the zonal-mean velocity is shown in grey (contour interval 1 cm s&1).
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terclockwise lower cell, analogous to the Antarctic-Bottom-Water
branch of the global MOC (Ito and Marshall, 2008); and a clockwise
mid-depth cell, analogous to the upper branch of the global MOC
(Marshall and Speer, 2012). There is also a shallow subduction re-
gion in the north of the domain that can be viewed as a mode-water
formation region.

The fact that our model has non-zero interior residual circula-
tion also implies that there are non-zero gradients and eddy fluxes
of potential vorticity (PV) in the interior. These PV fluxes are di-
rectly related to the residual transport (Andrews et al., 1987;
Plumb and Ferrari, 2005). The presence of non-zero interior PV is
a key property that allows us to demonstrate the similarity in
the mixing of dynamically passive tracers and floats to the dynam-
ically active mixing of PV. In the following sections, the velocity
field from the equilibrated model will be used to advect passive
tracers and particles.

It should be noted that, because our model has no topography,
the wind stress is balanced by bottom frictional drag rather than
topographic form drag. This means that the model has a very large
barotropic zonal mean flow, leading to an unrealistically large zo-
nal transport (approx. 800 Sv). The thermal-wind induced trans-
port, however, is much more realistic (approx. 100 Sv). Given the
known importance of the mean flow in suppressing meridional
mixing in the ACC (Abernathey et al., 2010; Ferrari and Nikurashin,
2010), it is reasonable to ask whether this flow will affect the mea-
sured mixing rates. In fact, we do not expect this unrealistic zonal
transport to affect our results substantially. This is because the
suppression factor due to the mean flow is proportional to
ðU " cÞ2, where U is the mean zonal velocity and c is the eddy phase
speed (Ferrari and Nikurashin, 2010). The addition of a barotropic
mean flow translates the eddies along with it, augmenting U and c
similarly (Klocker and Marshall, 2013, manuscript submitted to J.
Phys. Oceanogr.). It is the relative propagation that depends on the
PV gradient. In the simplest case, consider a barotropic Rossby
wave in the presence of a mean flow: the dispersion relation is
U " c ¼ b=k2 where b is the planetary vorticity gradient and k is
the wavenumber. In our case, the dispersion relation is more com-
plex, but the same principle applies.

The great advantage of using a domain without topography is
the zonal symmetry, which permits us to focus only on meridional
mixing rates, rather than the much more difficult problem of two-
dimensional mixing. Indeed many of our diagnostics (e.g. Keff ) can-
not be applied locally in two dimensions. The zonal average also
serves to eliminate the contribution of rotational fluxes, which
can contaminate the down-gradient nature of the eddy flux (Mar-
shall and Shutts, 1981).

3. Perfect mixing diagnostics

The ‘‘perfect’’ mixing diagnostics are quantities which can be
calculated only with very detailed synoptic knowledge of the flow.
Such diagnostics provide the most complete characterization of
mixing and transport possible. They are straightforward to extract
from numerical models but nearly impossible for the real ocean. By
contrast, in the atmosphere, some perfect diagnostics can be calcu-
lated directly from observations (e.g.Nakamura and Ma, 1997) or
from reanalysis products (e.g.Haynes and Shuckburgh, 2000a;
Haynes and Shuckburgh, 2000b).

Observational problems aside, the interpretation of perfect mix-
ing diagnostics still poses a challenge. Different diagnostics have
been used throughout the literature to characterize eddy mixing,
and the relationship between these diagnostics is not always obvi-
ous. Our purpose here is to consolidate many different diagnostics
in one place and show their relationship. A similar study was made
for the atmosphere by Plumb and Mahlman (1987) hereafter

PM87, who also review some theoretical aspects. Here we basically
repeat their methodology for this ACC-like flow.

Below each diagnostic is described and discussed individually. A
summary comparison of all the perfect isopycnal diffusivities can
be found in the discussion at the end of this section (Section 3.3)
and in Fig. 8.

3.1. Passive tracers

Our starting point is to examine the mixing of passive tracers.
Passive tracers obey an advection–diffusion equation of the form

@c
@t
þ v &rc ¼ jr2c þ C; ð2Þ

where c is the tracer concentration, v is the velocity field, j is a
small-scale diffusivity, and C is a source or sink. We will focus on
cases where C ¼ 0 and the diffusive term is negligible for the
large-scale budget of c. (Some small-scale diffusion is necessary
for mixing to occur, and likewise it is impossible to eliminate diffu-
sion completely from numerical models. But for flows of large
Péclet number, diffusion is an important term only in the tracer var-
iance budget, not the mean tracer budget itself.)

3.1.1. Diffusivity tensor
PM87 performed a detailed study of the transport characteris-

tics of a model atmosphere using passive tracers. Here we briefly
review their definition of K, the diffusivity tensor, which we view
as the most complete diagnostic of eddy transport. The reader is re-
ferred to Plumb and Mahlman, 1987 or Bachman and Fox-Kemper
(2013) for a more in-depth discussion.

Taking a zonal average of (2) (indicated by an overbar) and
neglecting the RHS terms, we obtain

@c
@t
þ v &rc ¼ "r & Fc; ð3Þ

where Fc ¼ ðv 0c0;w0c0Þ is the eddy flux of tracer in the meridional
plane. The diffusivity tensor K relates this flux to the background
gradient in each direction; it is defined by

Fc ¼ "K &rc: ð4Þ

This equation is underdetermined for a single tracer, but PM87 used
multiple tracers with different background gradients to calculate it.
This method has also recently been applied by Bachman and Fox-
Kemper (2013) in an oceanic context.

We found K by solving (4) for six independent tracers. In this
case, (4) is overdetermined, and the ‘‘solution’’ is a least-squares
best fit (Bratseth, 1998; Bachman and Fox-Kemper, 2013). The ini-
tial tracer concentrations used were as follows:
c1 ¼ y; c2 ¼ z; c3 ¼ cosðpy=LyÞ cosðpz=HÞ; c5 ¼ sinðpy=LyÞ sinðpz=HÞ;
c5 ¼ sinðpy=LyÞ sinð2pz=HÞ; c6 ¼ cosð2py=LyÞ cosðpz=HÞ. (We exper-
imented with different initial concentrations, but found the results
to be insensitive to this detail, provided many tracers with differ-
ent gradients were used.) The tracers were allowed to evolve from
these initial conditions for one year. (An experiment with two
years of evolution produced very similar results.) Fc and rc were
calculated for each tracer by performing a zonal and time average
over the one-year period and then over an ensemble of 20 different
years. In matrix form, the equation solved to find Kðy; zÞ was

v 0c01 v 0c02 . . . v 0c06
w0c01 w0c02 . . . w0c06

" #

¼ "
Kyy Kyz

Kzy Kzz

! "
@c1=@y @c2=@y . . . @c6=@y
@c1=@z @c2=@z . . . @c6=@z

! "
;

ð5Þ

where each element of K at each point in ðy; zÞ space is a least-
squares estimate that minimizes the error across all tracers. In
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Measuring eddy fluxes

at the peak (5000 m2 s!1) is greater. Then it drops off steeply below
this peak. (KP is poorly resolved below 1000 m because it is com-
puted in isopycnal space; the deep is very weakly stratified, and
thus there are few layers defined there.) The profile of KI shows
a similar qualitative structure, but a slightly reduced magnitude
above 1000 m compared with the other diagnostics. In general,
there is more spread between diagnostics in the deep ocean. The
overall impression from this comparison is that, despite the wide
range of diagnostic methods and the ambiguities associated with
the averaging process, all these diagnostics are capturing the same
physical process of along-isopycnal mixing in the interior.

The vertical profile of Kb is clearly different from the other
quantities. As discussed clearly in SM09, the diffusivities of buoy-
ancy and potential vorticity cannot be the same when b is signifi-
cant, and when there is vertical variation in the diffusivity profile
(see Section 5.4 and (24) below). Nevertheless, the assumption that
these two quantities are equal continues to be made in eddy
parameterization schemes (for example Eden, 2010). Our results
essentially confirm the conclusions of SM09, who used a doubly-
periodic QG model, in a primitive-equation model with realistic
meridional variations in stratification and residual circulation. In
particular, our Fig. 13 agrees well with their Fig. 12. While the tra-
cer, particle, and PV diffusivities all have a mid-depth peak, Kb does
not; instead it varies only weakly in the vertical. Its magnitude is
less than half that of KP at the peak.

Since the perfect diagnostics were averaged only in the interior,
they do not show a secondary peak near the surface. This second-
ary peak is clearly visible in K1y, the particle diffusivity. The aver-
age depth of the surface diabatic layer is also shown in Fig. 13.
The secondary peak in K1y clearly occurs within this surface layer.
Since the surface is dynamically quite different from the interior,
we now focus on the surface specifically.

5.3. Comparison at the surface

Near the surface, eddies transition from isopycnal mixing to
horizontal mixing across the surface buoyancy gradient (Treguier
et al., 1997). This transition is visible in Fig. 2, which shows that
the mixing angle becoming flatter near the surface and no longer
aligns with the isopycnals. In Fig. 14, we plot D0yy;K

H
eff and Kb all

at 50 m depth, near the base of the mixed layer. Also plotted is a
single point representing K1y. At the surface, we do indeed find
better agreement between Kb and the other diagnostics. This is be-
cause the near-surface eddy buoyancy flux is truly down-gradient,
as opposed to the interior where it is purely skew. Nevertheless,
discrepancies remain, particularly near Y ¼ 1500 km. We speculate
that this is due to the differences in forcing and small-scale

diffusivity among the three tracers. The tracer used to calculate
Keff was modeled with an explicit small-scale horizontal diffusion,
while the others were not. Furthermore, the buoyancy is subject to
an air-sea flux, which can strongly modulate the diffusivity. We
have not attempted to quantify this effect here, but an in-depth
treatment of the problem can be found in Shuckburgh et al. (2011).

5.4. Relation between isopyncal diffusivity and Gent–McWilliams
coefficient

In preceding sections, we showed good agreement between all
diagnostics of isopycnal mixing except for Kb, a.k.a. the skew diffu-
sivity of buoyancy, a.k.a. the Gent–McWilliams coefficient. This
would appear to be discouraging for the purposes of eddy param-
eterization, since most coarse-resolution models use some form of
the Gent and McWilliams (1990) closure, rather than one based on
potential vorticity, to represent the eddy-induced advection. The
dissimilarity between D0yy, i.e. the true isopycnal mixing rate, and
Kb, means that field experiments which aim to measure isopycnal
mixing will not yield a value that can be used as a Gent–McWil-
liams coefficient. However, the situation is not hopeless. Quasige-
ostrophic theory makes a prediction for the relationship between
these two quantities.

Simply using the definitions (14), (15), and (18), we can derive
the following relationship between Kq and Kb:

@

@z
ðKbsbÞ ¼ Kq

@sb

@z
! b

f

! "
: ð24Þ

(SM09). Note that this quantity has units m s!1 and is equivalent to
the [negative] QG-TEM eddy-induced velocity (see Treguier et al.,
1997). Only if b is negligible and @Kb=@z ¼ 0 does Kq ¼ Kb.

Eq. (24) is satisfied by definition for Kb and Kq. However, noting
the similarity between Kq and D0yy, we can ask whether it is also
satisfied if we replace Kq with D0yy on the RHS. Such a comparison
is made in Fig. 15. This figure also illustrates the error produced
by assuming Kb ¼ D0yy (i.e. neglecting the importance of the vertical
structure) and by neglecting b. We can see that using D0yy in place of
Kq in (24) satisfies the equality very well. The b term plays a rela-
tively minor role. In contrast, taking D0yy inside the z-derivative
causes a much larger disagreement. This indicates that the vertical
structure of D0yy is not negligible. Given the strong similarity be-
tween the vertical structure of D0yy found here and that reported
by Abernathey et al. (2010) for a highly realistic model of the
Southern Ocean, it is likely that this issue is relevant for the real
ACC.

Fig. 15. A test of (24) using D0yy in place of Kq . This illustrates the relationship
between the isopycnal mixing rate and the Gent–McWilliams coefficient. Various
approximate forms of the equation are also tested. The quantities were evaluated in
the center of the domain and were averaged over a meridional width of 200 km.Fig. 14. A comparison of D0yy;Keff and Kb at 50 m depth.
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Breadcrumb trail
• Need eddy fluxes to get oxygen (& other climate tracers) right

• Parameterized climate models with κredi = κgm have κredi too small

• Tuning GCM to get stratification right requires κgm ~ 500 m/s2

• Tracer diffusivity estimates from models and obs: κredi ~ 5000 m/s2

• Model and obs:  Both diffusivities strongly depth-dependent

• From above,                                            and                          redi ⇡ qredi@zs ⇡ @z (gms)



Breadcrumb trail
• Need eddy fluxes to get oxygen (& other climate tracers) right

• Parameterized climate models with κredi = κgm have κredi too small

• Tuning GCM to get stratification right requires κgm ~ 500 m/s2

• Tracer diffusivity estimates from models and obs: κredi ~ 5000 m/s2

• Model and obs:  Both diffusivities strongly depth-dependent

• From above,                                            and                          redi ⇡ qredi@zs ⇡ @z (gms)

• ➔ Set κredi via theory for QGPV flux, and integrate to get κgm 

gm(z)s(z) = gm(0)s(0)�
Z 0
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redi(z
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Current work to test this idea

Using Arabian Sea simulations to estimate κredi and κgm: 

• ZL continued 1/12o AS sim to 62 years. 

• Made series of 20 1-year runs (years 40-59), each restarted with 
biology switched off — biological variables become passive tracers 

• Use multiple tracer method to extract S and A: 

➡ S = UDUT  >>> downgradient diffusion directions and diffusivities 
[encouraging] 

➡ Extracting κgm from A … [blackboard!]



Other projects at CPCM
• Oxygen in the Arabian Sea vs. Bay of Bengal: similar geometry, but no 

suboxia in BoB.  River outflow in BoB > more sediment > faster detrital 
sinking  (Azhar, Lachkar, Levy & Smith 2017 GRL — full IO model)

• Models show monsoonal winds may intensify with global warming.  
Increased winds > increased productivity > increased OMZ (Lachkar, 
Levy & Smith 2018 Biogeosciences)

• Interannual variability of oxygen in the Indian Ocean (ongoing)

• Importance of Saharan dust deposition in biogeochemistry of AS 
(ongoing)

• GM-parameterized ROMS simulation of IO (ongoing)

• Carbon cycle and acidification in AS (starting)


