Topological spin models

Alexei Kitaev, Caltech

- 1. Introduction: topological phases
- 2. Concrete Hamiltonians:
 - a) (Perturbed) toric code;
 - b) The honeycomb lattice model and Yao-Kivelson model.
 - c) Planar model.
- 3. Derivation of the planar model (on the blackboard).

Introduction: Quantum topological phases

Motivation: Topological quantum computation

 Computation is done by moving anyons around each other (braids in space-time)

• Anyons are quasiparticles in some medium, called quantum topological phase.

What are anyons?

Anyons are particles with nontrivial statistics

Bosons: $|\Psi\rangle \mapsto |\Psi\rangle$

Fermions: $|\Psi\rangle \mapsto -|\Psi\rangle$

Abelian anyons: $|\Psi\rangle \mapsto e^{i\varphi}|\Psi\rangle$

Non-Abelian anyons: $|\Psi\rangle \mapsto U|\Psi\rangle$

(This is only possible in 2 dimensions.)

Anyons are stable particle with some fusion rules

e.g.,
$$\varepsilon \times \varepsilon = 1$$
, $\varepsilon \times \sigma = \sigma$, $\sigma \times \sigma = 1 + \varepsilon$ different particle types

Anyons are topological defects (like vortices)

Classical vortex (theoretical):

vortices

An order parameter is defined in each point and varies in space

Texture in a nematic film (seen through crossed polarizers)

 Quantum vortices: the local order parameter disappears while the topological defect remains.

• There is still some intangible, nonlocal order in the surrounding space.

Fundamental perspective: conservation laws

- Particles may be conserved due to *topological* reasons, like vortices. (Some 150 years ago Thomson and Maxwell speculated that atoms might be a kind of knots...)
- Standard paradigm: Conservation laws are due to *symmetry*. (Noether's theorem and its quantum analogue: Particle types are irreducible representations of the symmetry group.)
- For bosons and fermions, conservation laws (or fusion rules) are equivalent to a symmetry group. (Doplicher-Roberts theorem.)
- Anyons are not described by a group but rather, unitary modular category.
- But anyons are just excitations, or defects in a topological quantum phase, whose properties are even richer.

What properties of anyons should we look for to detect them experimentally?

- Spin or charge fractionalization, or <u>completely</u> <u>new quantum numbers</u>, which are not dictated by any symmetry of the underlying Hamiltonian. ("Emergent symmetry".)
- Local (quasi)conservation of the new quanum numbers – fusion rules.
- Nontrivial braiding.

Detecting anyons in a spin system

- Anyons can only be created in pairs, hence energy- and momentum-resolved absorption spectra have no sharp features. In comparison, the generation of single particles is only possible for $\varepsilon = \varepsilon(p)$.
- An anyon trapped in a potential well does not decay. Its presence can be measured locally.

A weak spot (where the spins coupling is decreased by a constant factor) traps all kinds of excitations

Vacancies in the honeycomb lattice trap vortices (Willans, Chalker, Moessner, 2010)

The toric code

Hamiltonian:
$$H_{TC} = -J_x \sum_{\text{vertices}} A_v - J_z \sum_{\text{plaquettes}} B_p$$

$$A_v = \prod_{\text{star}(v)} \sigma_j^x, \quad B_p = \prod_{\text{boundary}(p)} \sigma_j^z$$

Ground state:

$$A_{\mathbf{v}}|\Psi_{\mathrm{gr.}}\rangle = |\Psi_{\mathrm{gr.}}\rangle, \quad B_{p}|\Psi_{\mathrm{gr.}}\rangle = |\Psi_{\mathrm{gr.}}\rangle$$

for all \boldsymbol{v} and \boldsymbol{p}

Excitations:

"Electric charge": $A_{\mathbf{v}}|\Psi_{\mathbf{v}}\rangle = -|\Psi_{\mathbf{v}}\rangle$ for some \mathbf{v}

"Magnetic vortex": $B_p |\Psi_p\rangle = -|\Psi_p\rangle$ for some p

(These are \mathbb{Z}_2 charges and vortices.)

Toric code (continued)

• Robust properties:

- a) All excitations are gapped;
- b) Four superselection sectors: 1, e, m, $\varepsilon = e \times m$;
- c) Fusion rules, eg. $e \times e = m \times m = 1$;
- d) Nontrivial mutual statistics;
- e) Four-fold degenerate ground state on the torus.

• Consequences of exact solvability:

- a) Particles do not move (flat dispersion);
- b) Two-point (and n-point) correlation functions vanish at distances > 1.
- c) The degeneracy on the torus is exact.

Perturbed toric code

$$H = H_{TC} - h_x \sum_b \sigma_b^x - h_z \sum_b \sigma_b^z$$

Trebst, Werner, Troyer, Shtengel, Nayak (2006) -- with one field, Tupitsyn, Kitaev, Prokof'ev, Stamp (2008) -- with both fields

- For small h_x , h_z , the exact solvability is broken
- Transition to the trivial phase at large fields
- Equivalent to the classical gauge Higgs (Wegner) model in 3D:

(spins on horizontal and vertical bonds)

Phase diagram for the perturbed toric code

The honeycomb lattice model

- The model is solved exactly (Kitaev, 2005). An optical lattice realization was proposed by Demler, Duan, Lukin (2003).
- The gapped phases are in the universality class of the toric code.
- In a magnetic field, a gap opens in the B phase. The new phase carries *non-Abelian anyons*.

Excitations (without magnetic field)

• Fermions (ε) :

- Move on lattice sites (nontrivial dispersion)
- Gapless in the B phase (for $J_x \sim J_y \sim J_z$);
- Gapped in the A phases (i.e. when some of J_{α} is large).

• <u>Vortices</u>:

- Located on plaquettes but do no move (no dispersion due to the exact solvability);
- Always gapped;
- Statistics is undefined in the B phase;
- In the A phases, equivalent to e and m.

Yao-Kivelson model (2007)

• Defined on the 3-12 lattice

$$H = -\left(J_x\sum_{x ext{-links}} + J_x'\sum_{x' ext{-links}}
ight)\sigma_j^x\sigma_k^x \ -\left(J_y\sum_{y ext{-links}} + J_y'\sum_{y' ext{-links}}
ight)\sigma_j^y\sigma_k^y \ -\left(J_z\sum_{z ext{-links}} + J_z'\sum_{z' ext{-links}}
ight)\sigma_j^z\sigma_k^z$$

- Exactly solvable
- Properties similar to the B phase of the honecomb model in the magnetic field (non-Abelian vortices) are achieved due to spontaneous symmetry breaking.

Planar model on the honeycomb lattice

$$H = -J \sum_{j,k} (\vec{n}_{jk}, \vec{\sigma}_j) (\vec{n}_{jk}, \vec{\sigma}_k)$$

- In the original model, $\vec{n}_{jk} = \vec{e}_x$ on x-links, $\vec{n}_{jk} = \vec{e}_y$ on y-links, $\vec{n}_{jk} = \vec{e}_z$ on z-links
- But now, let those vectors lie in the plane:

- The model does not appear to be exactly solvable; its properties are unknown
- Can be realized as a *Heisenberg* model on the 3-12 lattice.