Realization of a Strongly Interacting ⁶Li ⁴⁰K Fermi-Fermi mixture

Andreas Trenkwalder, <u>Christoph Kohstall</u>, Matteo Zaccanti, Devang Naik, Gerhard Hendl, Andrei Sidorov, Florian Schreck, and Rudi Grimm

Institute of Quantum Optics and Quantum Information, Innsbruck

University of Innsbruck

universitä nnsbruck

File Edit Operate Tools Browse Window Help

🔿 🔁 🔵 🗉

File Edit Operate Tools Browse Window Help

Preparation

time

Zeeman diagrams

Elastic scattering via damping

Elastic scattering via damping

Inelastic collisions

Little adjustment of center No other fit parameter B₀ = 154.703(5) G

Possible measurements: expansion , RF spectroscopy,...

				Ex	Coupled channels								
		Channel	$M_{\rm tot}$	B_0 (G)	Δ (G)	Ref.	B_0 (G)	Δ (G)	$a_{\rm bg}/a_0$	$\frac{\delta \mu / h}{(MHz/G)}$	$\begin{array}{c} a_{\rm res} \\ (10^6 a_0) \end{array}$	$s_{ m res}$	$\gamma_B \ (\mu G)$
		ba	-5	215.6		[4]	215.52	0.27	64.3	2.4	19	0.0048	0.91
		aa	-4	157.6		[4]	157.50	0.14	65.0	2.3		0.0024	0
_	K 1> Li 1>			168.217(10)		[8]	168.04	0.13	63.4	2.5		0.0023	0
O		ab	-3	149.2		[4]	149.18	0.23	67.0	2.1	18	0.0037	0.86
Ő				159.5		[4]	159.60	0.51	62.5	2.4	5.3	0.0086	6.0
ŏ				165.9		[4]	165.928	$2 \times 10^{-}$	* <u>58</u>	2.5	0.01	3.3×10^{-6}	1.2
ž		ac	-2	141.7		[4]	141.46	0.25	67.6	2.1	7.5	0.004	2.3
Ū	K 3> Li 1>			154.745(5)	0.92(5)	this work	154.75	0.88	63.0	2.3	3.7	0.014	15
				162.7		[4]	162.89	0.09	56.4	2.5	0.61	0.0014	8.3
		ad	-1				134.08	0.24	68.7	2.0	4.4	0.0037	3.7
ü							149.40	1.06	63.8	2.2	3.1	0.017	22
_							159.20	0.33	55.8	2.45	2.1	0.0051	8.8
2		ae	0				127.01	0.22	68.5	2.05	3.0	0.0035	5.0
⁰							143.55	1.20	65.7	2.2	2.8	0.020	28
							154.81	0.69	55.1	2.4	1.5	0.010	25
		af	1				120.33	0.20	66.8	2.1	1.9	0.0032	7.0
							137.23	1.19	65.3	2.2	2.3	0.019	34
							149.59	1.14	53.6	2.4	2.5	0.017	24
		ag	2				114.18	0.14	67.4	2.1	1.2	0.0022	7.9
							130.49	1.07	66.4	2.2	2.0	0.018	36
							143.39	1.57	54.4	2.4	1.6	0.023	53
		ah	3				108.67	0.098	66.6	2.2	0.60	0.0016	11
							123.45	0.86	68.4	2.3	1.5	0.015	39
							135.9	1.87	55.9	2.45	2.0	0.029	52
		ai	4				104.08	0.06	65.9	2.25	0.24	0.0010	16
							116.38	0.54	68.6	2.4	0.61	0.010	61
							126.62	1.97	54.7	2.6	1.26	0.032	86
		aj	5				100.9	0.02	64.3	2.3	0.035	3.3×10^{-1}	37
K	(10> Li 1>			114.47(5)	1.5(5)	$\left[7 ight]$	114.78	1.81	57.3	2.3	1.06	0.027	98

Homework done. Our goal: Strongly interacting Fermi-Fermi mixture

 \bigcirc

• Strong interaction $a > 1/k_F \approx 5000 a_0$

- Resonance position \approx +/- 5 mG
- B-field stability ≈ +/- 5 mG

Hunting for a signature of strong interaction

One more effect

Hydrodynamics (macroscopically) pressure gradient →Inversion of aspect ratio (AR)

Energetics → Mean field and more

Hydrodynamics (microscopically) →,,Dragging" effect

Like hd regime in buffer gas cooling

Expansion measurement

Hydrodynamics (macroscopically) pressure gradient →Inversion of aspect ratio (AR)

Energetics → Mean field and more

Hydrodynamics (microscopically) →"Dragging" effect

Inversion of AR←

Expansion vs B-field

Closer look to tell the 3 effects from each other

redistribution

no abel transform

Extracting interaction energy (effective scattering length)

Interaction energy alias a_{eff}

We find

Thank you!

In collaboration with: Tom Hanna and Paul Julienne

Davang NaikMatteo ZaccantiFlorian SchreckAndrei SidorovGerhard HendlAndreas TrenkwalderRudi GrimmChristoph KohstallFrederik Spiegelhalder

FШF

Der Wissenschaftsfonds.

Foundations and Applications of Quantum Science

European Network

EuroQUAM Collaborative Research Project

FerMix