

Strongly-interacting Quantum Gases in One-dimensional Geometry

Hanns-Christoph Nägerl

"Frontiers of Ultracold Atoms and Molecules" October 2010, Santa Barbara

START Project Y227-N02 EuroQUASAR QuDeGPM

Team

diploma students:

Lukas Reichsöllner

Andreas Oliver Klinger Kriegelsteiner

Mohamed Rabie

theory:

Guido Pupillo / Marcello Dalmonte

Peter Schmelcher / Vladimir Melezhik

and thanks to: H.-P. Büchler A. Daley H. Ritsch W. Zwerger

Low-dimensional systems

"quasi" low-dimensional systems

- strong confinement along "transversal" directions
- the particles are in the transversal ground state
- transversal motion is "frozen out"

energy of particles \ll energy gap

Standard optical lattices

- tight confinement
- parallel investigation of low-dimensional systems
- however: inhomogeneous

Strongly-interacting Quantum Gases in One-dimensional Geometry

two-body physics

 confinement-induced scattering resonances

many-body physics

- excited 1D quantum phase (super Tonks-Girardeau phase)
- 1D quantum phase transition (pinning phase transition)
- Outlook: Transport in 1D

Scattering with confinement

1D coupling constant

Scattering resonances

Magnetic Feshbach resonance (3D)

- scattering particles couple to a molecular state
- FBR: energy of molecular state matches energy of scattering particles

Scattering resonances

Magnetic Feshbach resonance (3D)

- scattering particles couple to a molecular state
- FBR: energy of molecular state matches energy of scattering particles

Changes due to the confinement

- shift of zero energy
- change of binding energy (group T. Esslinger, PRL 94, 210401)

Scattering resonances

Magnetic Feshbach resonance (3D)

- scattering particles couple to a molecular state
- FBR: energy of molecular state matches energy of scattering particles

Changes due to the confinement

- shift of zero energy
- change of binding energy
- additional excited states
- scattering particles couple to molecular
 state in transverally excited level

CIR condition:

energy of **excited molecular state** matches the **zero energy**

Confinement-induced resonance (CIR)

Detection of a CIR by means of atom loss

- tune the interactions strength (a_{3D}) with a magnetic Feshbach resonance
- observe three-body losses close to

E. Haller *et al.*, Phys. Rev. Lett. **104**, 200403 (2010)

Confinement-induced resonance (CIR)

E. Haller *et al.*, Phys. Rev. Lett. **104**, 200403 (2010)

1D to 2D system

E. Haller et al., Phys. Rev. Lett. **104**, 200403 (2010)

1D to 2D system

Phys. Rev. Lett. 104, 200403 (2010)

1D to 2D system

E. Haller et al., Phys. Rev. Lett. **104**, 200403 (2010)

Strongly-interacting Quantum Gases in One-dimensional Geometry

two-body physics

 confinement-induced scattering resonances

many-body physics

- super Tonks-Girardeau phase
 - Bose-Fermi mapping
 - Tonks-Girardeau gas
 - super Tonks-Girardeau phase

• 1D quantum phase transition

(pinning phase transition)

Bose-Fermi mapping:

bosons and fermions in 1D show similar density distributions

Bose-Fermi mapping:

bosons and fermions in 1D show similar density distributions

Bose-Fermi mapping:

bosons and fermions in 1D show similar density distributions

Lieb - Liniger model

Model: E. Lieb and W. Liniger, Phys. Rev. **130**, 1605 (1963)

- bosons in uniform 1D system
- repulsive contact potential

Hamilton operator:

$$H = -\sum_{i} \frac{\partial^{2}}{\partial x_{i}^{2}} + c \gamma \sum_{\langle i,j \rangle} \delta(x_{i} - x_{j}) \qquad \begin{array}{c} c \cdot \text{constant} \\ \gamma \cdot \text{interaction strength} \\ \gamma = \frac{m g_{1D}}{\hbar^{2}n} \end{array}$$
Ideal gas $\gamma = 0$
(non-interacting bosons)
(non-interacting bosons)
(non-interacting fermions)
(hard spheres) $\gamma \to \infty$
(hard spheres) $\gamma \to \infty$
(non-interacting fermions)
(hard spheres) $\gamma \to \infty$

Tonks-Girardeau gas

Experimental realizations to reach $\gamma > 1$

other approaches: B. Paredes *et al.*, Nature **429**, 277 (2004). N. Syassen *et al.*, Science **320**, 1329 (2008).

Collective oscillations

Collective oscillations

Collective oscillations

Collective oscillations

Extension of the Bose-Fermi mapping

Astrakharchik et al., PRL 95 190407 (2005)

Extended Bose-Fermi mapping: Excited Bosons with attractive interactions and ground state Fermions with repulsive interactions show the same density distribution.

Extension of the Bose-Fermi mapping

Matching wave functions

on both sides of the confinement-induced resonance

Matching wave functions

on both sides of the confinement-induced resonance

Super Tonks-Girardeau gas

Collective oscillations

Stability of the super Tonks-Girardeau gas

Strong attractive interactions stabilize the state

Estimated lifetime of the sTG state $10 < \tau < 50$ ms

Overview

Interaction regimes of 1D quantum gases

Strongly-interacting Quantum Gases in One-dimensional Geometry

two-body physics

 confinement-induced scattering resonances

many-body physics

- super Tonks-Girardeau phase
- 1D quantum phase transition
 - pinning transition
 - amplitude modulation spectroscopy
 - transport properties

Sine-Gordon model

Mott – insulator phase transition "metal - insulator transition" **Pinning transition Mott-Hubbard transition** • **deep lattice**, tight-binding approximation add shallow lattice (perturbation) connects ground states of the connects ground states of the **Bose-Hubbard model** sine-Gordon model $superfluid \leftrightarrow Mott insulator$ Tonks gas ← → Mott insulator increase lattice depth add perturbation lattice **Bose-Hubbard** sine-Gordon

Complete phase diagram

phase diagram Mott-Hubbard transition and pinning transition

Experimental probe

 a_{3D} =40 a_0 , lattice depth varied from 0 to 15 to 0 E_R

Experimental probe

Excitation spectrum

basic idea:

- start in a Mott-insulator and determine the gap energy
- reduce γ until the gap disappears
 - \rightarrow γ at the transition point

Transport properties

scattering length a_{3D} (a_0)

Transport properties

Defects in interacting 1D gases: transport

Defects in 1D, setup

Oscillations in 1D (without a lattice)

Oscillations in momentum space?

For large scattering length a_{32} , $m_F=2$ atoms are "stuck" even after switching off the 2D lattice.

Oscillations in 1D (without a lattice)

weak interactions

 $a_{32} = 0 a_0$ and $a_{33} = 220 a_0$

defects are not effected by 1D system

intermediate interaction strength

