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Problem: N interacting bosons in a trap

PRL 99, 030402 (2007), PRA 77, 033613 (2008)
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Hamiltonian

"N(x)=T+V(x,1) |
» V(x) external trap potential
* W(x;,%) two-particle interaction potential

* A 0(X-%) — contact interaction Ay~ a; a- Swave scattering length

Time-dependent many-body Schrodinger Equation
0
ot
One has to specify initial condition

ih—W(x,t) = H¥(x,t)

Y(x,t=0)=Y(X,X,,..., X, t =0)

and propagate (X 1)— P X T +At)




MCTDHB: Key idea

PRL 99, 030402 (2007), PRA 77, 033613 (2008)
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Orbitals °s and expansion coefficients ’S

are time dependent, i.e., change during the evolution



MCTDHB: Ideology

PRI 99, 030402 (2007), PRA 77, 033613 (2008)

MCTDHB(M) ansatz for wave-function:
linear combination of time-dependent permanents
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Limiting one-configurational MCTDHB(M=1) case gives
the famous Gross-Pitaevskii mean-field

o weroms = 0 D0, DO, 1)...0(x 1) = | N;t)



MCTDHB: Methodology

PRI 99; 030402 (2007), PRA 77, 033613 (2008), PRA 81, 022124/ (2010)
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Mutually coherent and in phase: Attraction between 2 solitons
Amplitude Intensity Refractive
FRONTIERS IN OPTICS
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Optical Spatial Solitons and Their
Interactions: Universality and Diversity

Mutually coherent and out of phase: Repulsion
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Fig. 2 (above). A top view photograph of a 10-pm-wide spatial soliton !
propagating in a strontium barium nisbate photorefractive erystal (top), and, for \/
comparison, the same beam diffracting lly when the nonlinearity is
“turned off” (bottom), (23). Fig. 3 (right). Schematic of the refractive index

spatial distribution for a collision between in-phase and out-of-phase coherent Mutually Incoharent : Always Attractive

spatial solitons, Intensity Refractive
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Fig. 4. Beam evolution
calculations of the
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Formation and propagation of
matter-wave soliton trains

Kevin E. Strecker*, Guthrie B. Partridge*, Andrew G. Truscott* |
& Randall G. Hulet*

* Department of Physics and Astronomy and Rice Quantum Institute,
Rice University, Houston, Texas 77251, USA
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Figure 3 Comparison of the propagation of repulsive condensates with atomic solitons.
The images are obtained using destructive absorption imaging, with a probe laser detuned
27 MHz from resonance. The magnetic field is reduced to the desired value before

switching off the end caps (see text). The times given are the intervals between tuming off
the end caps and probing (the end caps are onfor the { = 0images). The axial dimension
of eachimage frame corresponds to 1.28 mm at the plane of the atoms. The amplitude of

70ms

150 ms

solitons varies from image to image because of shot to shot experimental variations, and
because of a very slow loss of soliton signal with time. As the axial length of a soliton is
expected to vary as 1/N (ref. 11), solitons with small numbers of atoms produce
particularly weak absorption signals, scaling as V2. Trains with missing solitons are
frequently observed, but it is not clear whether this is because of a slow loss of atoms, or
because of sudden loss of an individual soliton.

Figure 4 Repulsive interactions between solitons. The three images show a soliton train
near the two tuming points and near the centre of oscillation. The spacing between
solitons is compressed at the turning points, and spread out at the centre of the oscillation
A simple model based on strong, short-range, repulsive forces between nearest-
neighbour solitons indicates that the separation between solitons oscillates at
approximately twice the trap frequency, in agreement with abservations. The number of
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osclillation is ~370 wm and the period is 310ms. The a > 0 data correspond to 630 G,
for which 2 = 10a,, and the initial condensate number is ~3 x 10°. The a < 0 data
correspond to 547 G, for which a = — 3a,,. The largest soliton signals correspond to
~5,000 atoms per soliton, although significant image distortion limits the precision of
number measurement. The spatial resolution of ~10 pm is significantly greater than the
expected transverse dimension /, = 1.5 pm.
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Formation of a Matter-Wave
Bright Soliton

L. Khaykovich,! F. Schreck,’ G. Ferrari,’? T. Bourdel,’
J. Cubizolles,” L. D. Carr," Y. Castin,” C. Salomon*

We report the production of matter-wave solitons in an ultracold lithium-7 gas.
The effective interaction between atoms in a Bose-Einstein condensate is tuned
with a Feshbach resonance from repulsive to attractive before release in a
one-dimensional optical waveguide. Propagation of the soliton without dis-
persion over a macroscopic distance of 1.1 millimeter is observed. A simple
theoretical model explains the stability region of the soliton. These matter-
wave solitons open possibilities for future applications in coherent atom optics,
atom interferometry, and atom transport.

Fig. 3. Absorption im-
ages at variable delays
after switching off the
vertical trapping beam.
Propagation of an ideal
BEC gas (A) and of a
soliton (B) in the hori-
zontal 1D waveguide in
the presence of an ex-
pulsive potential. Prop-
agation without disper-
sion over 1.1 mm is a
clear signature of a
soliton. Corresponding
axial profiles are inte-
grated over the vertical
direction.
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Formation of Bright Matter-Wave Solitons during the Collapse
of Attractive Bose-Einstein Condensates

4 — . B -+ . - . .
Simon L. Cornish."* Sarah T. Thompson.* and Carl E. Wieman*
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FIG. 2 (color online). Observation of solitons oscillating in the
magnetic trap following the collapse at dggpse = —11.4ay of
condensates initially containing approximately 8000 atoms.
(a) The evolution of the axial (horizontal) FWHM of the remnant
condensate obtained from a single Gaussian fit to the images.
Above the resolution limit of the imaging system, the remnant
condensate is observed to separate into two solitons as shown in
the images taken at (b) 210 ms, (c) 1140 ms, and (d) 3110 ms.
Each image is 77 X 129 pm. The error bars represent the
statistical spread in the data only.
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FIG. 3 (color online). Images and cross sections of remnant
condensates. (a) When the magnitude of d@ggpapge is sufficiently
small a single remnant condensate containing less than the criti-
cal number is observed to survive the collapse. When the magni-
tude of dcypapse is larger and/or larger initial condensates are
used, the remnant condensate is observed to split into a number
of solitons determined by the conditions of the collapse (b)—(d).
Each image is 77 X 129 pm.



Hormation and dynamics of iragmented
attractive condensates in 11D

Fragmentons

A.LS, O.E. Alon, and L.S. Cederbaum,
Phys. Rey. Lett. 100, 130401 (2008)




Time-evolutions of initially-coherent wave packet:

versus Many-Body (bottom)

Tine: 0,00000000tine,dat
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Time-evolutions of initially-coherent wave packets:

Many-Body (left) versus (right)

1D system of N=1000
attractive bosons
(A,=-0.008)

The initial wave packets
are COHERENT (sech[ 7x])

Gross-Pitaevskii
e breathing dynamics

Manyv-body
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Analysis of the evolving Many-Body wave packets

Reduced one-body density matrix JA®MEM9] is diagonalized

p(x,) = O] X(x b +n,(0)]g (x|

100 e : Eigenfunctions NO 5
\J\MWM (natural orbitals) ¢, (X1), 9,7 (X1)

10 ¢

Eigenvalues n,(t), n,(t)

(natural occupation numbers):

Time evolution of the natural
I occupation numbers
M z (log scale in %)




Mean-field energy diagram for interpretation of the Fragmenton

Two-fold fragmented state [n,,n,> is built up
using delocalised orbitals:

o) @ o< {sad 7, (= Xo)l £sad{ 77, (x+ X1}
] \ J \*% } / For every given n, (n2=N.-n1),. I.nefln-ﬁel.d

energy < n,,n,/H| [n,,n,> is minimized with

¥
Egr \ / respect to 7., and X,

Two-orbital mean-field energy functional

A,n(n -1
- E(n)=nh + #IW dx+n,h -+
5
o
- A,n, (N, —1)
2—'[|¢2| dx + 24,n,n _H¢1| @, i
m
/\
E,
o / & \ v Upper branch : two well-separated, but entangled parts
Egg v Lower branch : all bosons stay localized in one cloud
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Conclusions on attractive condensates
in 1D and elongated 2D traps

v The initially coherent wave-packet can dynamically
dissociate Into two parts when Its energy exceeds a
threshold value
The time-dependent GP theory applied to the same
inrtial state does not show up the splitting
The split object possesses remarkable
properties:

(1) two-fold fragmented, i.e., not coherent

(2) dynamically stable, i.e., it propagates almost without dispersion

(3) delocalized, i.e., two dissociated parts still communicate with one anether




Hormation of dynamical Schrodinger
cats in low-dimensional ultracold
attractive Bose gases

CATons |

A.LS, O.E. Alon, and L.S. Cederbaum,
Phys. Rev. A 80, 043616 (2009) (arXiv:0812.3573)




Scattering of an attractive BEC from a barrier

Initial packet: a x=0, velocity ;  Barrier: at x=-3, V,=0.4, width o= 0.15

File: B.80008000tine.dat
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Initial wave-packet location at x=0, velocity
Barrlers location at X=-3, VV,=0.4, three different barrier widths

Coordinate X
o= 0.10 — Full transmission case
o= 0.15- Split case
o= 0.20 — Full reflection case




GP propagation of Sech|1.98x] velocity
Barriers: location at x=-3, V/—0.4, three different barrier widths

Coordinate X
o= 0.10 — Full transmission case
6= 0.14 — Long-lived case
o= 0.15 — Full reflection case
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Analysis of the evolving Many-Body wave packets

Reduced one-body density matrix Je @A is diagonalized

(B[ + o]0 (x, B

At t=0 al wave-packets
are condensed: p,;=99.1%

Remain mainly condensed:
0=0.10 - full transmission,

0=0.20 - full reflection cases

Becomes fragmented:
0=0.15 — split case,

at t=15: p,=59.5% and p,=40.5%




Analysis of split case
(proof that the split object is'a Schrodinger cat state)

Fock space is spanned by: [N,0>,IN-1,12,...,|1,N-1>,|O0,N> configurations

Time

15

12

25 50 75
Fock space In.N-n> Coordinate space

t=20:

mainly |[N,0> and |O,N>
contribute, respective orbitals
arelocalized at
left (blue) and right (green)

t=0:

mainly |O,N> contribute

We call the Schrodinger cat state propagating without dispersion

and being of fragmented nature



Hificient generation of Schrodinger cats,
threaded by a potential barrier

CATons Il

A.LS, O.E. Alon, and L.S. Cederbaum,

J. Phys. B: At. Mol. Opt. Phys. 42 091004 (2009)




Initial wave-packet at X=0.1, barrier at X=0, V,=0.3,

Number of orbitals M=4
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Hate of bright matter-wave soliton trains:
irom the perspective off many-boson physics

Death of Soliton trains
A.LS, O.E. Alon, and L.S. Cederbaum,




Time-evolutions of initially-coherent two-hump in-phase

tine
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solitons:
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Evolutions of two-hump (a)symmetric in- and out- of phase soliton

trains N=2000 in coordinate and momentum spaces:
and MB(right)
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Two-hump symmetric in- and out- of phase soliton trains

N=2000 natural occupation numbers and natural orbitals

0.4

Imaginary part
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Life Time of two-hump soliton trains

Li7: N = 2000: Li7: N =4000 =~ = &= =
A,= -0.002 A= -0.001

®,=2n800Hz  ®=2n800Hz

a.=-3.0 4, a=-3.0g

t=14.21 ¢ 103sec T=3.55°103secC
y=11.34+10%m X =567 10%m



How to distinguish Solitons and Fragmentons

02| Hw,m Correlation functions for
coherent and fragmented

states are very different

" N B === Width of Soliton is broader

Interhump forces

then that of Fragmenton

NN o Inter-hump forces in
02 b
> 25 3 a5 4 45 5 55 6 65 7 fl‘agmenton are much weaker

Interhump separation

2, (N-D)

FS:iitas(}/GP = 4 ’Xo) :i47;E>¢{—27/@X0]
4n—n)

F o (72 X110, ) = 3y B2 X J(A(PX ~2(N-D) +4y'X +5)



Hate of bright matter-wave soliton trains
in 11D

v The initially coherent multi-hump wave-packets
dynamically loose the coherence and become
fragmented
T'he emerging object is a and possesses
remarkable properties:

(1) multi-fold fragmented, I.e., not coherent (condensed)

(2) dynamically stable, i.e., it propagates almost without dispersion

(3) delocalized, I.e., dissociated parts still communicate with one another




Applications (

Heidelberg:
Ramp-up a barrier: PRL 99, 030402 (2007);
Interference: PRL 98, 110405 (2007)
Fragmentons: PRL 100, 130401 (2008);
Fragmentation in 3D: PRL 100, 040402 (2008); PRA 82, 033613 (2010)
CATons: Formation PRA 80, 043616 (2009) ; Efficient generation JPB, 42 091004 (2009)
BJJ |: Exact dynamics of bosonic Josephson junction: PRL 103, 220601 (2009)
BJJ |l: Attractive vs. repulsive Josephson junctions: PRA 82, 013620 (2010)

Graz/VVienna:
Optimal control of number squeezing: PRA 79, 021603 (2009), PRA 80, 053625 (2009);
Interferometry: NJP 12, 065036 (2010) ;

Just started: Hamburg, Vienna ll,...,
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