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Typical phase diagram Helium
Solid: maintains volume and shape

Liquid: maintains volume

Gas:

fills all available volume
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Outline

Zero-temperature liguid-gas transition:
- polar molecules Iin a helical optical trap

Phase diagram:
- no multi-atomic gases

- finite pressure

Second order transition



Interaction energy (cm™')

Zero-temperature liquid-gas transition

Cold gases exist at T=0 at weak
Intermolecular interaction = low density

A liguid would emerge
In the presence of a
e Lennard-Jones type
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Interaction engineering with cold atoms
Feshbach resonance: modeled by a delta-function
Dipole forces: sign does not depend on distance


http://en.wikipedia.org/wiki/File:Argon_dimer_potential_and_Lennard-Jones.png�

Polar molecules In a helical trap
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a) Helical lattice b) Interaction V(s) in units of p°/(7R)* as
a function of distance in units of zR

Electric field polarizes molecules with dipole moment p along
the axis of the helix. Phase transition at a critical electric field.

Gas occupies all available volume. The volume of the liquid
depends on the interaction strength.



Helical lattice
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Circular polarized beam + linearly polarized side beams

Y. K. Pang et al., Opt. Express 13, 7615 (2005);
S. P. Gorkhali et al., J. Soc. Inf. Display 15, 553 (2007).
See also M. Bhattacharya, Otp. Comm. 279, 219 (2007).



Conditions

h p’ for realistic parameters: M on the order of
SMRZ R 100 a.u., p on the order of 1 Debye, R on
the order of a micron.

A o (PE)* laser optical intensity on the order of ten kW
" E,-hw+il' per square cm. [S. Kotochigova and E.
Tiesinga,Phys. Rev. A 73, 041405 (2006)]

T <h*/MR? c10 nK

Effective Hamiltonian

h° 0’
H=- + > V(S —S,
Z‘ZI\/I 0S; ; (5 =3)

from adiabatic approximation

27, + dpZ plays the role of the 1D momentum



Luttinger liquid

We focus on P=0

Weak interaction: dilute gas of independent
particles

Strong interaction: nearest neighbor interaction
dominates and can be approximated by a
harmonic potential
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Phase transition

S. Sachdey, T. Senthil, R. Shankar, Phys. Rev. B 50, 258 (1994)
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Second order transition. Finite pressure.
Perturbation theory fails for bound state formation.

Exact results
V(X) =+, x<a;V(x)=-AU(x),x>a

No bound states for small nonzero A. Variational proof. Number all
particles from left to right. Set masses of particles with even numbers to
infinity and prove that there is still no bound states. This can be
reduced to a single-particle problem.



Exact results
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= 2¢, +square of the integral of a full derivative + negative

Lower energy per particle in a three-particle state than in the two-particle ground
state. A generalization of this argument proves that the transition occurs directly

from a monoatomic gas to a condensed state.



Transition point poc 72/« MA
p controlled by the dc electric field

Variational method

Neglect all interactions except nearest neighbors.
We expect universal behavior near the transition.
For analytical calculations use the Morse potential

V (s) = Alexp(—2a[s — h]) - 2exp(-a[s - h])}
4V - HWk (Ay)

E =—All-ah/VAMAT o (A= A)%, A> A
E=0, A<A
p<(A-A)

Second order liquid-gas transition? Critical point at zero pressure



Critical point
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Second order liquid-gas transition? Critical point at zero pressure



Numerical results
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E. Krotscheck, M. D. Miller, and J. Wojdylo, Variational

approach to the many-boson problem in one dimension,

Phys. Rev. B 60, 13028 (1999)




Summary

Cold polar molecules in helical optical lattices
exhibit quantum liquid-gas transition at critical
electric field

Direct transition between a monoatomic gas
and a liquid

Second order?

Is the transition at the dimer formation
threshold?
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