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Optical Lattice

Cold atoms (fermions, bosons) confined in periodic potentials 

produced by the interference of laser beams.  

Atoms are trapped at intensity maxima
Typical well depths:      1 µK
Typical temperatures: 10 nK



Standard detection procedure

•  lattice potential rapidly (< 1 µs) switched off

•  free expansion for 30 ms

•  absorption image

Free expansion

Localized Bragg maxima indicate coherence

Observation of momentum spectra

Momentum space

10 µm
1 mm



Localized Bragg maxima indicate coherence

Momentum space



Orbital Optical Lattices

In higher bands of optical lattice

Standard optical lattice: atoms reside 
in S-band

→  local S-orbit at each site

→ freedom of orientation

→ anisotropic orbits

Important role of orbital physics in material systems: 
magnetism & superconductivity in rare earth or transition metal compounds 



  
V(x,y ) = − V

0
 sin2(kx) + sin2(ky) + 2cos(θ)sin(kx)sin(ky )



  

Optical lattice set-up
• crossed standing waves in x- and y-directions

•  linear polarizations in z-direction
•  adjustable time-phase difference θ

→  Conventional square lattice  +  interference term



Lattice with adjustable time-phase difference θ

  
V(x,y ) = − V

0
 sin2(kx) + sin2(ky) + 2cos(θ)sin(kx)sin(ky )
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S-band lattice: dependence on θ

Population:

Brillouin zone:



Population Swapping: exciting higher bands
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D, m = -2,0,2

P, m = -1,1

S, m = 0

Detailed procedure

→  adiabatically (80 ms) ramp V0 to 16.5 Erec: tunneling suppressed

→  rapidly (< 0.2 ms) ramp θ   to θf > π/2 :    θf  determines band to be populated

→  adiabatically (0.6 ms) decrease V0 : tunneling enabled

→  prepare lattice with θ < π/2 

→  adiabatically (< 2 ms) adjust θ

→  hold in lattice

→  detect

Bands that can be accessed

(reason will be discussed later)



1. 2. 4. 6. 9. 

Detecting population of Brillouin zones

→ adiabatic decrease of potential (0.5 ms) 
→ 30 ms ballistic expansion → absorption imaging

Band mapping:

maps population of n-th band to n-th Brillouin zone, if no
band crossings occur 

4k



P-band lattice (2nd band)



More realistic lattice potential accounting for anisotropy

  
V

real
(x,y )  =  − 

V
0

4
  η  cos(α) ẑ  + sin(α) ŷ( )  eikx  +  ε  ẑ e− ikx      +   ẑ eiθ  eiky  + ε  e− iky    

2

η unequal intensities coupled to x and y directions

imperfect reflection of beams coupled to x and y directions

compensation of      via polarization optics         α

ε

ε

α,   η,  ε  yield anisotropy



Effect of anisotropy upon P-band (2nd band)

incomplete reflection is perfectly compensated on x-axis:   cos(αiso) =  ε 

→    energy minima of P-band are degenerate (δE = 0) if α  adjusted such that the 

→   if  α = αiso, a change of  η  does not lift degeneracy of P-band energy minima

→    local imbalance of standing wave intensities due to finite size beams irrelevant

→    energy difference δE between P-band minima can be tuned via α 



Time evolution of band population: α < αiso

→ After 1 ms condensation at finite momenta on 
    the edge between 1st and 2nd Brillouin zone

→ Decay after several 10 ms

→ Anisotropy selects condensation points



Significant population at condensation points



Time evolution of momentum spectrum

→ Condensation after few ms, no zero momentum component

→ Decay after several 10 ms

→ Sharp Bragg peaks show cross-dimensional coherence



α ≈ αisoα < αiso α > αiso

αiso ≈ π /5 , η ≈ 0.95 , ε ≈ 0.81

Tuning the anisotropy

δE  ≈  0.005 Erec 
≈  0.03  band width

δE ≈ 0

→     δT  ≈  0.5 nK

Well depth: A-wells 7.5 Erec , B-wells 5 Erec

→  thermal sample at temperature T would only permit selection of different 
condensation points by tuning of α , if  T  <<  0.5 nK



Nature of order parameter
Two inequivalent condensation points 

K(1,1) =  K(-1,-1) 

K(-1,1) =  K(1,-1) 

   
K

(±1,±1)
 ≡   

1

2
 ±k, ±k( )

For weak interactions, order parameter is approximated by coherent superposition 

 
φ

K(1,1)
, φ

K(1,-1)

Assume:   coherent superposition:
  
ψ  =  a φ

K(1,1)
+  b φ

K(1,-1)

Observed momentum spectra are only reproduced for

or incoherent mixture of real-valued Bloch-functions

b = i a   if α = αiso 

a = 0     if α < αiso 

b = 0     if α > αiso 

α = αiso



Deep A-sites:

Shallow B-sites:   local S-orbits

local (Px - Py ) -orbits preferred because of anisotropy α < αiso 

Local phases arranged in order to maximize intersite hopping

configuration space momentum space

2λ

 
ψ  =  φ

K(1,-1)
Striped order



Deep A-sites:

Shallow B-sites:   local S-orbits

local (Px ± iPy)-orbits               minimize single site mean

field energy    →    finite local angular momentum  

configuration space momentum space

2λ

Complex order

Local phases arranged in order to maximize intersite hopping

  
ψ  =  φ

K(1,1)
+  i  φ

K(1,-1)



→ breaks time-reversal symmetry

  
ψ  =  φ

K(1,1)
+  i  φ

K(1,-1)

→ staggered local angular momenta

Properties of

→ breaks translation symmetry of lattice

→ ground state of P-band

→ local S-orbits provide cross-dimensional 
     tunneling junctions: important for fast 
     formation of cross-dimensional coherence



Earlier experiment by MPQ group: Mueller et al., PRL 2007

without S-orbits: cross-dimensional coherence hard to obtain 
because of small transverse tunneling rate between P-orbits 

A. Isacsson and S. Girvin, Phys. Rev. A 72, 053604 (2005).
W. Liu and C. Wu, Phys. Rev. A 74, 013607 (2006).

Theoretical discussion



B)  P-band minima degenerate, but incoherent mixture of striped states with 

Both striped states coexist everywhere in lattice with indetermined relative

Coherent (Px ± iPy)-orbits  have lowest energy but collisions for „some reason“ 

can not populate this state

Both striped states separated in different locations  →

costs additional kinetic energy at the phase boundaries

 
φ

K(1,1)
, φ

K(1,-1)
orthogonal orientations

phase  →      number of particles in each striped state precisely determined. 
However, striped states share common S-orbits.

Alternative scenarios possible?
A)  Degeneracy of P-band minima locally lifted due to „unknown“ local anisotropy 

→   Not compatible with observed sharp α-dependence 

 
φ

K(1,1)
, φ

K(1,-1)
Striped states with orthogonal orientations                        arise in

different areas of the lattice



F-band lattice (7th band)



7. Band, condensation points

two inequivalent condensation points K(1,1) =  K(-1,-1) 

K(-1,1) =  K(1,-1) 



Band crossing

For quasi-momenta q in the vicinity of the condensation points
the 6. and 7. band cross, if well depth is decreased to zero

Condensation points of 7. band are mapped onto 6. BZ



Condensation points of 7. band are mapped onto 6. BZ



Band mapping

6. & 7. Brillouin zone



Significant population at condensation points



Momentum spectra: dependence on θ

θ/π  = 0.66 θ/π  = 0.7 θ/π  = 0.75



Momentum spectra: dependence on θ



Formation and decay of coherence

τ = 1.8 ms τ = 9.1 ms

τ = 2.9 ms
τ = 10.1 ms



Nature of order parameter
Two inequivalent condensation points 

K(1,1) =  K(-1,-1) 

K(-1,1) =  K(1,-1) 

   
K

(±1,±1)
 ≡   

1

2
 ±k, ±k( )

For weak interactions, order parameter is approximated by coherent superposition 

 
φ

K(1,1)
, φ

K(1,-1)

Assume:   coherent superposition:
  
ψ  =  a φ

K(1,1)
+  b φ

K(1,-1)

Observed momentum spectra are only reproduced for  b = i a

or incoherent mixture of real-valued Bloch-functions

Previous calculations used
  
ψ  =  φ

K(1,1)
+  i  φ

K(1,-1)



Shape of order parameter
  
ψ  =  φ

K(1,1)
+  i  φ

K(1,-1)

 
F

2x3 −3x
± i F

2y3 −3y



Collisional relaxation of bands

large population 
of local S-orbits
increases lifetime



Which bands can be accessed?

Swapping procedure produces 
incoherent population of local 
S-orbits in the A-sites

Bloch states providing local 
S-orbits can be selectively 
populated with good efficiency

These states are protected from 
collisional decay, because
in the S-band the A-sites are 
practically empty

Appropriate Bloch states exist in  2nd, 4th, 7th, 9th,...  band



•  Selective population of higher bands possible

•  local S-orbits enable cross-dimensional coherence

•  local S-orbits protect against collisional relaxation

Summary

P-band F-band

Bipartite lattices provide an excellent context for exploring orbital physics 

in optical lattices because of three important features:
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