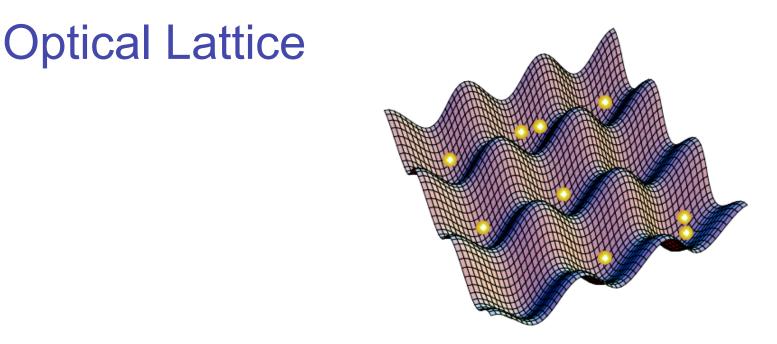


Universität Hamburg Institut für Laser-Physik

Georg Wirth Matthias Ölschläger Andreas Hemmerich

Orbital Optical Lattices

- Optical Lattices
- Excitation of higher bands
- P-Band
- F-Band



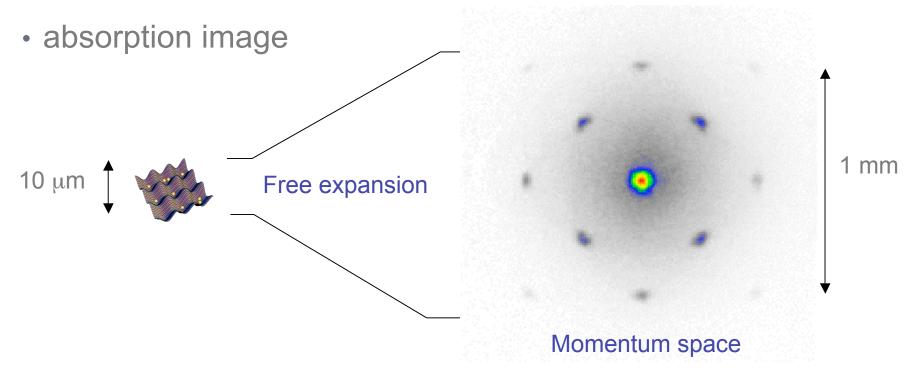
Cold atoms (fermions, bosons) confined in periodic potentials produced by the interference of laser beams.

Atoms are trapped at intensity maxima

Typical well depths: 1 μK Typical temperatures: 10 nK

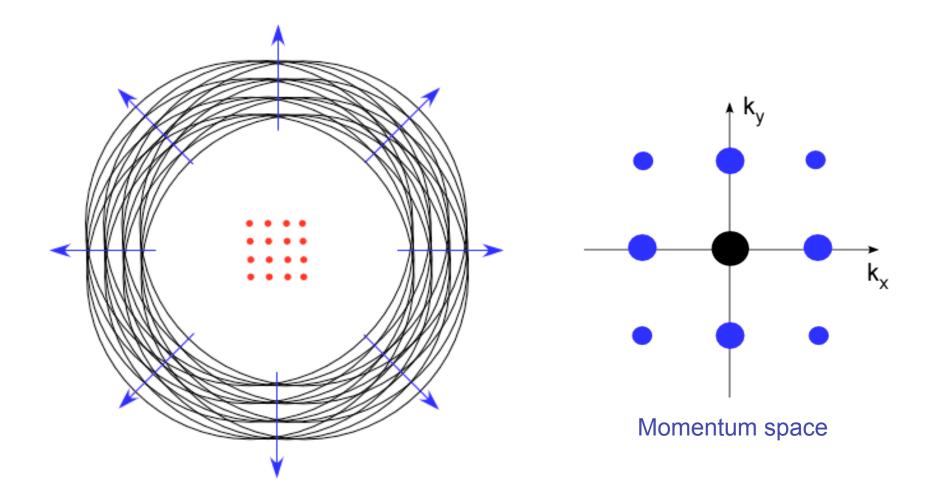
Standard detection procedure Observation of momentum spectra

- lattice potential rapidly (< 1 μ s) switched off
- free expansion for 30 ms



Localized Bragg maxima indicate coherence

Localized Bragg maxima indicate coherence



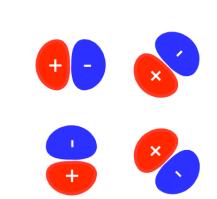
Orbital Optical Lattices

Standard optical lattice: atoms reside in S-band

→ local S-orbit at each site

In higher bands of optical lattice

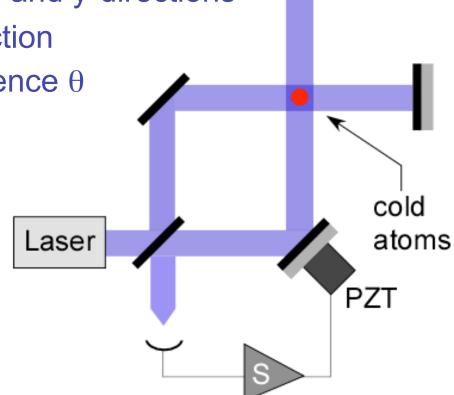
- → anisotropic orbits
- → freedom of orientation



Important role of orbital physics in material systems: magnetism & superconductivity in rare earth or transition metal compounds

Optical lattice set-up

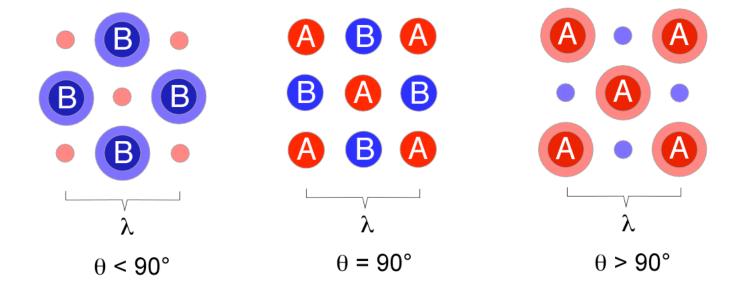
- crossed standing waves in x- and y-directions
- linear polarizations in z-direction
- adjustable time-phase difference $\boldsymbol{\theta}$



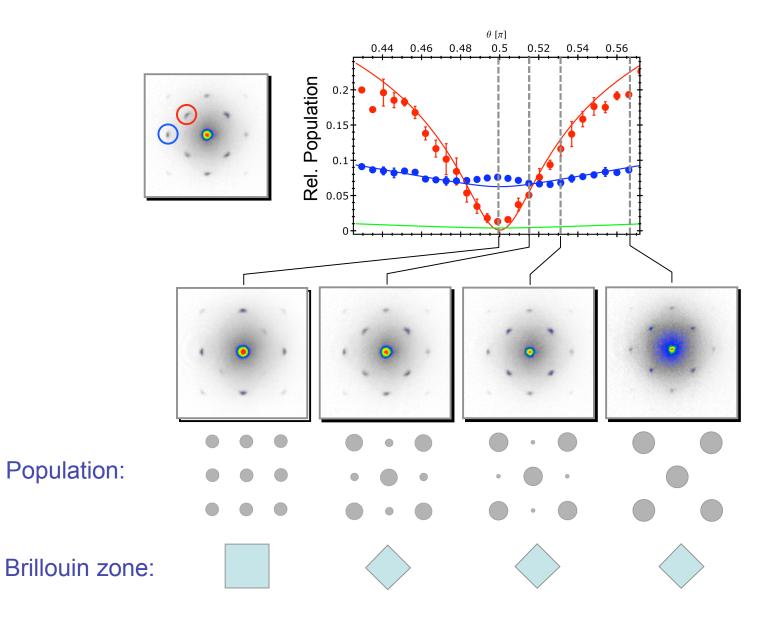
→ Conventional square lattice + interference term $V(x,y) = -V_0 \left[\sin^2(kx) + \sin^2(ky) + 2\cos(\theta)\sin(kx)\sin(ky) \right]$

Lattice with adjustable time-phase difference θ

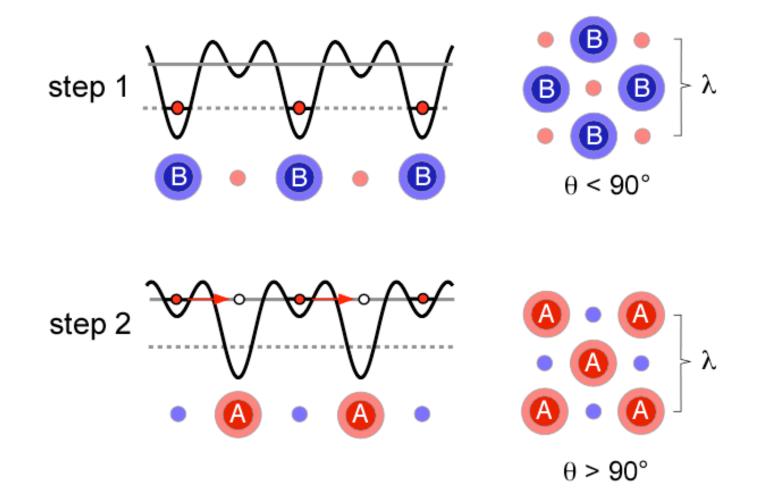
$$V(x,y) = -V_0 \left[\sin^2(kx) + \sin^2(ky) + 2\cos(\theta)\sin(kx)\sin(ky) \right]$$



S-band lattice: dependence on θ



Population Swapping: exciting higher bands

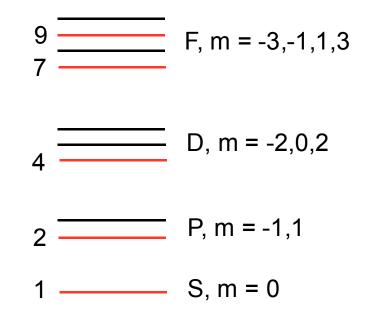


Detailed procedure

- \rightarrow prepare lattice with $\theta < \pi/2$
- \rightarrow adiabatically (80 ms) ramp V₀ to 16.5 E_{rec}: tunneling suppressed
- → rapidly (< 0.2 ms) ramp θ to $\theta_f > \pi/2$: θ_f determines band to be populated
- \rightarrow adiabatically (0.6 ms) decrease V₀ : tunneling enabled
- \rightarrow adiabatically (< 2 ms) adjust θ
- \rightarrow hold in lattice
- → detect

Bands that can be accessed

(reason will be discussed later)

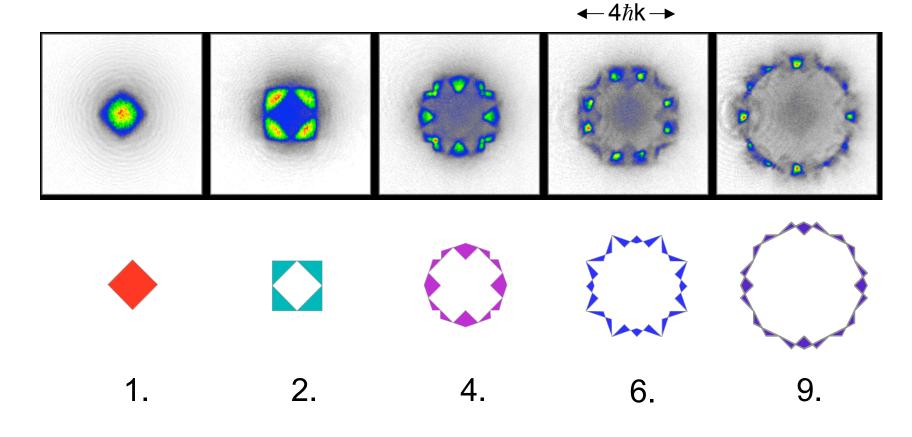


Detecting population of Brillouin zones

Band mapping:

→ adiabatic decrease of potential (0.5 ms) → 30 ms ballistic expansion → absorption imaging

maps population of n-th band to n-th Brillouin zone, if no band crossings occur

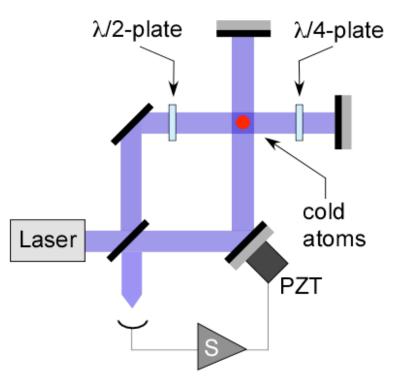


P-band lattice (2nd band)

More realistic lattice potential accounting for anisotropy

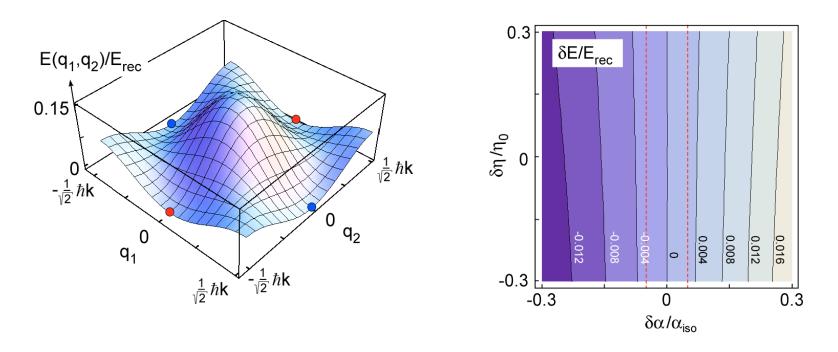
$$V_{real}(x,y) = -\frac{V_0}{4} \left| \eta \left[\left(\cos(\alpha) \, \hat{z} + \sin(\alpha) \, \hat{y} \right) \, e^{ikx} + \varepsilon \, \hat{z} \, e^{-ikx} \right] + \hat{z} \, e^{i\theta} \left[e^{iky} + \varepsilon \, e^{-iky} \right] \right|^2$$

- η unequal intensities coupled to x and y directions
- ϵ imperfect reflection of beams coupled to x and y directions
- α compensation of ε via polarization optics
- α , η , ϵ yield anisotropy



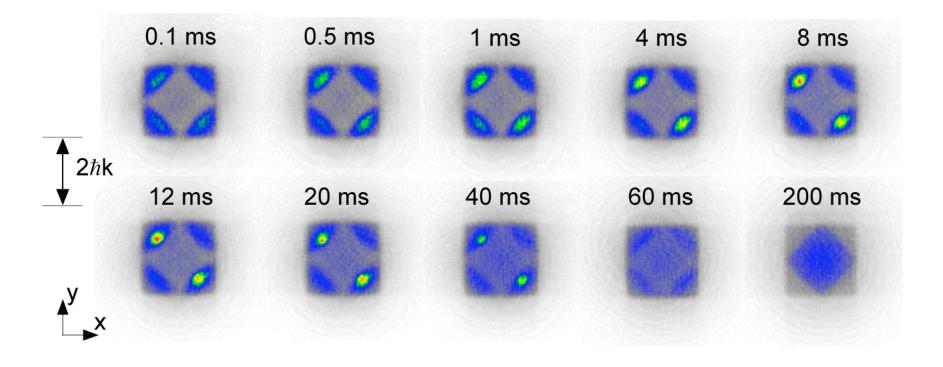
Effect of anisotropy upon P-band (2nd band)

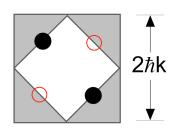
- \rightarrow energy difference δE between P-band minima can be tuned via α
- → energy minima of P-band are degenerate ($\delta E = 0$) if α adjusted such that the incomplete reflection is perfectly compensated on x-axis: $\cos(\alpha_{iso}) = \epsilon$



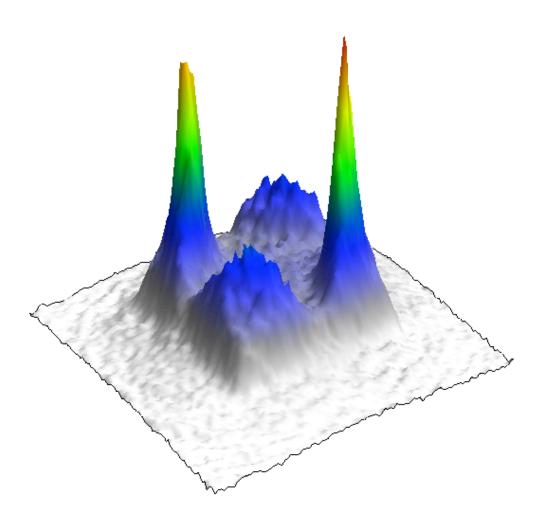
- \rightarrow if $\alpha = \alpha_{iso}$, a change of η does not lift degeneracy of P-band energy minima
- → local imbalance of standing wave intensities due to finite size beams irrelevant

Time evolution of band population: $\alpha < \alpha_{iso}$



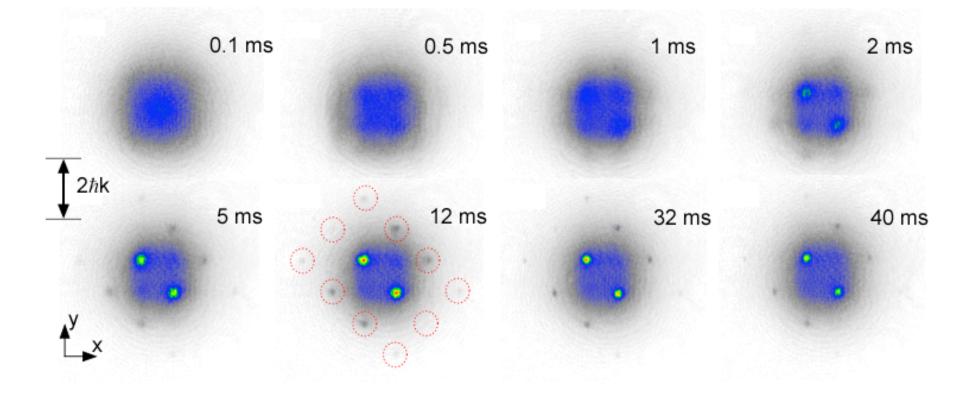


- → After 1 ms condensation at finite momenta on the edge between 1st and 2nd Brillouin zone
 - → Anisotropy selects condensation points
 - → Decay after several 10 ms



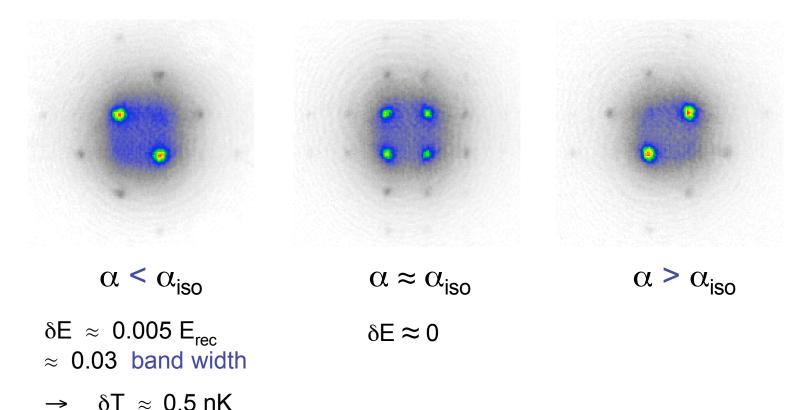
Significant population at condensation points

Time evolution of momentum spectrum



- → Condensation after few ms, no zero momentum component
- → Decay after several 10 ms
- → Sharp Bragg peaks show cross-dimensional coherence

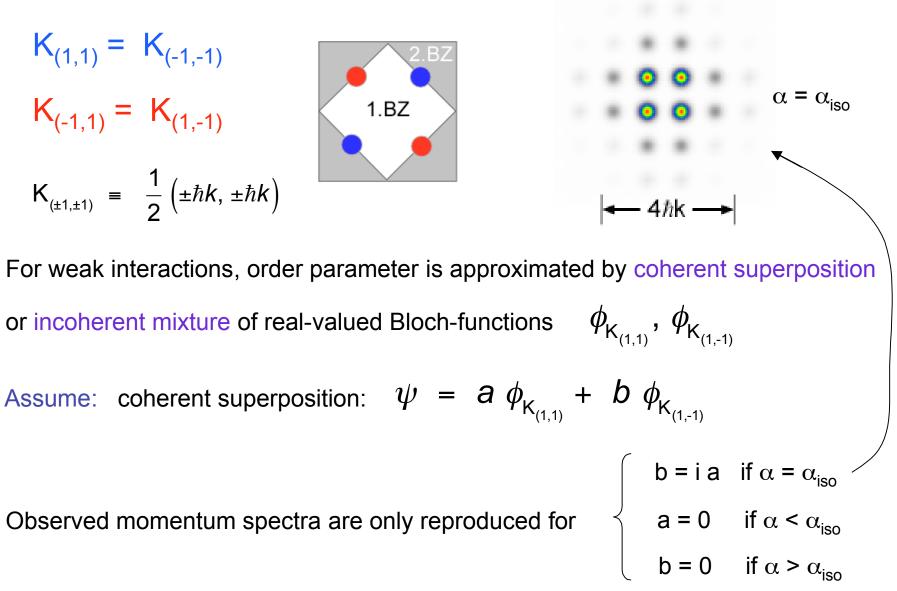
Tuning the anisotropy $\alpha_{iso} \approx \pi / 5$, $\eta \approx 0.95$, $\epsilon \approx 0.81$ Well depth: A-wells 7.5 E_{rec}, B-wells 5 E_{rec}



 \rightarrow thermal sample at temperature T would only permit selection of different condensation points by tuning of α , if T << 0.5 nK

Nature of order parameter

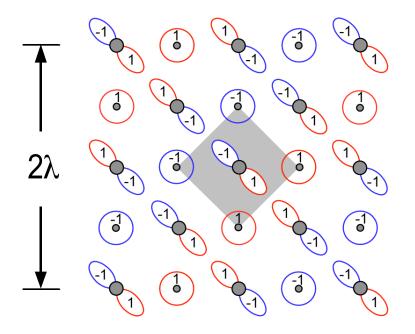
Two inequivalent condensation points



Striped order $\psi = \phi_{K_{(1,-1)}}$

Shallow B-sites:local S-orbitsDeep A-sites:local ($P_x - P_y$) -orbits preferred because of anisotropy $\alpha < \alpha_{iso}$

Local phases arranged in order to maximize intersite hopping



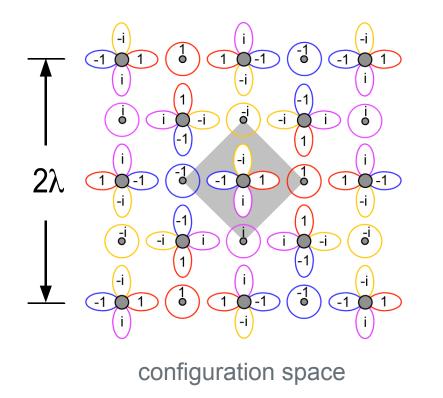


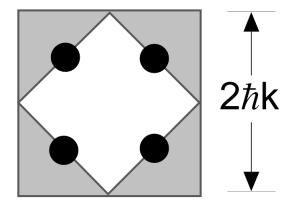
configuration space

momentum space

Complex order $\psi = \phi_{K_{(1,1)}} + i \phi_{K_{(1,-1)}}$ Shallow B-sites: local S-orbits $\stackrel{1}{\bullet}$ Deep A-sites: local (P_x ± iP_y)-orbits $\stackrel{-i}{\bullet}$ minimize single site mean field energy \rightarrow finite local angular momentum

Local phases arranged in order to maximize intersite hopping

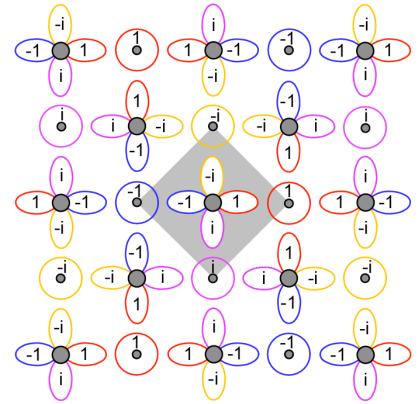




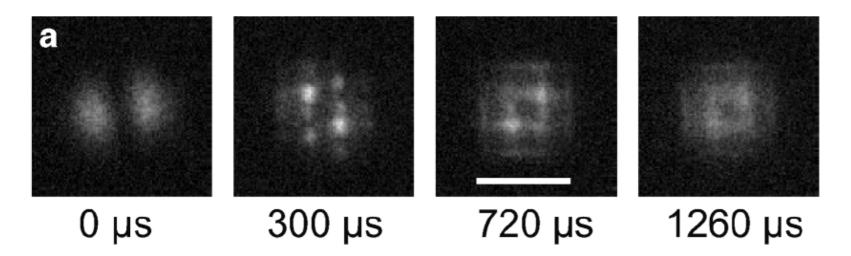
momentum space

Properties of $\psi = \phi_{K_{(1,1)}} + i \phi_{K_{(1,-1)}}$

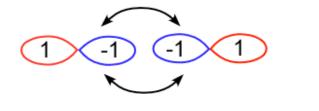
- \rightarrow breaks translation symmetry of lattice
- → breaks time-reversal symmetry
- → staggered local angular momenta
- \rightarrow ground state of P-band
- → local S-orbits provide cross-dimensional tunneling junctions: important for fast formation of cross-dimensional coherence

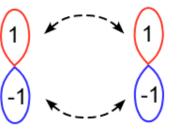


Earlier experiment by MPQ group: Mueller et al., PRL 2007



without S-orbits: cross-dimensional coherence hard to obtain because of small transverse tunneling rate between P-orbits





Theoretical discussion

A. Isacsson and S. Girvin, Phys. Rev. A 72, 053604 (2005). W. Liu and C. Wu, Phys. Rev. A 74, 013607 (2006).

Alternative scenarios possible?

- A) Degeneracy of P-band minima locally lifted due to "unknown" local anisotropy Striped states with orthogonal orientations $\phi_{K_{(1,1)}}$, $\phi_{K_{(1,-1)}}$ arise in different areas of the lattice
 - \rightarrow Not compatible with observed sharp α -dependence
- B) P-band minima degenerate, but incoherent mixture of striped states with orthogonal orientations $\phi_{K_{(1,1)}}$, $\phi_{K_{(1,-1)}}$

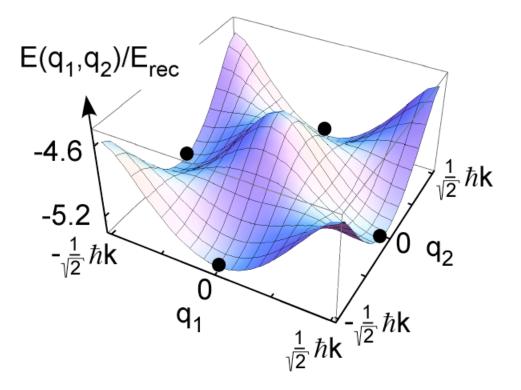
Coherent $(P_x \pm iP_y)$ -orbits have lowest energy but collisions for "some reason" can not populate this state

Both striped states coexist everywhere in lattice with indetermined relative phase \rightarrow number of particles in each striped state precisely determined. However, striped states share common S-orbits.

Both striped states separated in different locations \rightarrow costs additional kinetic energy at the phase boundaries

F-band lattice (7th band)

7. Band, condensation points



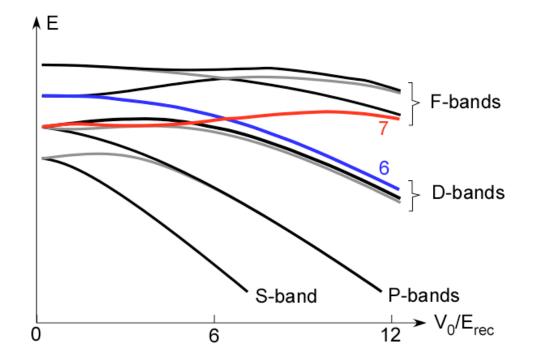
two inequivalent condensation points

$$K_{(1,1)} = K_{(-1,-1)}$$

 $K_{(-1,1)} = K_{(1,-1)}$

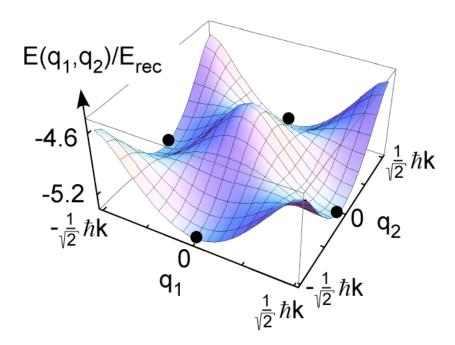
Band crossing

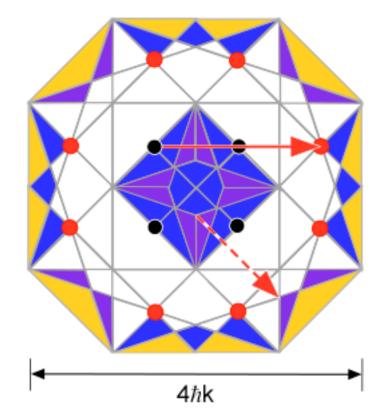
For quasi-momenta q in the vicinity of the condensation points the 6. and 7. band cross, if well depth is decreased to zero



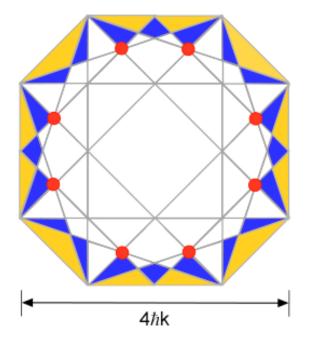
Condensation points of 7. band are mapped onto 6. BZ

Condensation points of 7. band are mapped onto 6. BZ

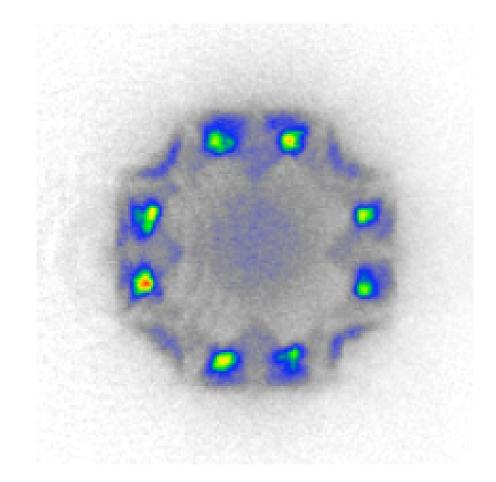


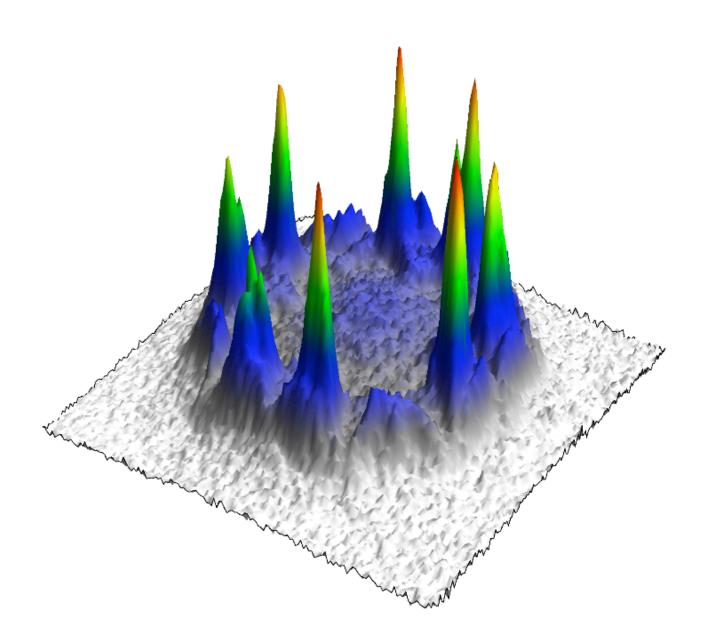


Band mapping



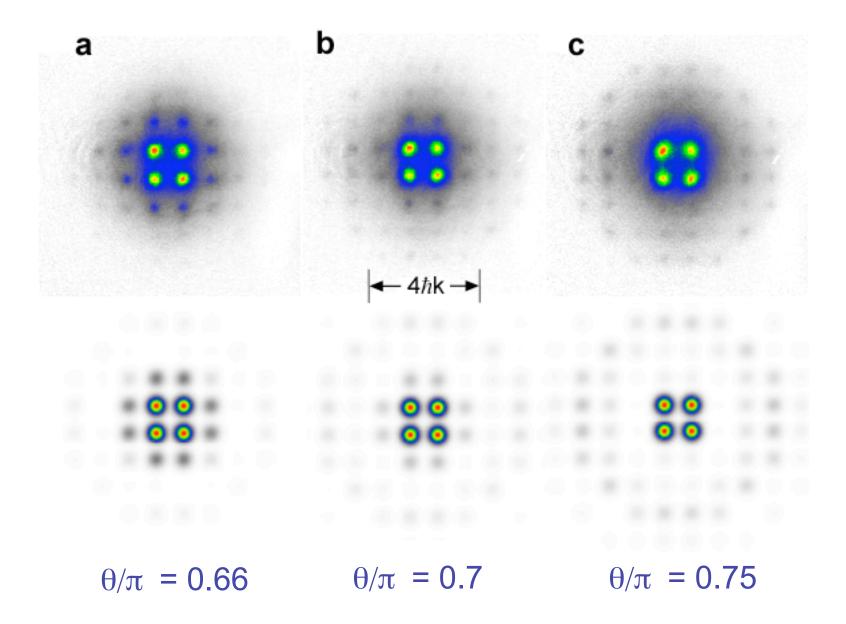
6. & 7. Brillouin zone



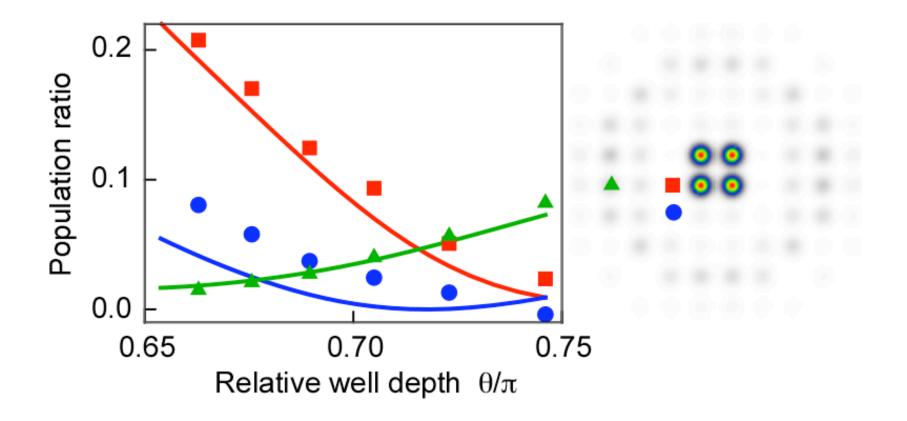


Significant population at condensation points

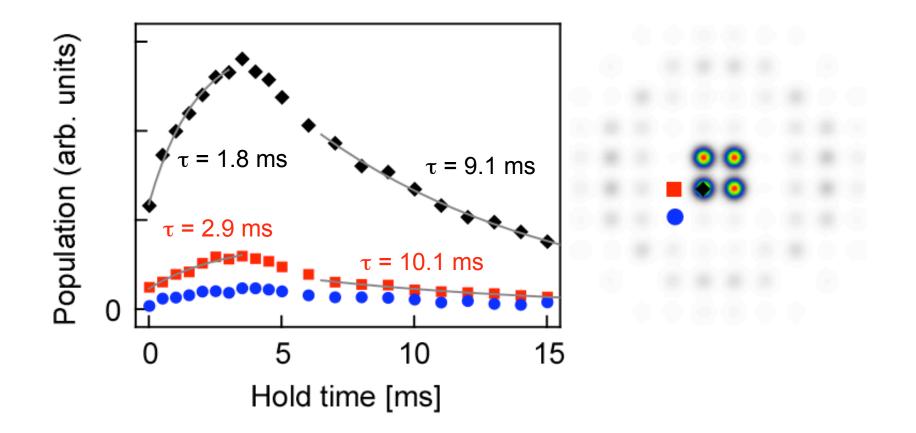
Momentum spectra: dependence on θ



Momentum spectra: dependence on θ



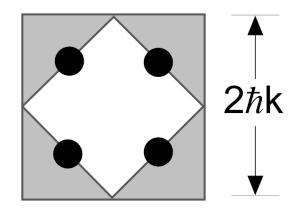
Formation and decay of coherence



Nature of order parameter

Two inequivalent condensation points

$$K_{(1,1)} = K_{(-1,-1)}$$
$$K_{(-1,1)} = K_{(1,-1)}$$
$$K_{(\pm 1,\pm 1)} = \frac{1}{2} (\pm \hbar k, \pm \hbar k)$$



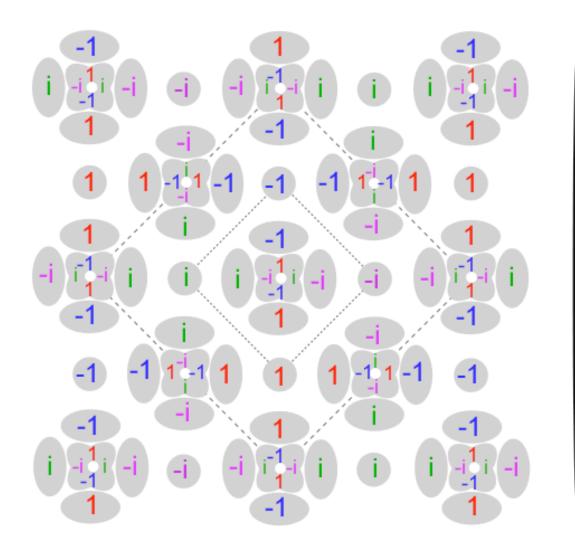
For weak interactions, order parameter is approximated by coherent superposition or incoherent mixture of real-valued Bloch-functions $\phi_{K_{(1,1)}}$, $\phi_{K_{(1,-1)}}$

Assume: coherent superposition: $\psi = a \phi_{K_{(1,1)}} + b \phi_{K_{(1,-1)}}$

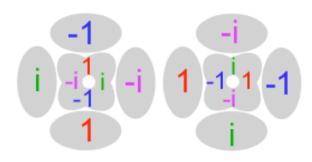
Observed momentum spectra are only reproduced for b = i a

Previous calculations used
$$\Psi = \phi_{K_{(1,1)}} + i \phi_{K_{(1,-1)}}$$

Shape of order parameter $\psi = \phi_{K_{(1,1)}} + i \phi_{K_{(1,-1)}}$



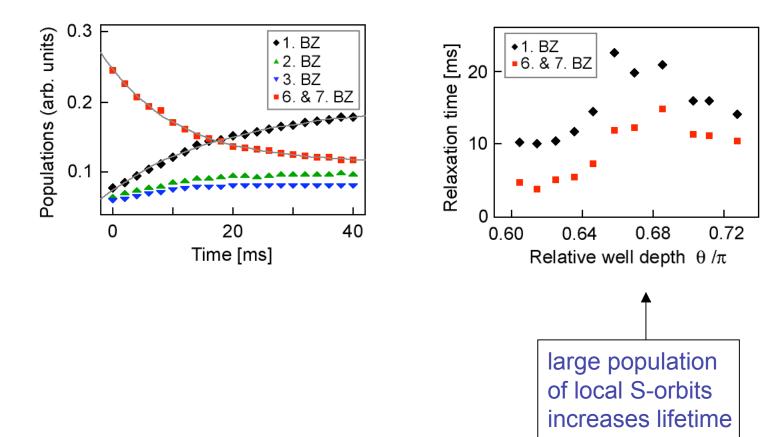
Deep wells: F-orbits: $\phi_{[3,0]} \pm i \phi_{[0,3]}$



 $F_{2x^3-3x} \pm i F_{2y^3-3y}$

Shallow wells S-orbits: $\phi_{[0,0]}$

Collisional relaxation of bands



Which bands can be accessed?

Swapping procedure produces incoherent population of local S-orbits in the A-sites

Bloch states providing local S-orbits can be selectively populated with good efficiency

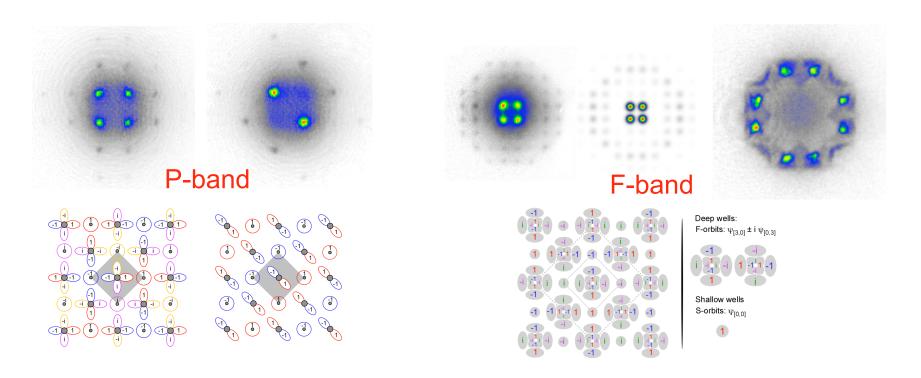
These states are protected from collisional decay, because in the S-band the A-sites are practically empty B

Appropriate Bloch states exist in 2nd, 4th, 7th, 9th,... band

Summary

Bipartite lattices provide an excellent context for exploring orbital physics in optical lattices because of three important features:

- Selective population of higher bands possible
- Iocal S-orbits enable cross-dimensional coherence
- local S-orbits protect against collisional relaxation



PhD-students

Support

Matthias Ölschläger Georg Wirth

References M. Ölschläger, G. Wirth, A. Hemmerich arXiv:1008.4752v1 (2010)

G. Wirth, M. Ölschläger, A. Hemmerich arXiv:1006.0509v3 (2010)