Impurities in a Fermi sea: polarons vs. molecules

Pietro Massignan (UAB&ICFO-Barcelona)

Institut de Ciències Fotòniques



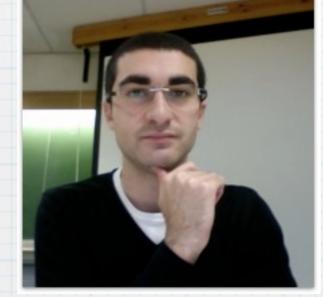
FERMIX - EUROQUAM

in collaboration with:

Georg Bruun (Aarhus)



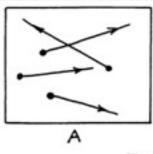
Carlos Lobo (Southampton)



Kayvan Sadegzadeh (Cambridge)

Alessio Recati (Trento)

Many-body systems



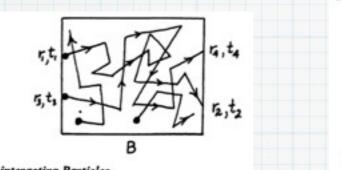


Fig. 0.2 A. Non-interacting Particles B. Interacting Particles Angels on pinhead

2

Molecules in liquid

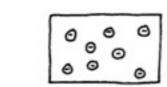
Nucleons

in nucleus

(+) O

Electrons

in atom



Atoms in molecule

Atoms in solid

[0.0]

0

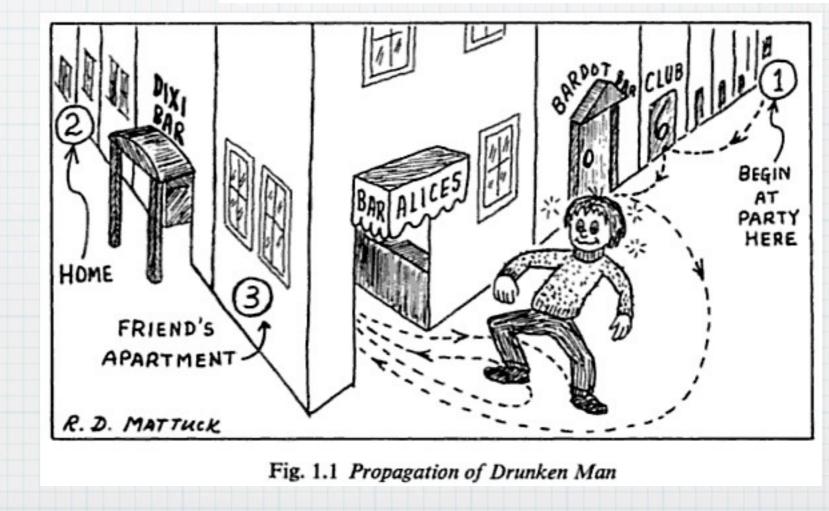
0

(from Richard Mattuck's book)

3

Fig. 0.1 Some Many-body Systems

A GUIDE TO FEYNMAN DIAGRAMS



Quasi-Particles

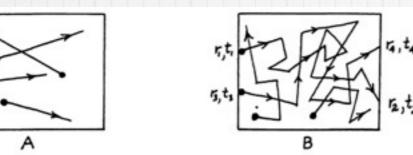
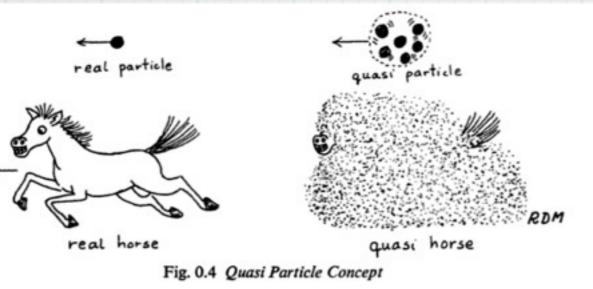


Fig. 0.2 A. Non-interacting Particles B. Interacting Particles

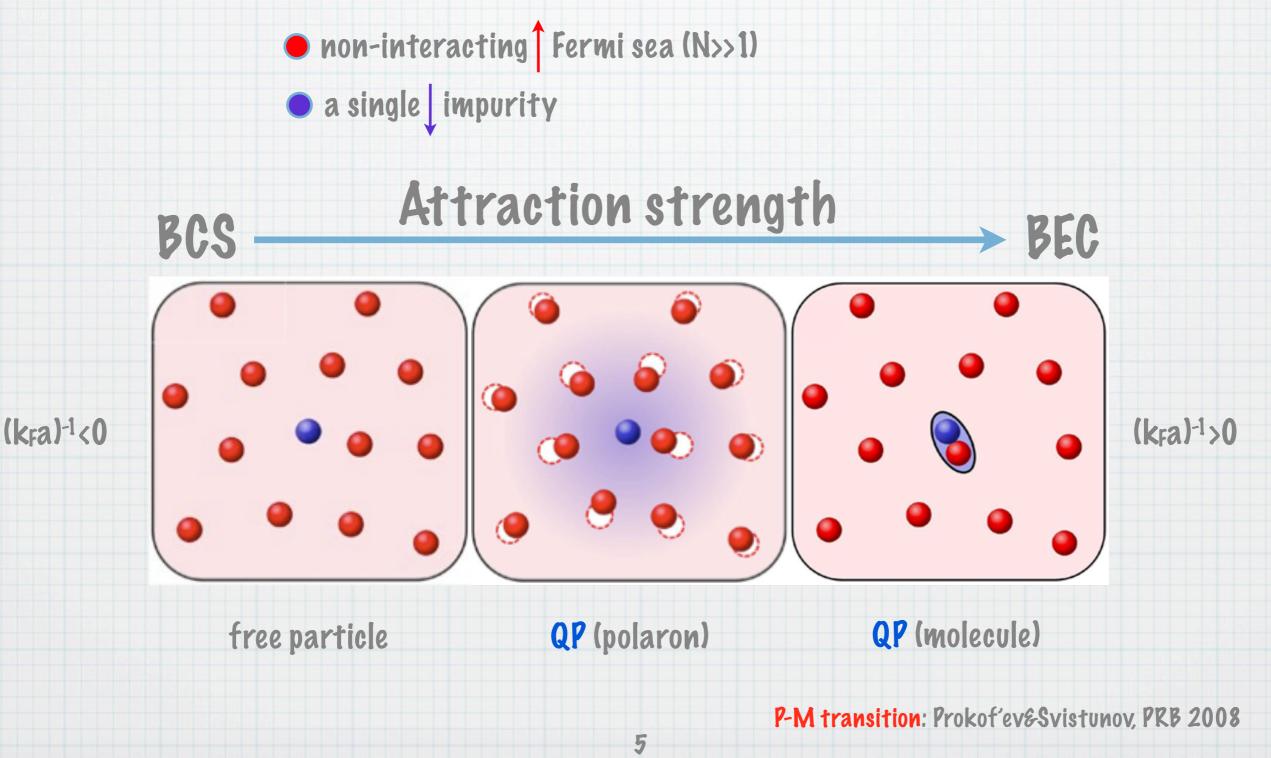
Of importance are the excitations, which behave as quasi-particles!



a QP is a "free particle" with: @ chemical potential @ renormalized mass @ shielded interactions @ lifetime

The MIT experiment

Schirotzek, Wu, Sommer & Zwierlein, PRL 2009



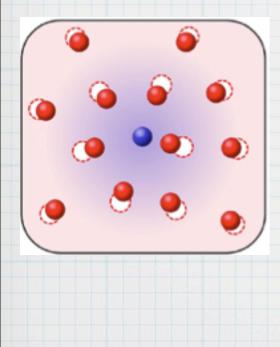
Polaron: variational Ansatz

(F. Chevy, PRA 2006)

the impurity

 $k > k_F$ $|\psi_{\mathbf{p}}\rangle = \phi_{0}c_{\mathbf{p}\downarrow}^{\dagger}|0\rangle_{\uparrow} + \sum_{q < k_{F}}^{n > n_{F}} \phi_{\mathbf{qk}} c_{\mathbf{p}+\mathbf{q}-\mathbf{k}_{\downarrow}}^{\dagger} c_{\mathbf{k}\uparrow}^{\dagger} c_{\mathbf{q}\uparrow} |0\rangle_{\uparrow}$

non-interacting Fermi sea



Particle-Hole dressing

Very good agreement with QMC results for μ_{\perp} and m*

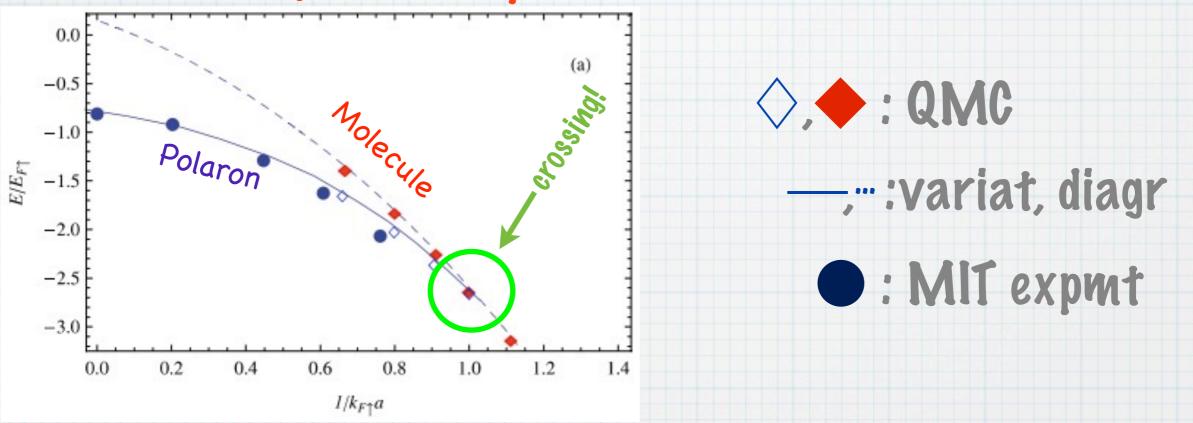
This variational Ansatz has a diagrammatic equivalent: the forward scattering, or ladder, approximation.

6

(Combescot et al., PRL 2007)

QP parameters

Chemical potential μ_{\downarrow}



7

QMC: Prokoťev&Svistunov

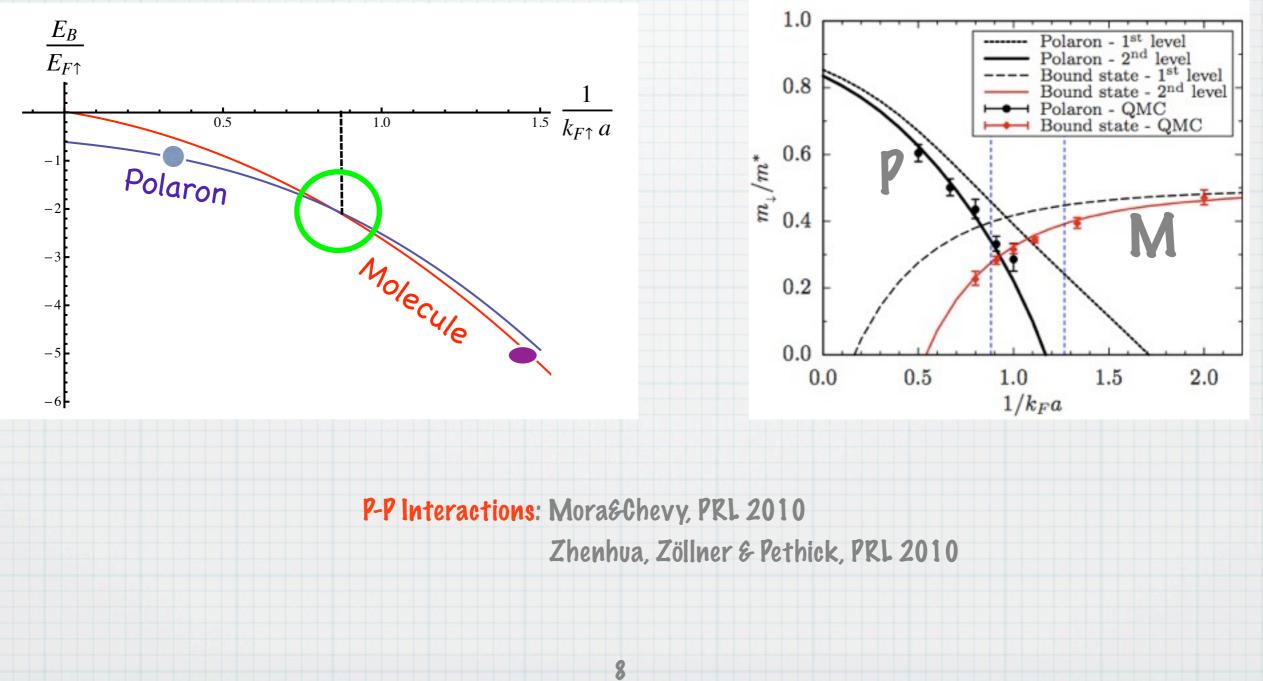
Variational and diagrammatic: Chevy, Recati, Lobo, Stringari, Combescot, Leyronas Massignan&Bruun, Zwerger, Punk, Stoof, Mora,...

Experiments: MIT, ENS

QP parameters

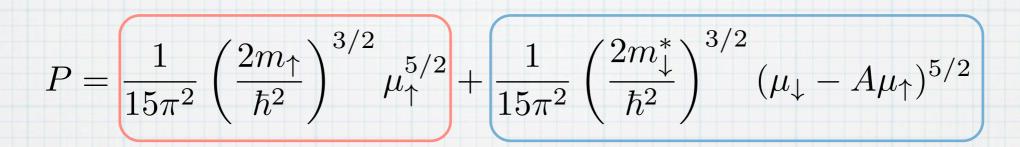
Chemical potential μ_{\downarrow}

Effective mass m*



Equation of state of a unitary Fermi gas

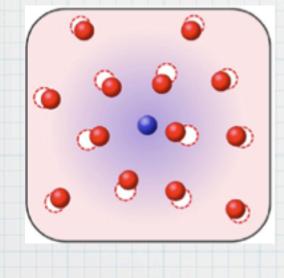
In the normal phase at T=0,



non-interacting 1

non-interacting QP

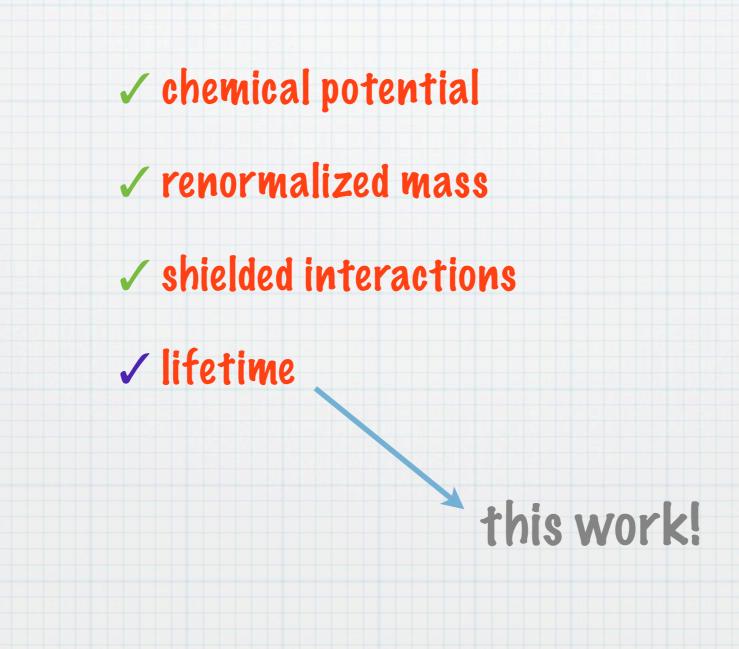
A = -0.615 $m_{\perp}^{*} = 1.2m$



Same thermodynamics for: ultracold atoms dilute neutron matter

9





10

Very long QP lifetimes!

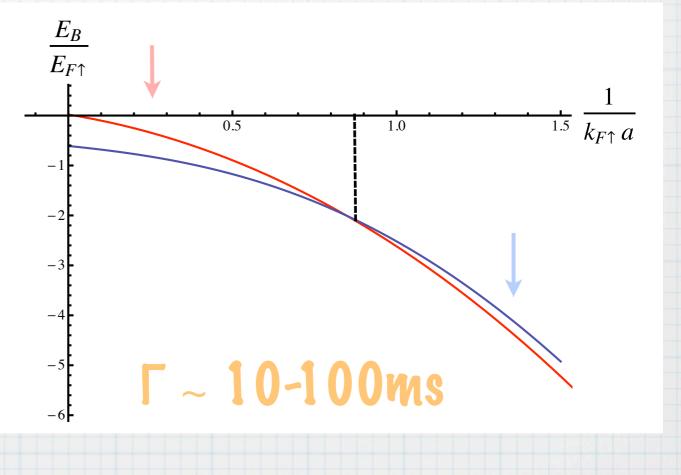
11

G. Bruun & P. Massignan, PRL 2010

 $\Gamma_P \sim Z_M \left(\Delta\omega\right)^{9/2}$

 $\Delta \omega = \omega_P - \omega_M$

 $\Gamma_M \sim Z_P \left(-\Delta\omega\right)^{9/2}$



Experimental observation

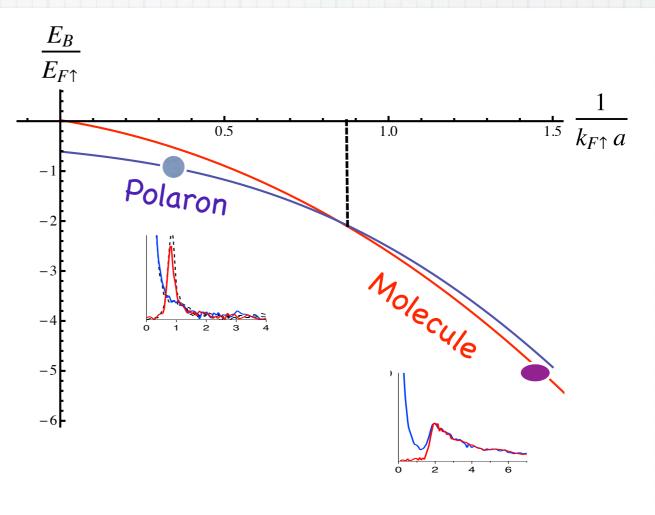
Methods:

- **RF** spectra
- Collective modes to measure m* vs. time
- Density profiles in the trap

Issues:

- * Phase separation?
 - * stabilized by finite T
 - * work with $\mathbf{m}_{\downarrow} \neq \mathbf{m}_{\uparrow}$
 - * use bosonic impurities

* No decay to deeply bound molecular states



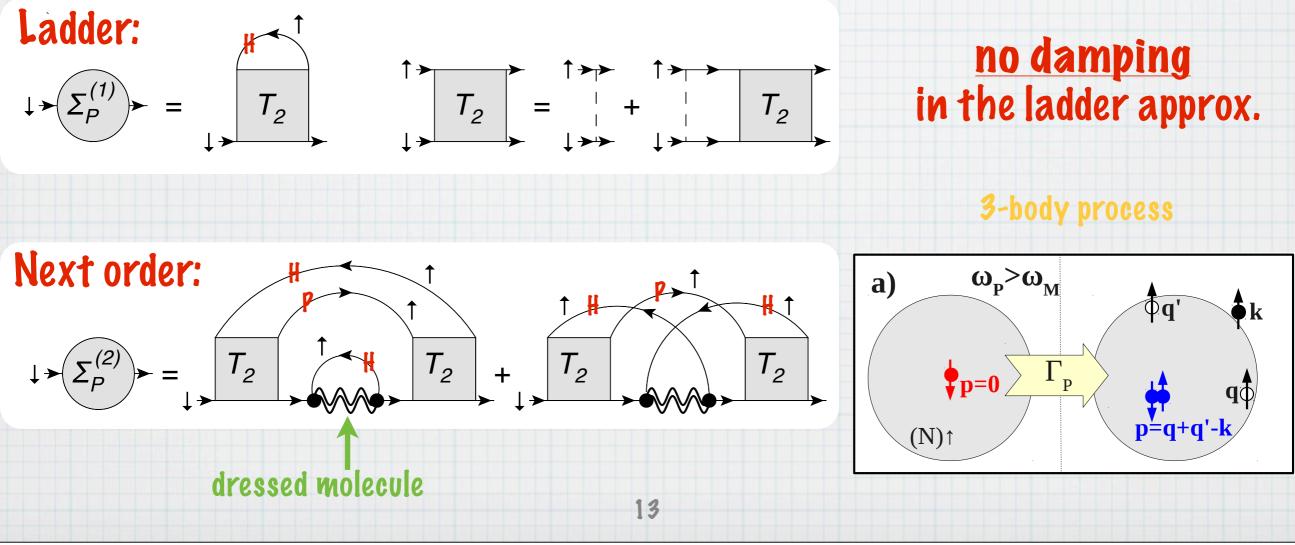
12

Pol->Mol decay

$$\Delta \omega = \omega_P - \omega_M > 0$$

Polaron:
$$G_{\downarrow}(\mathbf{p}, z)^{-1} = G_{\downarrow}^{0}(\mathbf{p}, z)^{-1} - \Sigma_{P}(\mathbf{p}, z)$$

- **Decay rate:** $\Gamma_P = -\text{Im}\Sigma_P(p=0,\omega_P)$
- Hole expansion: $\Sigma_P(\mathbf{p}, z) = \Sigma_P^{(1)}(\mathbf{p}, z) + \Sigma_P^{(2)}(\mathbf{p}, z) + \dots$



 $\phi_q = \frac{\sqrt{8\pi a^3}}{1 + q^2 a^2}$ or $\phi_r \propto \frac{e^{-r/a}}{r}$ molecule w.f. in vacuum:

 $D(\mathbf{p},\omega) \simeq \frac{Z_M}{\omega - \omega_M - p^2/2m_M^*}.$ dressed molecule: M

atom-molecule $\bullet = \frac{1}{q(\mathbf{p}, z)} = \int \frac{d^3 q}{(2\pi)^3} \phi_q \frac{1 - f(\xi_{\mathbf{p} - \mathbf{q}\uparrow})}{z - \xi_{\mathbf{p} - \mathbf{q}\uparrow} - \xi_{\mathbf{q}\downarrow}} \sim -\sqrt{\frac{m_r^2 a}{2\pi}}$ coupling:

(Bruun&Pethick, PRL 2004)

 $\Gamma_P = \frac{g^2 Z_M}{2} \int \frac{d^3 k \ d^3 q \ d^3 q'}{(2\pi)^9} \left[F(\mathbf{q}, \mathbf{k}, \omega_P) - F(\mathbf{q}', \mathbf{k}, \omega_P) \right]^2 \delta \left(\Delta \omega + \xi_{q\uparrow} + \xi_{q'\uparrow} - \xi_{k\uparrow} - \frac{(\mathbf{q} + \mathbf{q}' - \mathbf{k})^2}{2m_M^*} \right)$ $q, q' < k_F$, $k > k_F$ $F(\mathbf{q}, \mathbf{k}, \omega) = T_2(\mathbf{q}, \omega + \xi_{q\uparrow}) G^0_{\downarrow}(\mathbf{q} - \mathbf{k}, \omega + \xi_{q\uparrow} - \xi_{k\uparrow})$ 14

In the neighborhood of the P-M crossing,

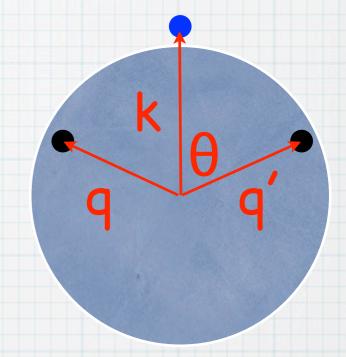
$$\int \frac{d^3k \ d^3q \ d^3q'}{(2\pi)^9} \delta(\ldots) \sim (m_M^*)^{3/2} (\Delta \omega)^{7/2}$$

The P+H+H form an equilateral triangle, since $q + q' - k \sim 0$

At the crossing, Fermi antisymmetry yields a vanishing of the matrix element:

 $F(\mathbf{q}, \mathbf{k}, \omega_P) - F(\mathbf{q}', \mathbf{k}, \omega_P)$

 $\Delta \omega \ll \epsilon_F$ $q \simeq k \simeq k' \simeq k_F$



the angular dependence of F is only on θ

Expand the difference to get an extra factor of $\Delta\omega$:

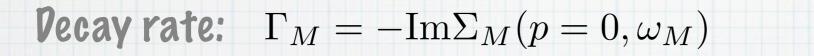
$$\Gamma_P \sim Z_M(k_F a) \left(m_M^*\right)^{3/2} \left(\Delta\omega\right)^{9/2}$$

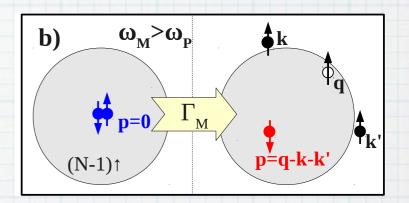
1st order transition between the P&M states (no coupling at the crossing)

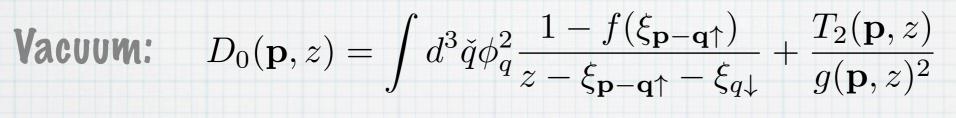
Mol-Pol decay

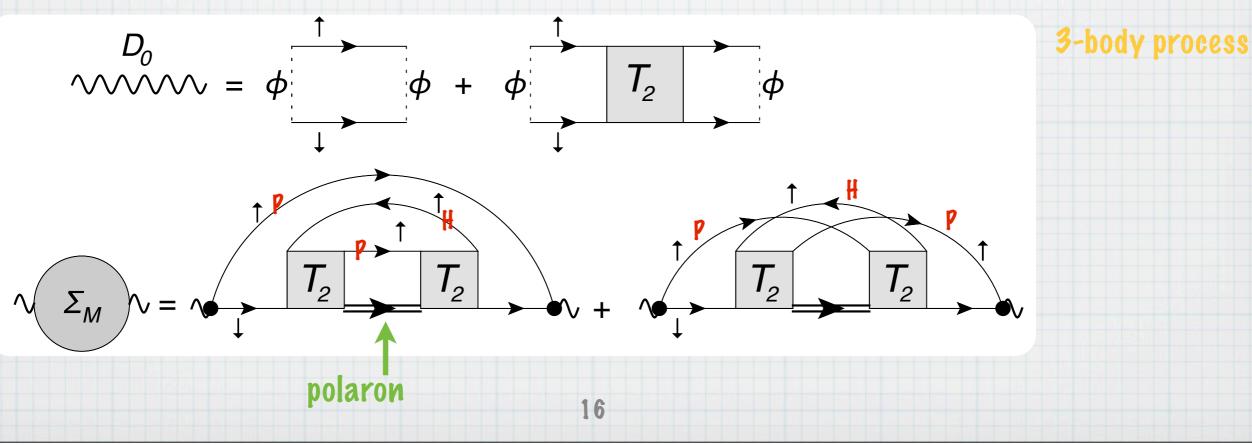
$\Delta \omega = \omega_P - \omega_M < 0$

Molecule:
$$D(\mathbf{p}, z)^{-1} = D_0(\mathbf{p}, z)^{-1} - \Sigma_M(\mathbf{p}, z)$$









$$\Gamma_M = \frac{g^2 Z_P}{2} \int \frac{d^3 k \ d^3 k' \ d^3 q}{(2\pi)^9} \left[C(\mathbf{q}, \mathbf{k}, \omega_M) - C(\mathbf{q}, \mathbf{k}', \omega_M) \right]^2 \delta \left(\left| \Delta \omega \right| + \xi_{q\uparrow} - \xi_{k\uparrow} - \xi_{k\uparrow} - \frac{(\mathbf{q} - \mathbf{k} - \mathbf{k}')^2}{2m_P^*} \right)$$

In the neighborhood of the M-P crossing, $\Gamma_M \sim Z_P (k_F a) \left(m_P^* \right)^{3/2} \left(-\Delta \omega \right)^{9/2}$

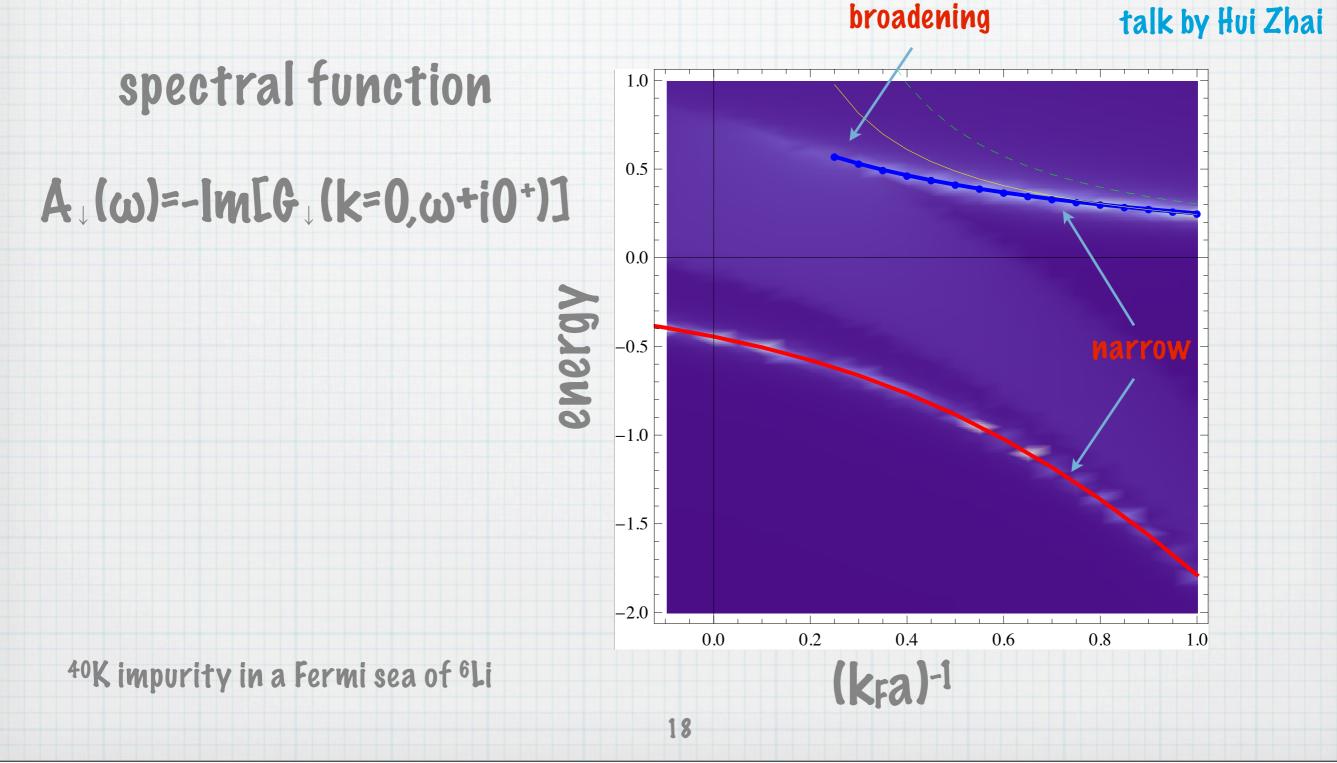
1

0.25

For both decay processes, very long lifetimes are ensured by:

- Imited phase-space
- Fermi antisymmetry

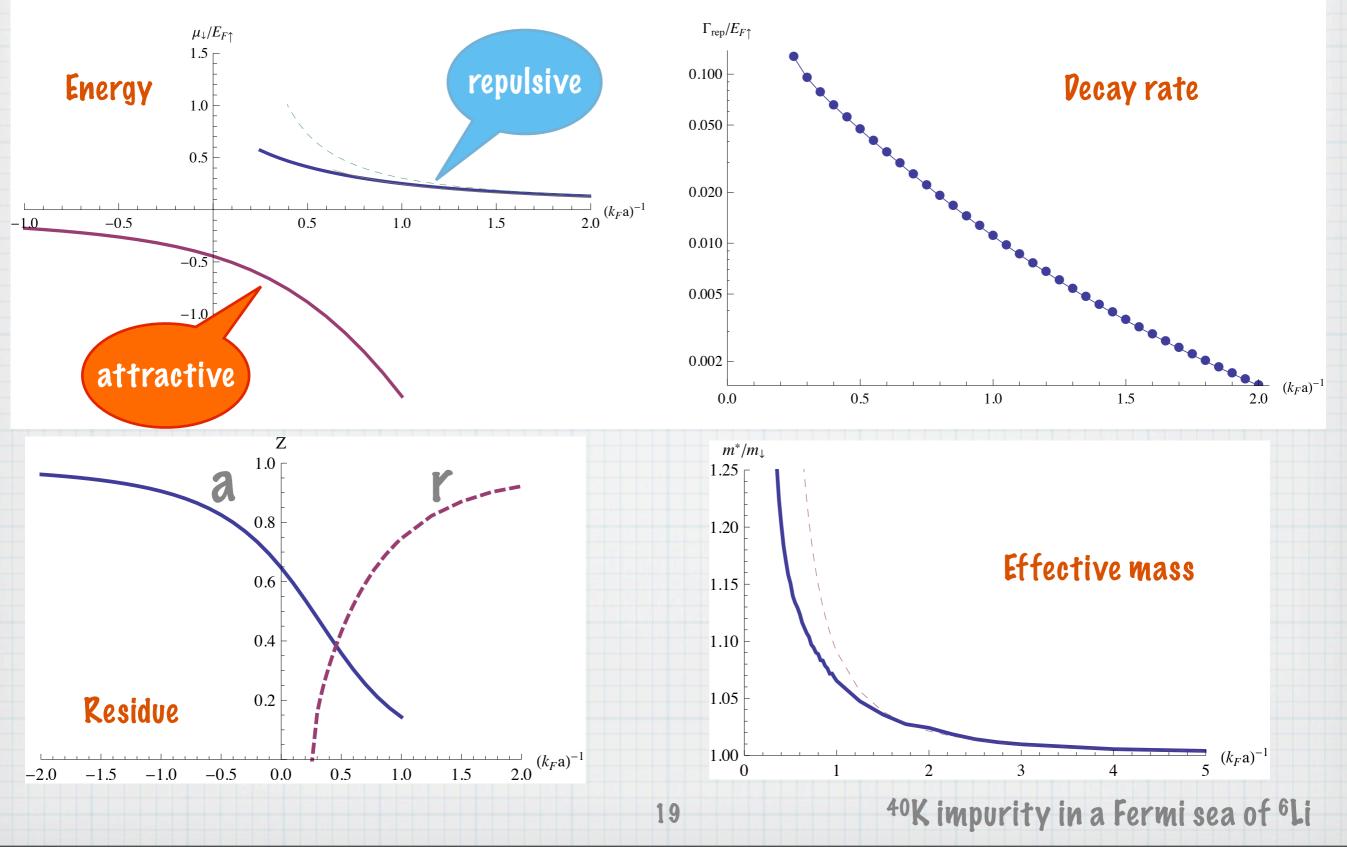
$\Gamma_M / (Z_P \ \epsilon_F)$ 0 10⁻² $\Delta \omega / \varepsilon_{F}$ -0.25 much longer than usual Fermi liquids 0.5 1.5 2 $1/(k_{F}a)$, (Z_M ε_F), 10-4 In the numerics: Γ_{P} $\omega_M = -\frac{\hbar^2}{2m_r a^2} - \epsilon_F + g_3 n_\uparrow$ 10⁻⁶ 0.2 0.1 0.3 0.4 0.05 $a_3 = 1.18a$ $|\Delta \omega| / \varepsilon_{\mathsf{F}}$ $T_2(\mathbf{p},\omega) = \frac{2\pi a/m_r}{1 - \sqrt{2m_r a^2 \left(\frac{p^2}{2m_M} - \omega - \epsilon_F + g_3 n_\uparrow\right)}}$ 17



Yes..

see also next

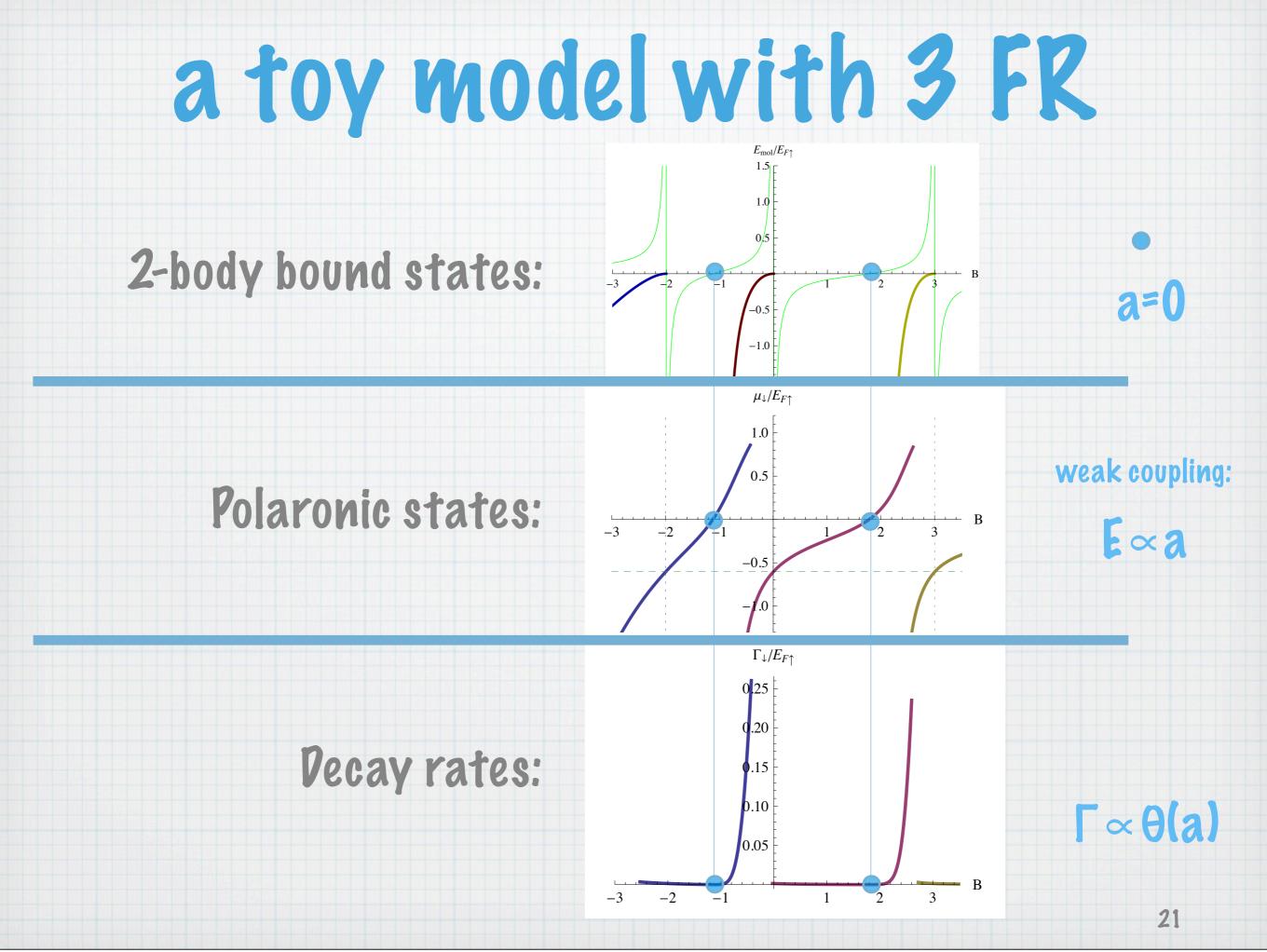
The repulsive polaron revealed

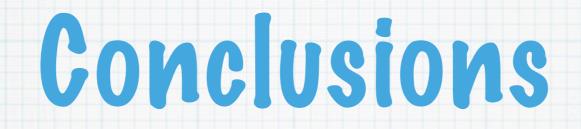


Energy: comparison with QMC

(equal masses case)





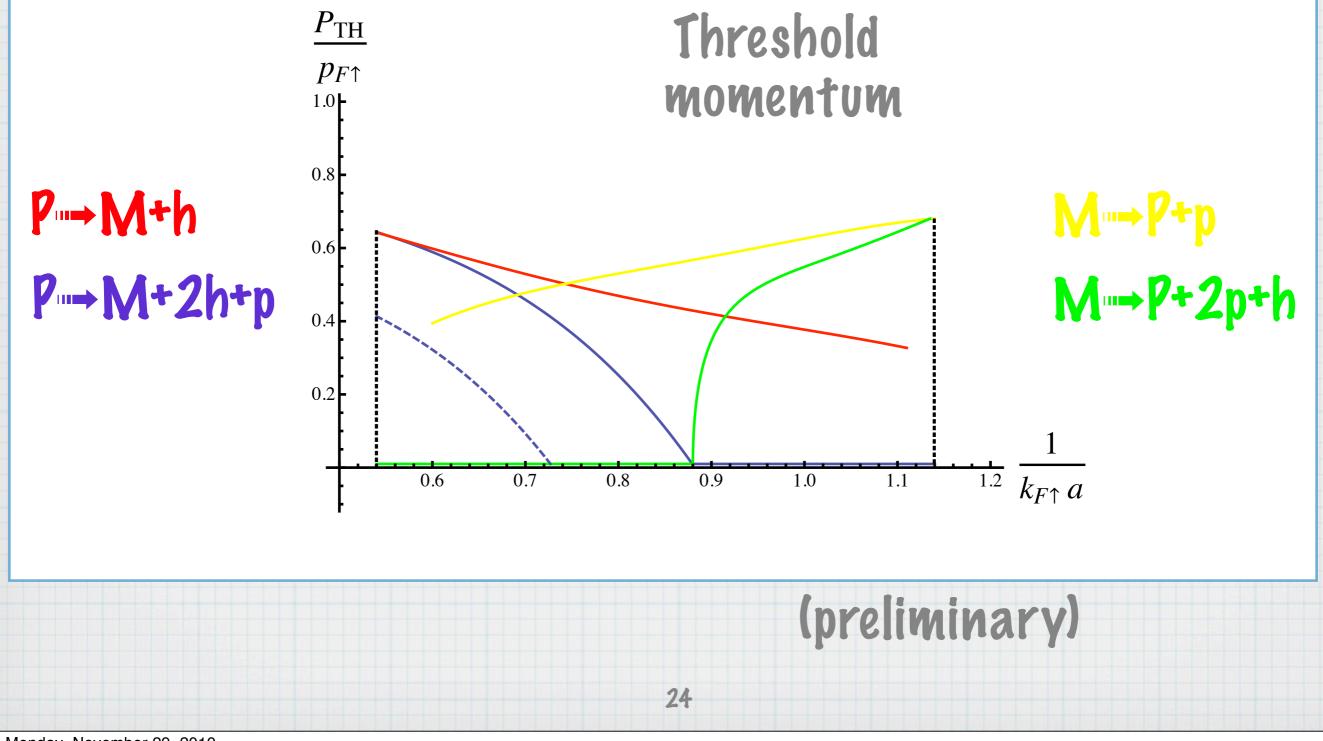


- At small momenta, the process coupling molecules and polarons requires at least 3-bodies
- Strongly suppressed P-M decay due to a combination of small final density of states and Fermi statistics
- Expected lifetimes ~ 10-100ms
- Complete characterization
 - of the repulsive branch

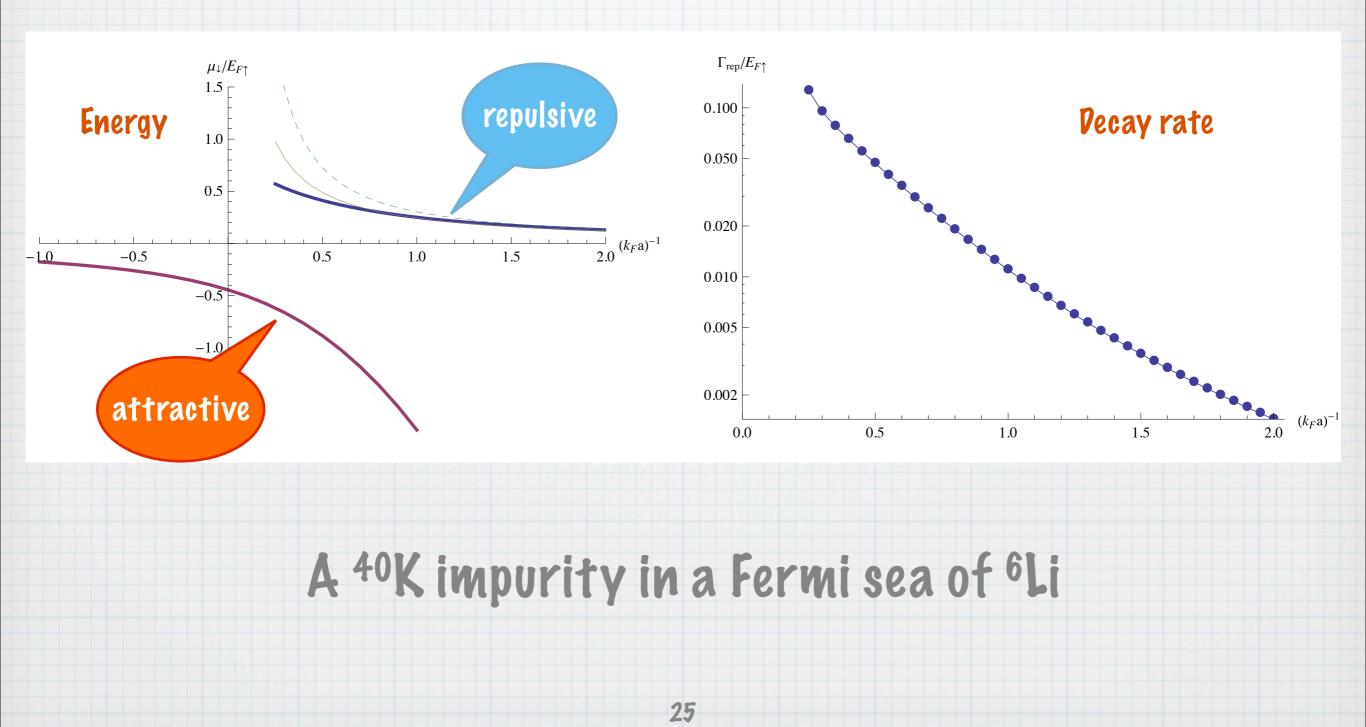
G. Bruun and P. Massignan, Phys. Rev. Lett. 105, 020403 (2010) P. Massignan and G. Bruun, coming soon

22

Vecay of p=0 QP



Repulsive polaron



atom-molecule $\bullet = \frac{1}{q(\mathbf{p},z)} = \int \frac{d^3q}{(2\pi)^3} \phi_q \frac{1 - f(\xi_{\mathbf{p}-\mathbf{q}\uparrow})}{z - \xi_{\mathbf{p}-\mathbf{q}\uparrow} - \xi_{a\downarrow}} \sim -\sqrt{\frac{m_r^2 a}{2\pi}}$ coupling:

Vacuum: $D_0(\mathbf{p}, z) = \int d^3 \check{q} \phi_q^2 \frac{1 - f(\xi_{\mathbf{p}-\mathbf{q}\uparrow})}{z - \xi_{\mathbf{p}-\mathbf{q}\uparrow} - \xi_{q\downarrow}} + \frac{T_2(\mathbf{p}, z)}{g(\mathbf{p}, z)^2}$

The many-body physics discussed here can be

defined

calculated

and measured!

27