Gerardo Ortiz

Department of Physics - Indiana University

Emilio Cobanera: Indiana University

Zohar Nussinov: Washington University - St. Louis

KITP "Beyond Optical Lattices" - November 2010

Gerardo Ortiz

Department of Physics - Indiana University

Emilio Cobanera: Indiana University

Zohar Nussinov: Washington University - St. Louis

KITP "Beyond Optical Lattices" - November 2010

Gerardo Ortiz

Department of Physics- Indiana University

Emilio Cobanera: Indiana University

Zohar Nussinov: Washington University - St. Lovis

KITP "Beyond Optical Lattices" - November 2010

State of Affairs

The notion has been around for a very long time, and it has proven to be of great importance in Statistical Mechanics, Quantum Field Theory, and many other fields. Still, the best description available was:

"Dualities are certain mathematical transformations"

To be more precise some authors would add:

"Transformations like the ones considered by

Kramers and Wannier in their study of the Ising model"
It is not clear how to find or derive dualities and whether classical and quantum versions are related or not

State of Affairs

State of Affairs

Stute of Affairs

Why Dualifies?

Phase transitions and diagrams: Self-dual \leftrightarrow Critical Points
Nature of (topological) excitations: Classification?
Connect seemingly unrelated (dual) (lattice or field)theories: Orbital ordered and superconducting theories AdS/CFT: Conjectured

Allow exact solutions in special cases:
Kitaev Toric Code model at finite T
Kitaev honeycomb model in topological sectors

Why Dualifies?

Dimensional reduction and TQO

Find simpler classical actions
Numerical Simulations:
Stochastic, Hierarchical Mean-fields or Renormalization Group Methods

Unravel the power of Quantum Computation?

Old friends from the Zoo of Dualities

Classical Dualities

Wisdom: "Symmetries" of equations of motion

Maxwell's equations in empty space (vacuum)

$$
\begin{array}{rlr}
\nabla \times E=-\dot{B} & \nabla \times B=\dot{E} \\
\nabla \cdot E=0 & \nabla \cdot B=0
\end{array}
$$

CLASSICAL ELECTROMAGNETIC DUALITY

$$
E \rightarrow-B \quad B \rightarrow E
$$

Things that look different are equivalent and interchangeable

Classical Dualities

(Classical Stat Mech and Field Theory)

Wisdom: Low-temperature-to-High-temperature relations

Kramers-Wannier Self-Duality of the $D=2$ Ising Model

$$
\mathcal{Z}(K)=\sum_{\sigma} \exp \left[K \sum_{\langle i, j\rangle} \sigma_{i} \sigma_{j}\right]
$$

$$
\sigma_{i}=1 \text { or }-1
$$

$$
K=\beta J \quad \beta=1 / k_{B} T
$$

has a remarkable property: it is self-dual, meaning...

KW SELF-DUALITY RELATION

$\frac{\mathcal{Z}(K)}{\sinh (2 K)^{N^{2} / 2}}=\frac{\mathcal{Z}\left(K^{*}\right)}{\sinh \left(2 K^{*}\right)^{N^{2} / 2}}$
whenever $\quad \sinh (2 K) \sinh \left(2 K^{*}\right)=1$

CONCEPT:

High-T \longleftrightarrow Low-T relation
The critical point is located ot the self-dual point: $K=K^{*}=K_{c}$

$$
K_{c}=\frac{1}{2} \ln (1+\sqrt{2})
$$

Quantum Dualities

Wistom: Strong-coupling-to-Weak-coupling relations

Quantum dualities

$$
\begin{gathered}
H_{\mathrm{IC}}=\sum_{i} j \sigma_{i}^{z} \sigma_{i+1}^{z}+h \sigma_{i}^{x}=\sum_{i} h \mu_{i}^{z} \mu_{i+1}^{z}+j \mu_{i+1}^{x} \\
\mu_{i}^{x}=\sigma_{i-1}^{z} \sigma_{i}^{z} \quad \mu_{i}^{z}=\sigma_{i}^{x} \sigma_{i+1}^{x} \sigma_{i+2}^{x} \sigma_{i+3}^{x} \ldots
\end{gathered}
$$

The new operators are spin-1/2 operators as well, thus it has to be that

$$
E_{\text {IC }}(j, h)=E_{\text {IC }}(h, j)
$$

CONCEPT:

Strong-coupling \longleftrightarrow Weak-coupling relation
"Hand-waving" approach to quantum dualities

This is the traditional approach to
 Quantum Self-Dualities and Dualities

Idea: if you suspect a connection, try to prove it by GUESSING an OPERATOR (VERY NON-LOCAL) MAPPING, and good luck in finding it!!!!

Particle-Wave Duality

Unconventional view on Particle-wave duality

Our intuition about quantum motion has to deal with Heisenberg's Uncertainty Relation and its descendants and relatives

$$
[x, p]=i
$$

A particle with a definite momentum p is in a wavy state (wave)

$$
\psi=\frac{1}{\sqrt{2 \pi}} e^{i p x}
$$

A particle with a definite position a is localized in space (particle)

$$
\psi=\delta(x-a)
$$

Both pictures are incompatible due to the Heisenberg uncertainty relation

Imagine one introduces new position and momentum operators:

$$
\begin{array}{ll}
x^{\prime}=-p & p^{\prime}=x \\
& {\left[x^{\prime}, p^{\prime}\right]=i}
\end{array}
$$

This unitary transformation has surprising consequences:
A quantum state which is localized in momentum can be thought of as being localized in position, and viceversa.

Things that look very different seem equivalent

With only this info, one cannot distinguish between position and momentum

How can one distinguish position from momentum?

DYNAMICS BREAKS THE EQUIVALENCE

$$
H=\frac{1}{2 m} p^{2}+V(x)
$$

The Hamiltonian breaks the symmetry of the Heisenberg algebra

$$
[x, p]=i
$$

But for the Harmonic oscillator...

$$
\begin{gathered}
\frac{1}{2 m} p^{2}+\frac{1}{2} k x^{2} \leftrightarrow \frac{1}{2} k p^{2}+\frac{1}{2 m} x^{2} \\
E_{n}=\sqrt{\frac{k}{m}}\left(n+\frac{1}{2}\right) \leftrightarrow E_{n}=\sqrt{\frac{k}{m}}\left(n+\frac{1}{2}\right)
\end{gathered}
$$

Elementary SELF-DUALITY RELATION

The Harmonic Oscillator shares the symmetry of the Heisenberg algebra, but with new consequences

What all these Dualities have in common?

All these Dualities are examples of

 Unitary equivalence
So... What are Dualifies?

One would like to understand:
1)Their physical content and meaning in classical and quantum physics and their connection if any
2)A precise mathematical characterization
3)Methods to look for dualities systematically in any space-time dimension
4) New Applications

* E. Cobanera, G. Ortiz, Z. Nussinov, "Unified approach to classical and quantum dualities", PRL 104, 020402 (2010), http://arxiv.org/abs/0907.0733
1)Their physical content and meaning in classical and quantum physics and their connection if any
2)A precise mathematical characterization
3)Methods to look for dualities systematically in any space-time dimension

4) New Applications

* E. Cobanera, G. Ortiz, Z. Nussinov, "Unified approach to classical and quantum dualities", PRL 104, 020402 (2010), http://arxiv.org/abs/0907.0733

Is there any connection?

One would like to understand:
1)Their physical content and meaning in classical and quantum physics and their connection if any
2)A precise mathematical characterization
3)Methods to look for dualities systematically in any space-time dimension
4) New Applications

* E. Cobanera, G. Ortiz, Z. Nussinov, "Unified approach to classical and quantum dualities", PRL 104, 020402 (2010), http://arxiv.org/abs/0907.0733

Our bond-algebraic approach

Bond algebras and their symmetries

Quantum Hamiltonians are built as a sum of quasi-local operators We call these BONDS:

$$
H=\sum_{R} J_{R} \mathcal{O}_{R}
$$

A bond algebra for H is the set of all linear combinations of products of bonds

$$
\mathcal{A}_{H}=\left\{1, \alpha \mathcal{O}_{\mathcal{R}}, \beta \mathcal{O}_{R} \mathcal{O}_{R^{\prime}}, \mathcal{O}_{R}-\mathcal{O}_{R} \mathcal{O}_{R^{\prime}} \mathcal{O}_{R^{\prime \prime}}, \cdots\right\}
$$

It knows a lot about the Hamiltonian...

Exposing Quantum Dualifies

When are two Hamilionias Dual?

H_{1} and H_{2} are dual if there is an

homomorphism between their bond algebras

DUALITIES are one to one, onto mappings between bond algebras that preserve every algebraic relation between bonds:

$$
\mathcal{O}_{R_{1}}^{1} \leftrightarrow \mathcal{O}_{R_{2}}^{2}
$$

Self-Dualities are automorphims of bond algebras

that preserve the form of the Hamiltonian

In other words:
A Self-Duality is a symmetry of the bond algebra
that preserves the form of the Hamiltonian

Quantum Mechanics requires these mappings to be

UNITARILY IMPLEMENTABLE

Example of Duality: Planar Orbital Compass (POC) and Xu-Moore Models (XM)

The POC model provides a simplified seenario to study orbital ordering in transition metal compounds

The XM Hamiltonian was introduced as a simplified model of phase transitions in p+ip superconducting arrays

$$
H_{X M}=\sum_{\vec{\imath}} j \sigma_{\vec{\imath}}^{z} \sigma_{\vec{\imath}+e_{1}}^{z} \sigma_{\vec{\imath}+e_{1}+e_{2}}^{z} \sigma_{\vec{\imath}+e_{2}}^{z}+h \sigma_{\vec{\imath}}^{x}
$$

The two models are DUAL

$$
\begin{aligned}
& \sigma_{\vec{\imath}}^{x} \sigma_{\vec{\imath}+\vec{e}_{1}}^{x} \mapsto \sigma^{z}{ }_{\vec{\imath}}^{z} \sigma_{\vec{\imath}+e_{1}} \sigma_{\vec{\imath}+e_{1}+e_{2}}^{z} \sigma_{\vec{\imath}+e_{2}}^{z} \\
& \sigma_{\vec{\imath}}^{y} \sigma_{\vec{\imath}+\vec{e}_{2}}^{y} \mapsto \sigma_{\vec{\imath}+\vec{e}_{2}}^{x} \\
& \text { THE TWO HAMILTONIANS ARE } \\
& \text { UNITARILY EQUIVALENT }
\end{aligned}
$$

Kitaev's toric code model:

(Identical spectra)
Duality mappings: Non-local

$$
B_{p}=\prod_{i j \in b o u n d a r y(p)} \sigma_{i j}^{z}
$$

(Dimensional reduction)

$H_{I}=-\sum_{s} \sigma_{s}^{z} \sigma_{s+1}^{z}-\sum_{p} \sigma_{p}^{z} \sigma_{p+1}^{z}$
Wen's plaquette model:
$H_{W}=-\sum_{i} \sigma_{i}^{x} \sigma_{i+\hat{e}_{x}}^{y} \sigma_{i+\hat{e}_{x}+\hat{e}_{y}}^{x} \sigma_{i+\hat{e}_{y}}^{y}$

$$
A_{s}=\prod_{i j \in \operatorname{star}(s)} \sigma_{i j}^{x}
$$

(Nussinov-Ortiz 2006)

Example of Self-Duality:

Ising chain in a transverse field

$$
H[j, h]=\sum_{i} j \sigma_{i}^{z} \sigma_{i+1}^{z}+h \sigma_{i}^{x}
$$

BOND ALGEBRA

$$
\sigma_{i-1}^{z} \sigma_{i}^{z} \quad \sigma_{i}^{z} \sigma_{i+1}^{z}
$$

Every bond $\sigma^{z} \sigma^{z}$ anti-commutes with two bonds σ^{x}
Every bond σ^{x} anti-commutes with two bonds $\sigma^{z} \sigma^{z}$

SELF-DUALITY AUTOMORPHISM

Homomorphism Φ_{D} :
$\sigma_{i}^{z} \sigma_{i+1}^{z} \longmapsto \sigma_{i}^{x}$
$\sigma_{i}^{x} \mapsto \sigma_{i-1}^{z} \sigma_{i}^{z}$

$$
\sigma_{i-1}^{z} \sigma_{i}^{z} \quad \sigma_{i}^{x} \quad \sigma_{i}^{z} \sigma_{i+1}^{z}
$$

Mapping is Unitarily implementable

$$
\mathcal{U}_{D} \sigma_{i}^{z} \sigma_{i+1}^{z} \mathcal{U}_{D}^{\dagger}=\sigma_{i}^{x} \quad \mathcal{U}_{D} \sigma_{i}^{x} \mathcal{U}_{D}^{\dagger}=\sigma_{i-1}^{z} \sigma_{i}^{z}
$$

Ising chain in a transverse field is self-dual, meaning:

$$
\begin{aligned}
\mathcal{U}_{D} H[j, h] \mathcal{U}_{D}^{\dagger} & =H[h, j] \\
j & \leftrightarrow h
\end{aligned}
$$

Advantages:

Better suited for systematic (ALGORITHMIC) search of (self-)dualities
Allows us to derive the (in general) non-local dual operator variables - the ones that had to be guessed in the past

Dualities in finite systems

(Role of boundary terms)

$$
H=j\left(\sigma_{1}^{z} \sigma_{2}^{z}+\sigma_{2}^{z} \sigma_{3}^{z}\right)+h\left(\sigma_{1}^{x}+\sigma_{2}^{x}\right)
$$

$$
j \leftrightarrow h
$$

Dualifies in finite systems
 (Role of boundary terms)

$$
H=j\left(\sigma_{1}^{z} \sigma_{2}^{z}+\sigma_{2}^{z} \sigma_{3}^{z}\right)+h\left(\sigma_{1}^{x}+\sigma_{2}^{x}\right)
$$

$$
H=j\left(\sigma_{1}^{z} \sigma_{2}^{z}+\sigma_{2}^{z} \sigma_{3}^{z}+\sigma_{3}^{z}\right)+h\left(\sigma_{1}^{x}+\sigma_{2}^{x}+\sigma_{3}^{x}\right)
$$

Dualifies in finite systems
 (Role of boundary terms)

$$
H=j\left(\sigma_{1}^{z} \sigma_{2}^{z}+\sigma_{2}^{z} \sigma_{3}^{z}\right)+h\left(\sigma_{1}^{x}+\sigma_{2}^{x}\right) \quad \square: \sigma^{z} \sigma^{z} \mathbf{X}: \sigma^{x} \bigcirc: \sigma^{z}
$$

$$
H=j\left(\sigma_{1}^{z} \sigma_{2}^{z}+\sigma_{2}^{z} \sigma_{3}^{z}+\sigma_{3}^{z}\right)+h\left(\sigma_{1}^{x}+\sigma_{2}^{x}+\sigma_{3}^{x}\right)
$$

It is self-dual:
It is not self-dual:

Parameier-Dep bond algebras

Bond algebra: $\quad A_{i}(j, h)=j \sigma_{i}^{x} \sigma_{i+1}^{x}+h \sigma_{i}^{z}$

$$
B_{i}\left(j^{-1}, h^{-1}\right)=j^{-1} \sigma_{i}^{y} \sigma_{i+1}^{y}+h^{-1} \sigma_{i+1}^{z}
$$

Automorphism:

$$
A_{i}(j, h) \rightarrow A_{i}(h, j), \quad B_{i}\left(j^{-1}, h^{-1}\right) \rightarrow B_{i}\left(h^{-1}, j^{-1}\right)
$$

Self-dual Hamiltonian: $j \leftrightarrow h \quad\left(m\right.$ and m^{\prime} fixed $)$

$$
H=m \sigma_{1}^{y}+m^{\prime} \sigma_{N}^{x}+\sum_{i=1}^{N-1}\left[\left(j \sigma_{i}^{x} \sigma_{i+1}^{x}+h \sigma_{i}^{z}\right)+\left(j^{-1} \sigma_{i}^{y} \sigma_{i+1}^{y}+h^{-1} \sigma_{i+1}^{z}\right)\right]
$$

Parameier-Dep bond algebras

Bond algebra: $\quad A_{i}(j, h)=j \sigma_{i}^{x} \sigma_{i+1}^{x}+h \sigma_{i}^{z}$

$$
B_{i}\left(j^{-1}, h^{-1}\right)=j^{-1} \sigma_{i}^{y} \sigma_{i+1}^{y}+h^{-1} \sigma_{i+1}^{z}
$$

Automorphism:

$$
A_{i}(j, h) \rightarrow A_{i}(h, j), \quad B_{i}\left(j^{-1}, h^{-1}\right) \rightarrow B_{i}\left(h^{-1}, j^{-1}\right)
$$

Self-dual Hamiltonian: $j \leftrightarrow h \quad\left(m\right.$ and m^{\prime} fixed)

$$
H=\underbrace{m \sigma_{1}^{y}+m^{\prime} \sigma_{N}^{x}}_{\text {boundary terms }}+\sum_{i=1}^{N-1}\left[\left(j \sigma_{i}^{x} \sigma_{i+1}^{x}+h \sigma_{i}^{z}\right)+\left(j^{-1} \sigma_{i}^{y} \sigma_{i+1}^{y}+h^{-1} \sigma_{i+1}^{z}\right)\right]
$$

Abelian versus non-Abelian

Is the character of a duality (Abelian vs non-Abelian) determined by the group of symmetries of the Hamiltonian?

$$
H=-\frac{j}{4} \sum_{i}\left(\sigma_{i}^{x} \sigma_{i+1}^{x}+\sigma_{i}^{y} \sigma_{i+1}^{y}+\sigma_{i}^{z} \sigma_{i+1}^{z}\right)
$$

Heisenberg chain
Homomorphism Φ_{D} : (same as quantum Ising (Abelian))

$$
\begin{gathered}
\sigma_{i}^{y} \sigma_{i+1}^{y}=\sigma_{i}^{x} \sigma_{i}^{z} \sigma_{i+1}^{z} \sigma_{i+1}^{x} \xrightarrow{\Phi_{D}}-\sigma_{i-1}^{z} \sigma_{i}^{x} \sigma_{i+1}^{z} \\
H \xrightarrow{\Phi_{D}}-\frac{j}{4} \sum_{i}\left(\sigma_{i-1}^{z} \sigma_{i+1}^{z}-\sigma_{i-1}^{z} \sigma_{i}^{x} \sigma_{i+1}^{z}+\sigma_{i}^{x}\right)
\end{gathered}
$$

Abelian versus non-Abelian

Is the character of a duality (Abelian vs non-Abelian) determined by the group of symmetries of the Hamiltonian?

$$
H=-\frac{j}{4} \sum_{i}\left(\sigma_{i}^{x} \sigma_{i+1}^{x}+\sigma_{i}^{y} \sigma_{i+1}^{y}+\sigma_{i}^{z} \sigma_{i+1}^{z}\right)
$$

Heisenberg chain
Homomorphism Φ_{D} : (same as quantum Ising (Abelian))

$$
\begin{gathered}
\sigma_{i}^{y} \sigma_{i+1}^{y}=\sigma_{i}^{x} \sigma_{i}^{z} \sigma_{i+1}^{z} \sigma_{i+1}^{x} \xrightarrow{\Phi_{D}}-\sigma_{i-1}^{z} \sigma_{i}^{x} \sigma_{i+1}^{z} \\
H \xrightarrow{\Phi_{D}}-\frac{j}{4} \sum_{i}\left(\sigma_{i-1}^{z} \sigma_{i+1}^{z}-\sigma_{i-1}^{z} \sigma_{i}^{x} \sigma_{i+1}^{z}+\sigma_{i}^{x}\right)
\end{gathered}
$$

It is not illuminating to associate the character of a duality to the group of symmetries of the Hamiltonian

Dual operators, Disordered variables and Topological excitations

It is easy now to
COMPUTE DUAL OPERATOR VARIABLES:

Observation:

- Bond-algebraic mapping is local
- Mapping of microscopic degrees of freedom is non-local

Use bond-algebraic mapping to derive the dual variables

From bonds to dual variables: An example

$$
\left.\begin{array}{rl}
\mu_{i}^{x} & =\sigma_{i-1}^{z} \sigma_{i}^{z} \\
\mu_{i}^{z} \mu_{i+1}^{z} & =\sigma_{i}^{x}
\end{array}\right\} \begin{gathered}
\text { Bond algebra } \\
\text { map }
\end{gathered}
$$

$$
\mu_{i}^{z} \mu_{i+1}^{z} \mu_{i+1}^{z} \mu_{i+2}^{z} \cdots \mu_{i+4}^{z} \cdots=\sigma_{i}^{x} \sigma_{i+1}^{x} \sigma_{i+2}^{x} \sigma_{i+3}^{x} \cdots
$$

Dual variables

$$
\mu_{i}^{z}=\sigma_{i}^{x} \sigma_{i+1}^{x} \sigma_{i+2}^{x} \sigma_{i+3}^{x} \cdots
$$

Generators of KINKS

From bonds to dual variables: An example

$$
\left.\begin{array}{rl}
\mu_{i}^{x} & =\sigma_{i-1}^{z} \sigma_{i}^{z} \\
\mu_{i}^{z} \mu_{i+1}^{z} & =\sigma_{i}^{x}
\end{array}\right\} \begin{gathered}
\text { Bond algebra } \\
\text { map }
\end{gathered}
$$

$$
\mu_{i}^{z} \mu_{i+1}^{z} \mu_{i+1}^{z} \mu_{i+2}^{z} \cdots \mu_{i+4}^{z} \cdots=\sigma_{i}^{x} \sigma_{i+1}^{x} \sigma_{i+2}^{x} \sigma_{i+3}^{x} \cdots
$$

Dual variables

$$
\mu_{i}^{z}=\sigma_{i}^{x} \sigma_{i+1}^{x} \sigma_{i+2}^{x} \sigma_{i+3}^{x} \cdots
$$

Generators of KINKS

Connecting Classical and Quantum Dualifies

1) Classical System in $D+1 \longleftrightarrow$ Quantum system in D

Feynman Path Integral alias

Transfer matrix alias

Suzuki-Trotter decomposition alias

World Line Monte Carlo
The Path Integral Formulation of Your Life

Thus we propose that

2) Classical Dualities \longleftrightarrow Quantum Dualities

3) Characterize Quantum Dualities as Hamiltonian dependent bond-algebraic equivalences

And hope for Quantum Dualities to be easier to deal with than classical ones.
After all, the classical problem comes from exponentiating a quantum one and taking a trace...

Exposing Classical Dualities

Quantum-to-Classical:

Suzuki-Trotter decomposition of the lsing chain

$$
H[j, h]=-\sum_{i=1}^{N} j \sigma_{i}^{z} \sigma_{i+1}^{z}+h \sigma_{i}^{x}
$$

Quantum Ising Chain

 in a Transverse Field$$
\operatorname{Tr} e^{-\Delta \tau H[j, h]} \approx\left(\frac{1}{2} \sinh 2 h_{M}\right)^{\frac{M N}{2}} \times
$$

$\sum e^{\left[-\frac{1}{2} \ln \tanh \left(h_{M}\right) \sum \sigma_{m, n} \sigma_{m, n+1}+j_{M} \sum \sigma_{m, n} \sigma_{m+1, n}\right]}$ $\{\sigma\}$
$h_{M}=\frac{\Delta \tau h}{M}$

$$
j_{M}=\frac{\Delta \tau j}{M}
$$

The larger M, the better it gets

We can fine-tune the couplings of the Quantum Model to get an Isotropic classical Ising magnet

$$
\operatorname{Tr} e^{-\Delta \tau H[j, h]} \approx\left(\frac{1}{2} \sinh 2 h_{M}\right)^{\frac{M N}{2}} \mathcal{Z}(K)
$$

$$
K \equiv-\frac{1}{2} \ln \tanh h_{M}=j_{M}
$$

$$
h_{M}=\frac{\Delta \tau h}{M} \quad j_{M}=\frac{\Delta \tau j}{M}
$$

On the other hand, exchanging couplings j and h gives

$$
\begin{gathered}
\operatorname{Tr} e^{-\Delta \tau H[h, j]} \approx\left(\frac{1}{2} \sinh 2 j_{M}\right)^{\frac{M N}{2}} \mathcal{Z}(\hat{K}) \\
\hat{K}=-\frac{1}{2} \ln \tanh \left(j_{M}\right)=h_{M}
\end{gathered}
$$

Any connection between the two?

YES!!!!!!

The QUANTUM Self-Duality guarantees that

$$
\operatorname{Tr} e^{-\Delta \tau H[h, j]}=\operatorname{Tr} e^{-\Delta \tau H[j, h]}
$$

OR BETER, IN TERMS OF CLASSICAL PARIITION FUNCTIONS

$$
\left(\frac{1}{2} \sinh 2 \hat{K}\right)^{\frac{M N}{2}} \mathcal{Z}(K)=\left(\frac{1}{2} \sinh 2 K\right)^{\frac{M N}{2}} \mathcal{Z}(\hat{K})
$$

MOREOVER, FROM THE EXPLICIT FORMULAS FOR THE CLASSICAL COUPLINGS IN TERMS OF THE QUANTUM ONES, THIS RELATION FOLLOWS:
$\sinh (2 K) \sinh (2 \hat{K})=1$

These altogether are nothing but the classical self-duality relation of Kramers and Wanner!!!!

Contrass: Quantum vs Classical

Quantum Self-duality relation

$$
h=j
$$

Classical Self-duality relation

$$
\sinh (2 K) \sinh (2 \hat{K})=1
$$

Classical-to-Quantum:

From the transfer matrix to a quantum Hamilionian

$2 D$ Classical

- $-\stackrel{\odot}{\sigma_{i}^{x}} \stackrel{\odot}{\sigma_{i+1}^{x}}$

Dualifies and New Symmetries

A self-duality does not preserve the form of the Hamiltonian but preserves its spectrum

$$
\mathcal{U}_{D} H[j, h] \mathcal{U}_{D}^{\dagger}=H[h, j]
$$

A self-duality is not a symmerry in general, but

$$
\mathcal{U}_{D}^{2} H[j, h] \mathcal{U}_{D}^{\dagger 2}=H[j, h]
$$

Self-duality $\rightarrow \sqrt{\text { Quantum Symmetry }}$
A self-duality is an emergent symmetry at the self-dual point

New (Selfi) Dualities Enlarging the Zoo of Dualities

Gauge Field Theories

Four-Dimensional ($\mathrm{D}=4$) Euclidean Lattice

't Hooft idea: the most important degrees of freedom in a confinement-deconfinement phase transition should be the field configurations taking values on \mathbb{Z}_{N}, the center of SU(N)

With 't Hooft ideas in mind, several authors attempted rigorous studies of Wilson's action for Lattice Gauge Field Theories

$$
S=\frac{1}{g^{2}} \sum_{\square} \operatorname{Re} \operatorname{Tr} U_{i j} U_{j k} U_{k l}^{\dagger} U_{l i}^{\dagger}
$$

restricting however the fields to taking
 values on a unitary representation of \mathbb{Z}_{N}, that is, on Nth roots of unity

From Euclidean to

Quantum Hamiltonian Formulation

The reverse of the Suzuki-Trotter decomposition gives a quantum problem in 3 dimensions

$$
H_{L G}=\sum_{n} \sum_{i=1}^{3} V_{n}^{i}+\lambda\left(\frac{1}{g^{2}}\right) \Theta_{n}^{i}+\text { h.c. }
$$

$\Theta_{n}^{1}=U_{n}^{2} U_{n+e_{2}}^{3} U_{n+e_{3}}^{2 \dagger} U_{n}^{3 \dagger} \quad$ and cyclic permutations

$$
V U=\omega U V, \quad \omega=\exp i \frac{2 \pi}{N}
$$

The Weyl Algebra

The Self-Duality Mapping

$$
\Phi_{D}^{2}=\mathcal{C}
$$

Discrete symmetry:Charge conjugation

Some features of the Self-Duality

The critical couplings have to distribute symmetrically relative to the self dual point

The self-duality unitary has period four, thus it reveals a new discrete symmetry of these theories

An explicit analytic formula to compute the self-dual coupling can be obtained

Prove connection between these GFTs and the vector Potts model
We do not use Villain's trick. It is not necessary!

Summary of Main Resulis

Quantum (self-)dualities can now be looked for systematically as bond algebra (unitary) mappings

An algebraic approach to quantum (self-)dualities explains classical dualities as well, in any space dimension d

Dual Variables can be computed and carry information on the topological excitations of the system

New (self-)dualities can be discovered with this new algebraic approach. We showed the case of Abelian GFTs with a confinementdeconfinement phase transition

Summary of Main Resulis

Dualities may emerge is certain sectors (emergent dualities)
Self-dualities are square roots of symmetries
Bond-algebra mappings allow exact solution of several many-body models in high space dimensions

- Same technique can be applied to QFTs

Other Self-dualities: Potts, p-clock, etc. models
Other Dualities: Extended Kitaev, Blume-Emery-Griffiths, models

Big Questions:

Big Questions:

[How about non-Abelian dualities?
[Is Fourier transform on finite groups the end of the story?

- Can we classify topological excitations?

