Universal Behavior in Quantum Chaotic Dynamics

WU, Biao(吴飙)

International Center for Quantum Materials, Peking University

Monday, November 15, 2010

November 12th, 2010@KITP

Acknowledgements

Collaborator: Xiong, Hongwei (熊宏伟) Funding: NSF of China, MOST of China

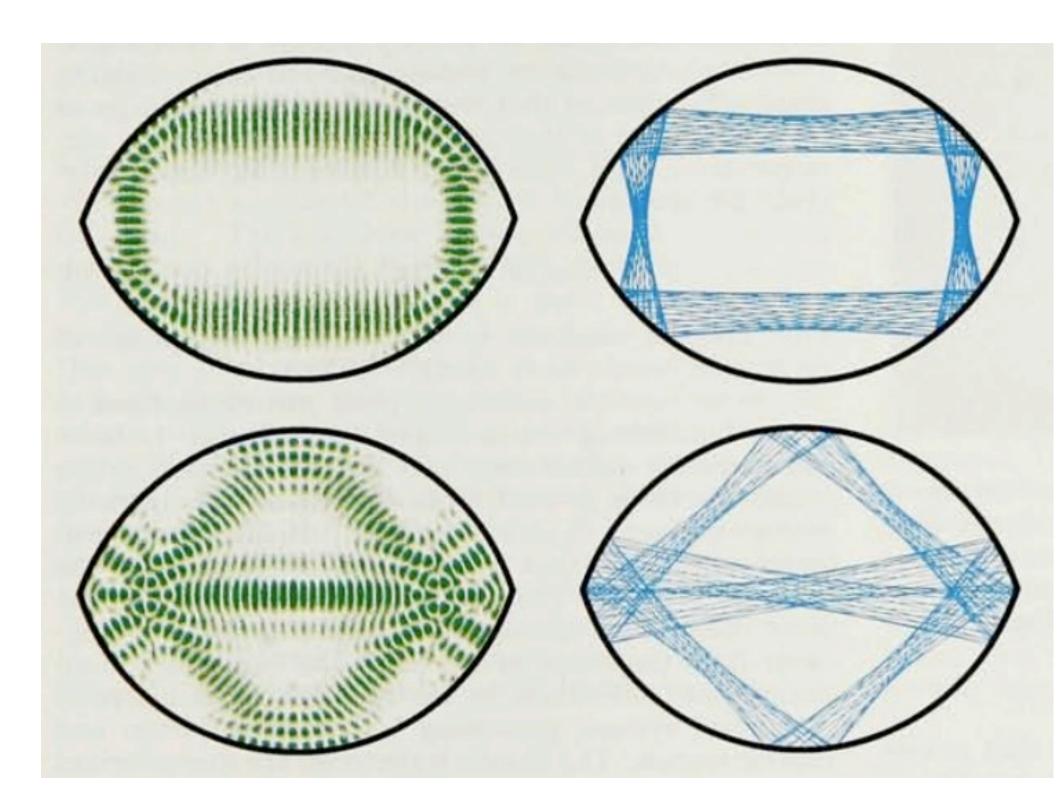
Reference: Xiong and Wu, arXiv:1007.2771

What is quantum chaos?

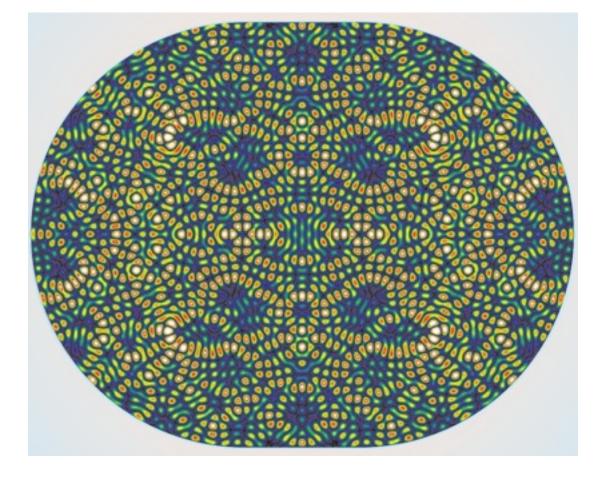
Quantum chaotic systems are quantum systems whose corresponding classical systems are chaotic.

> Almost all quantum systems are quantum chaotic systems.

Billiards and their eigenstates



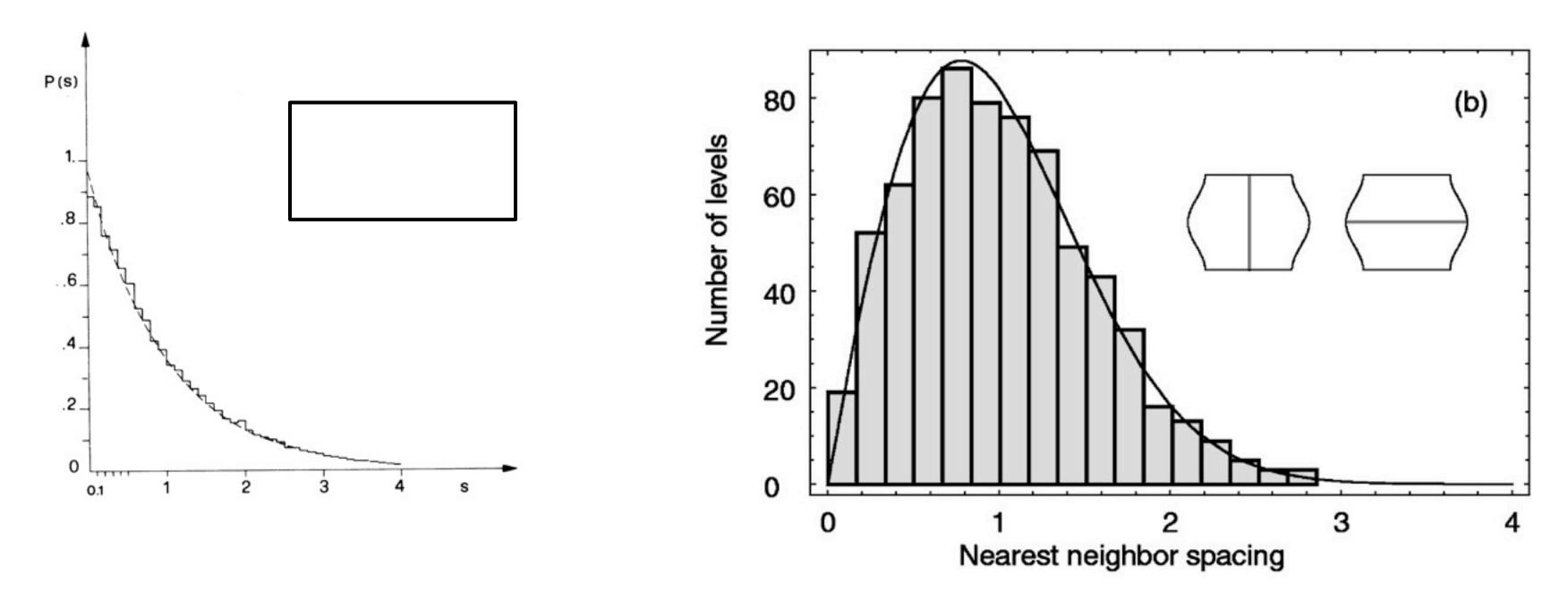
Heller and Tomsovic, Physics Today, 1993



Stone, Physics Today, 2005

Eigen-energy level spacing

Poisson distribution



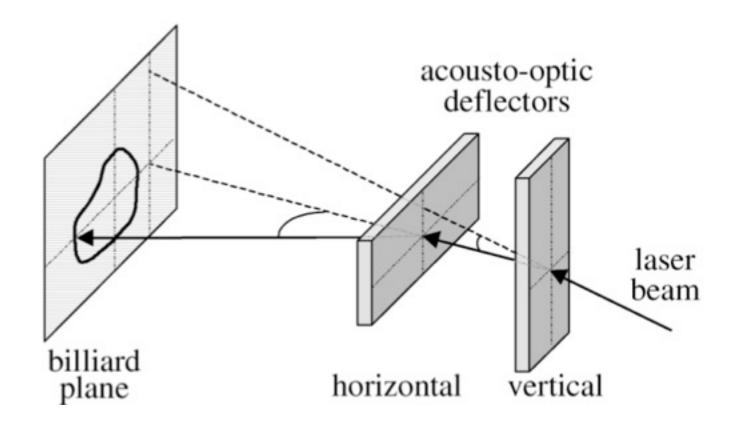
Casati et al (1985)

Wigner distribution

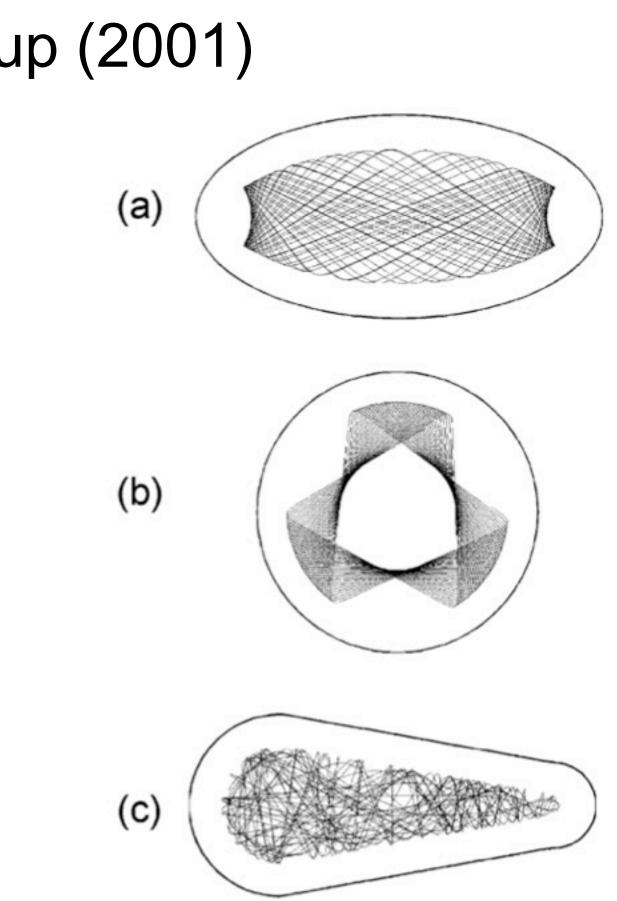
Li et al (2002)

Optical billiards with cold atoms

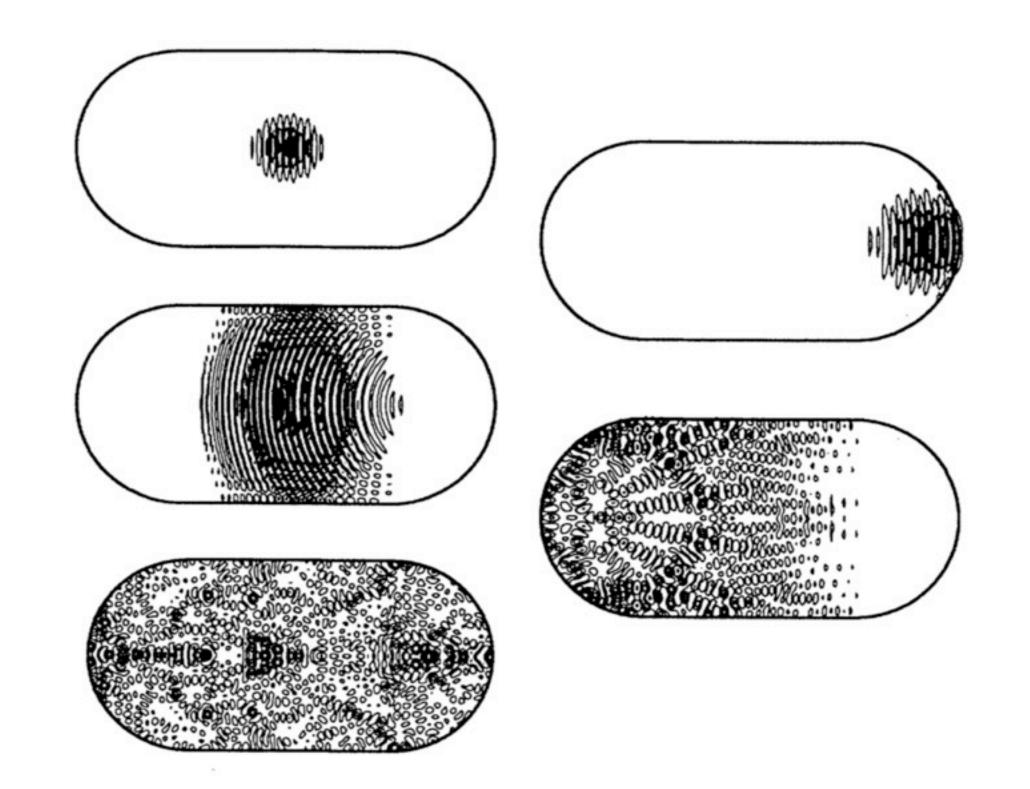
Davidson group and Raizen group (2001)



cold atom are not condensed classical chaos

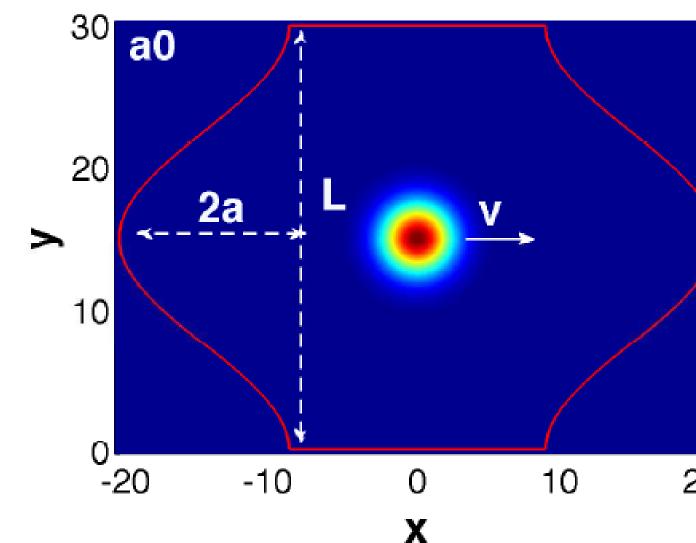


Wave Dynamics in Stadium Billiard



Tomsovic and Heller, Phys. Rev. E, 1993

Wave dynamics in ripple billard

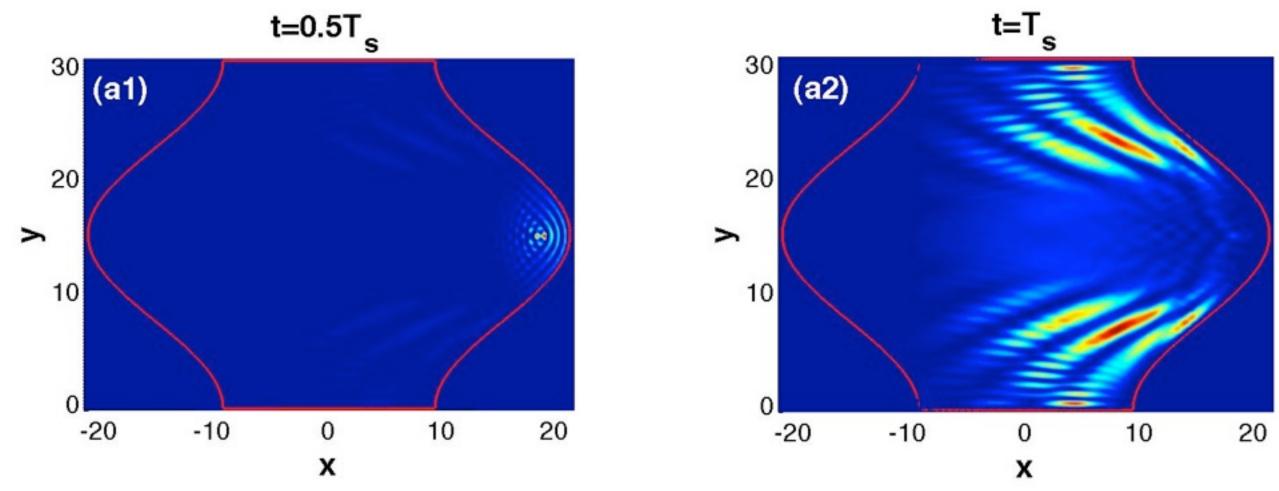


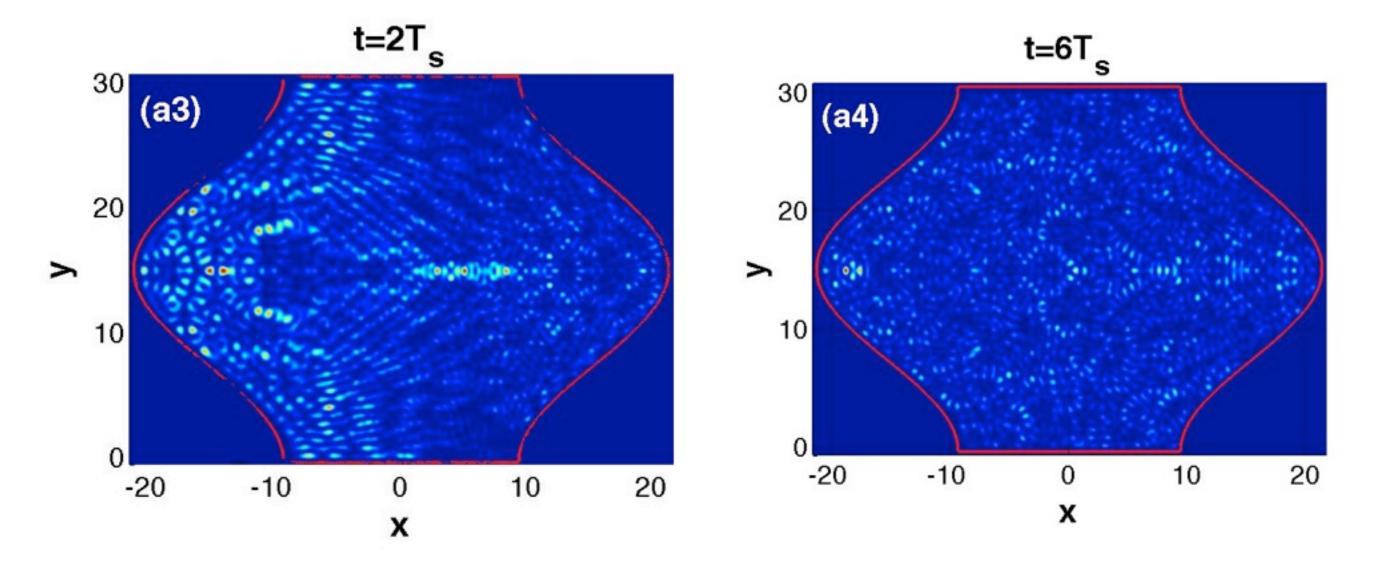
ripple boundary: $x = b - a\cos(2\pi y/L)$ W. Li, L. E. Reichl, and B. Wu Phys. Rev. E 65, 056220 (2002)

$$i\hbar\frac{\partial}{\partial t}\Psi=-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial\vec{r}^2}\Psi$$

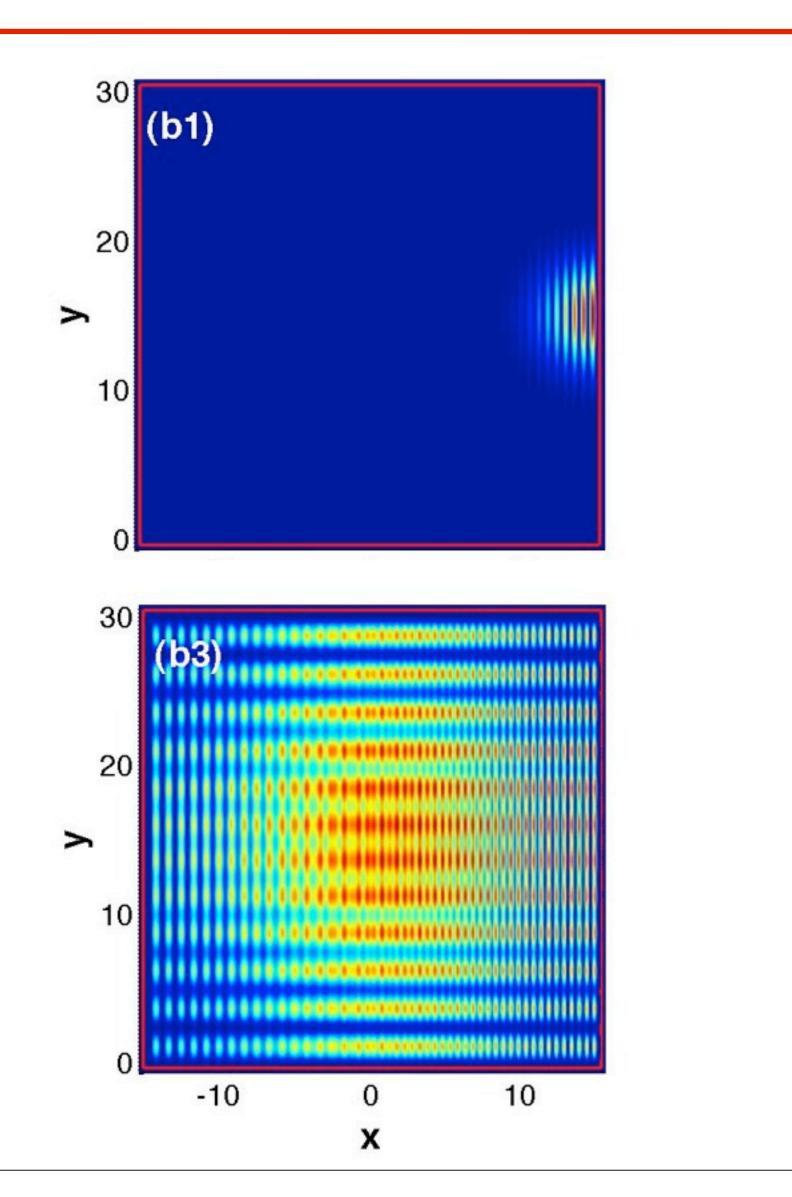
20

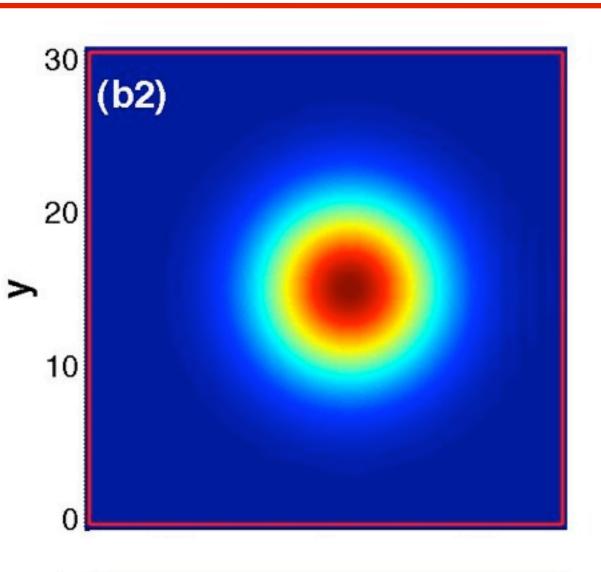
Wave dynamics in ripple billard





Wave dynamics in square billiard



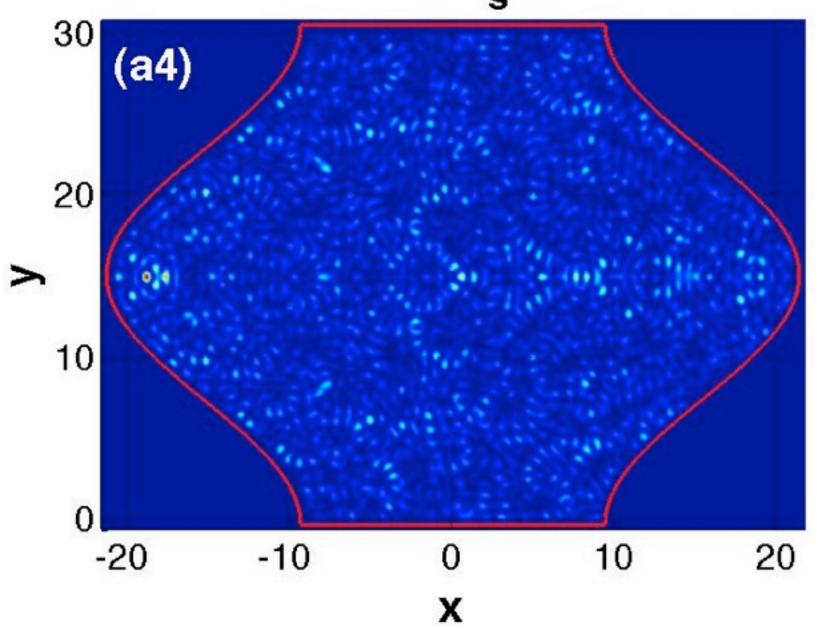


30	(b4) (000000000000000000000000000000000000	00 00 0000 0000000 00	*****
20	000000000000000000000000000000000000000	00 00 0000 0000000 00	
10	00000000000000	00000000000000000000000000000000000000	*****
0	000000000000000000000000000000000000000	00000000000000000000000000000000000000	******
	-10	0	10
		x	

>

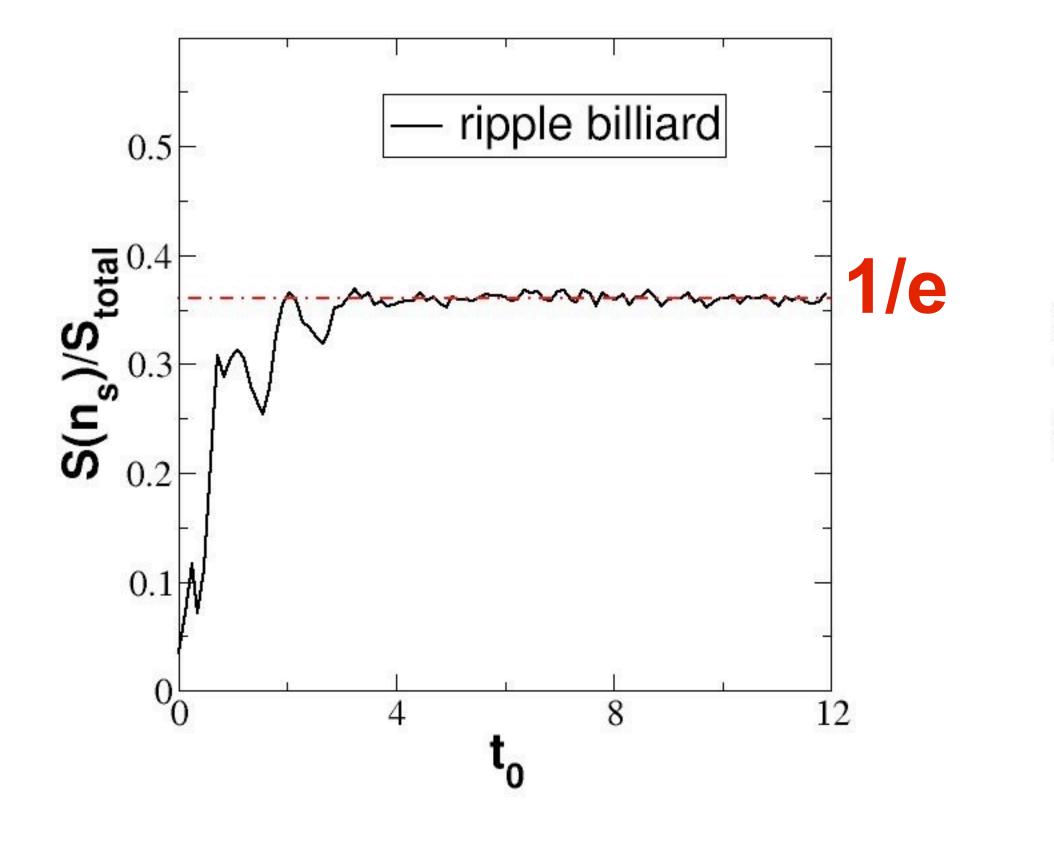
Statistics of random-looking wave

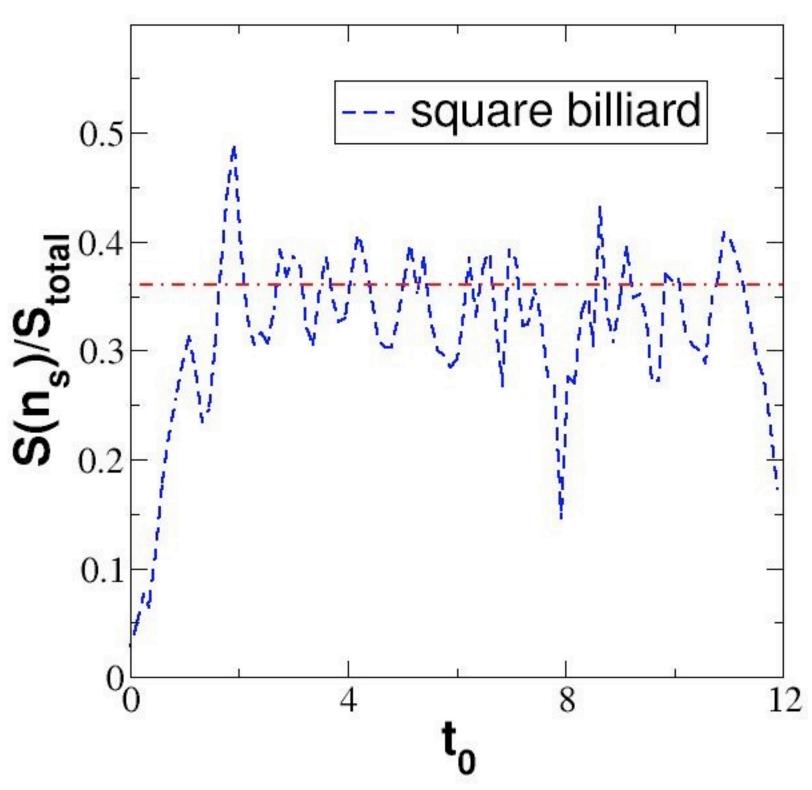
t=6Ts



S(n,t): area of the regions, where the density is larger than n

Probability above average density

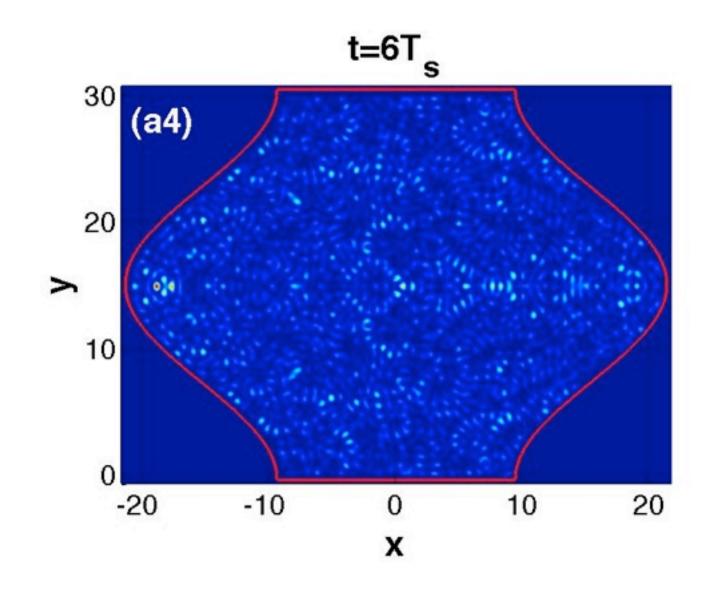




More statistics

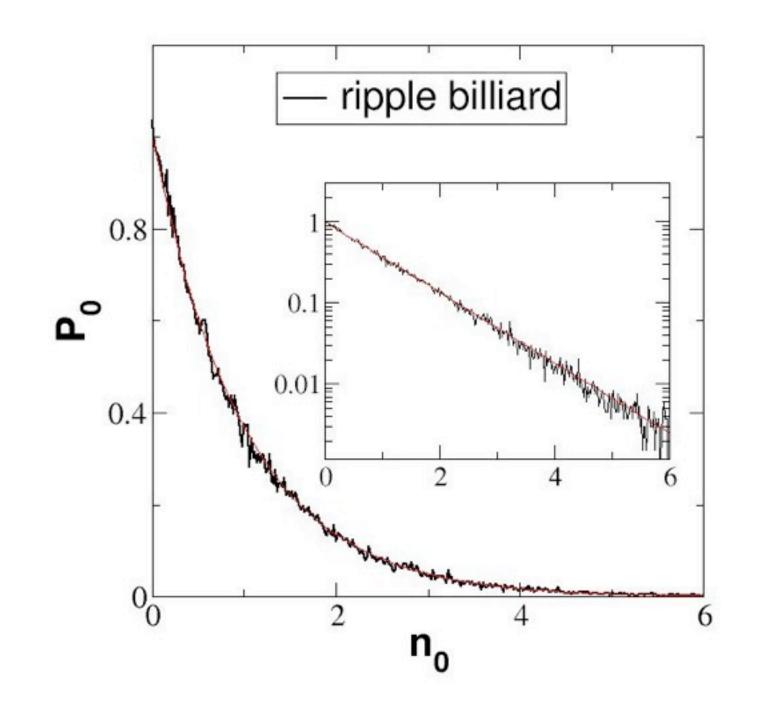
Probability at a given density *n*:

$$P(n,t) = \frac{S(n - \delta n/2, t)}{\delta n}$$

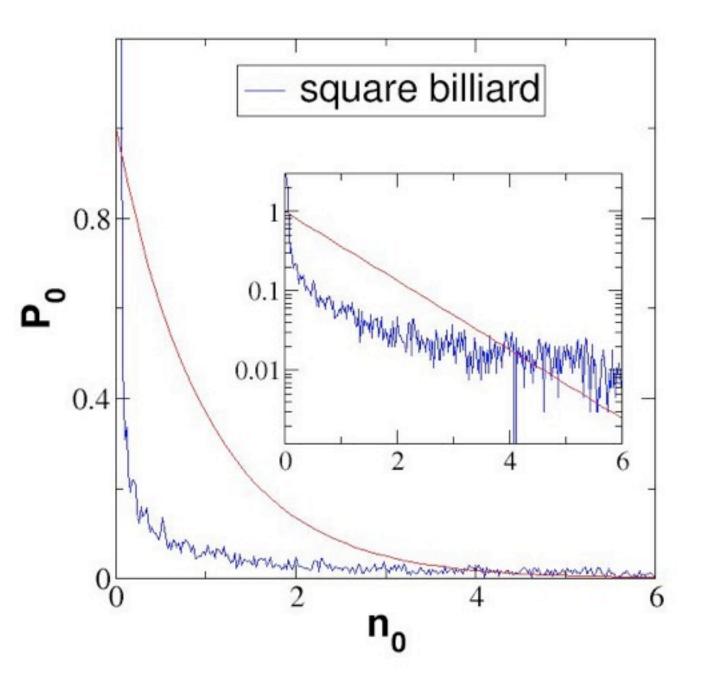


 $\frac{-S\left(n+\delta n/2,t\right)}{S_{\text{total}}}$

Exponential distribution

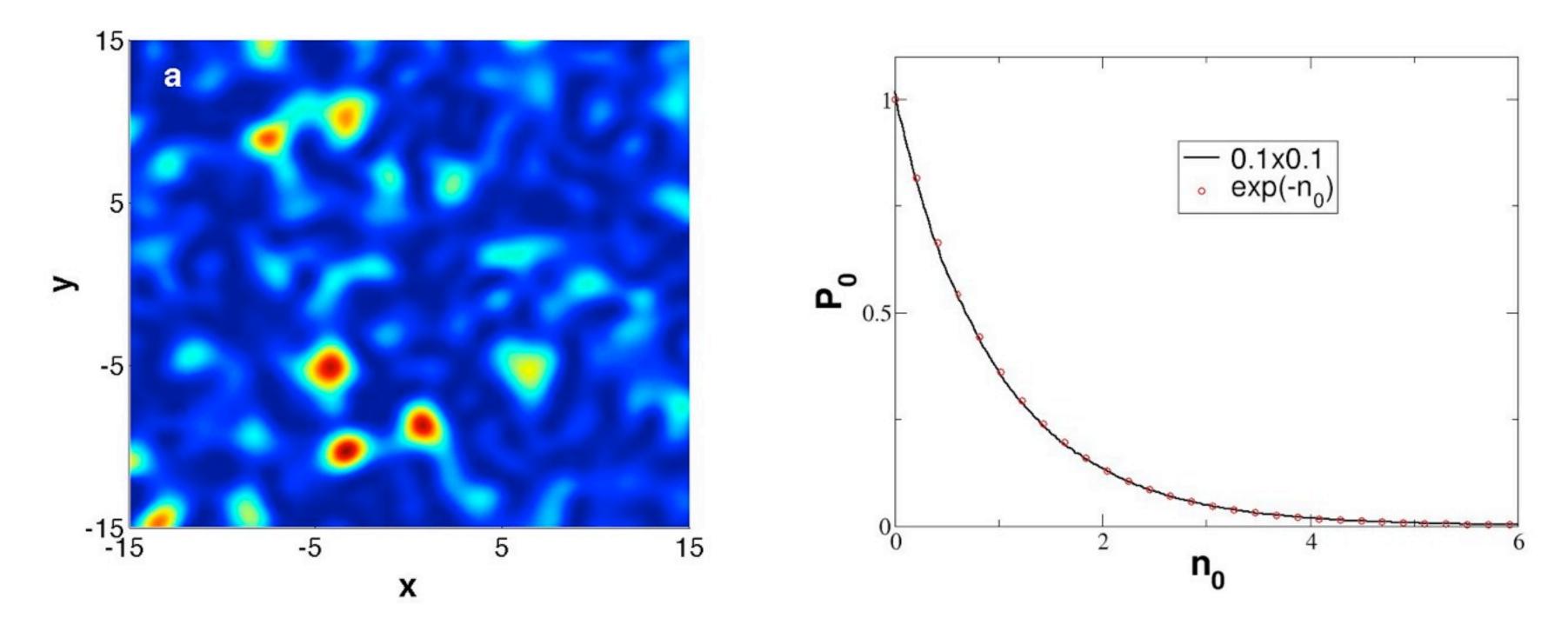


 $P_0^{\mathrm{eq}}\left(n_0\right) = e^{-n_0}$



Random superposition of plane waves

$$\Psi(x,y) \propto \sum_{\vec{k}} c_{\vec{k}} \exp($$



 $(i\vec{k}\cdot\vec{x})$

Rigorous proof

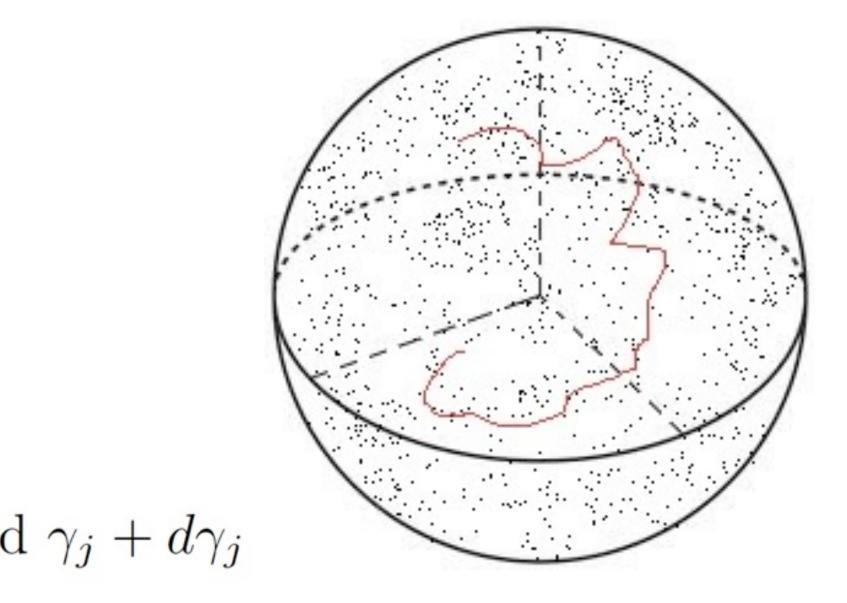
complex number

$$|\Psi(t)\rangle \approx \sum_{j=1}^{N} \alpha_j(t) |x_j, y_j\rangle$$
$$\sum_{j=1}^{N} |\alpha_j|^2 = 1$$

the probability of $|\alpha_j|^2$ being between γ_j and $\gamma_j + d\gamma_j$

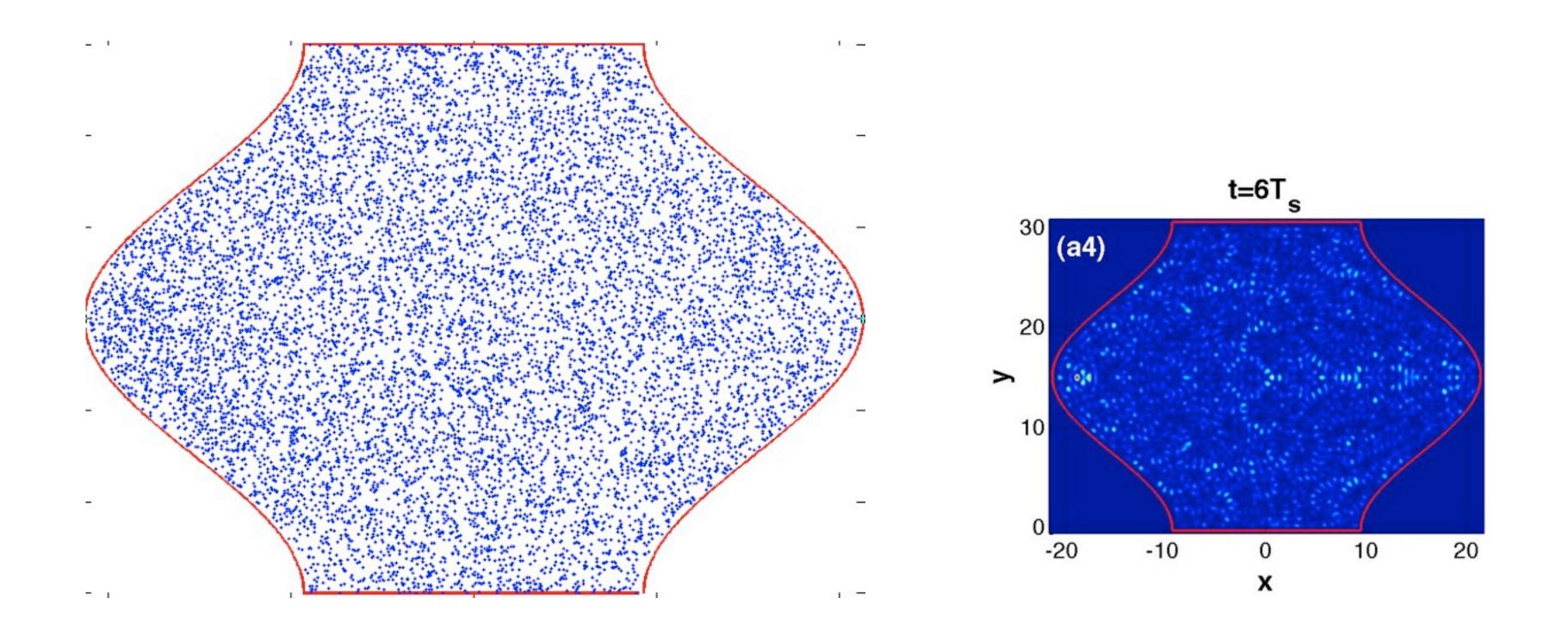
$$P(\gamma_j) d\gamma_j = \frac{\int d^2 \alpha_1 \cdots d^2 \alpha_N \delta\left(\gamma_j - |\alpha_j|^2\right) \delta\left(1 - \sum_{i=1}^N |\alpha_i|^2\right)}{\int d^2 \alpha_1 \cdots d^2 \alpha_N \delta\left(1 - \sum_{i=1}^N |\alpha_i|^2\right)} d\gamma_j$$

$$P\left(n_{j}\right) =$$



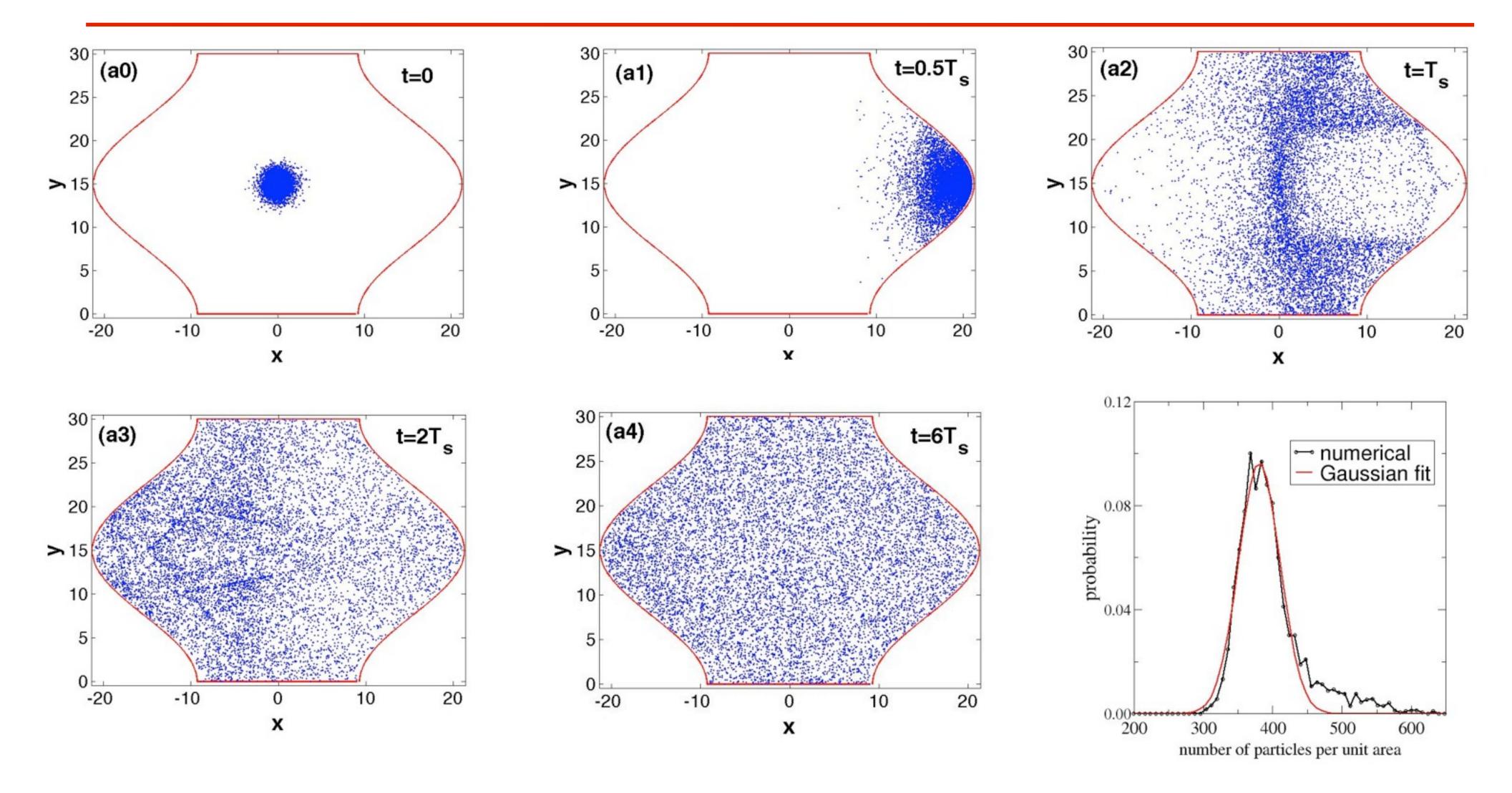
$$e^{-n_j}$$

Exponential distribution is quantum

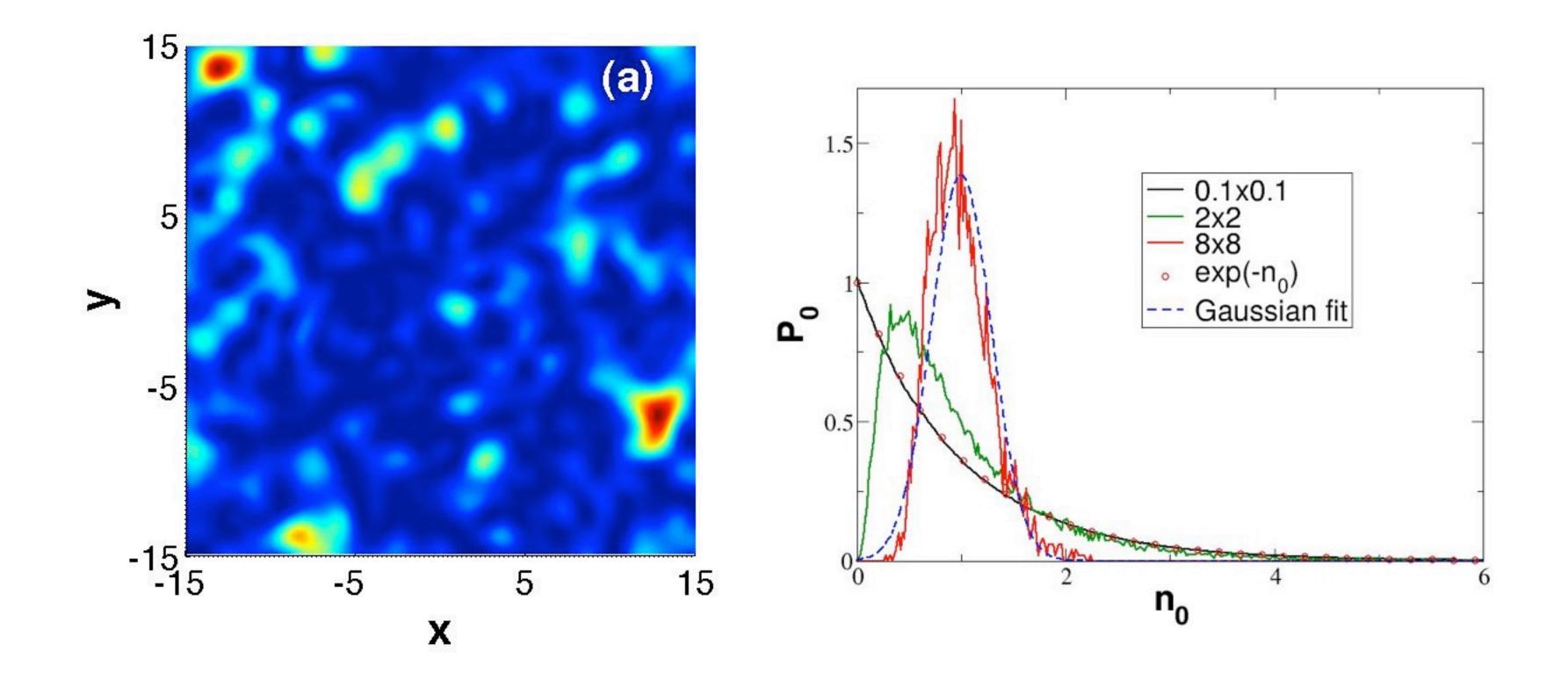


For a classical (or thermal) gas, it should be Gaussian distribution.

Evolution of a classical cloud



Coarse graining: quantum->classical



Properties of exponential distribution

For the exponential distribution

 $P_0^{\rm eq}(n_0) = e^{-n_0}$

• the number fluctuation is $\ \delta n^2 = n^2$

the entropy is the largest

$$H(P) = -\int_0^\infty P(n)\ln(n)$$

P(n)dn

Previous works

Review: Backer, Eur. Phys. J. Special Topics 145, 161(2007)

amplitude distribution of eigenstates

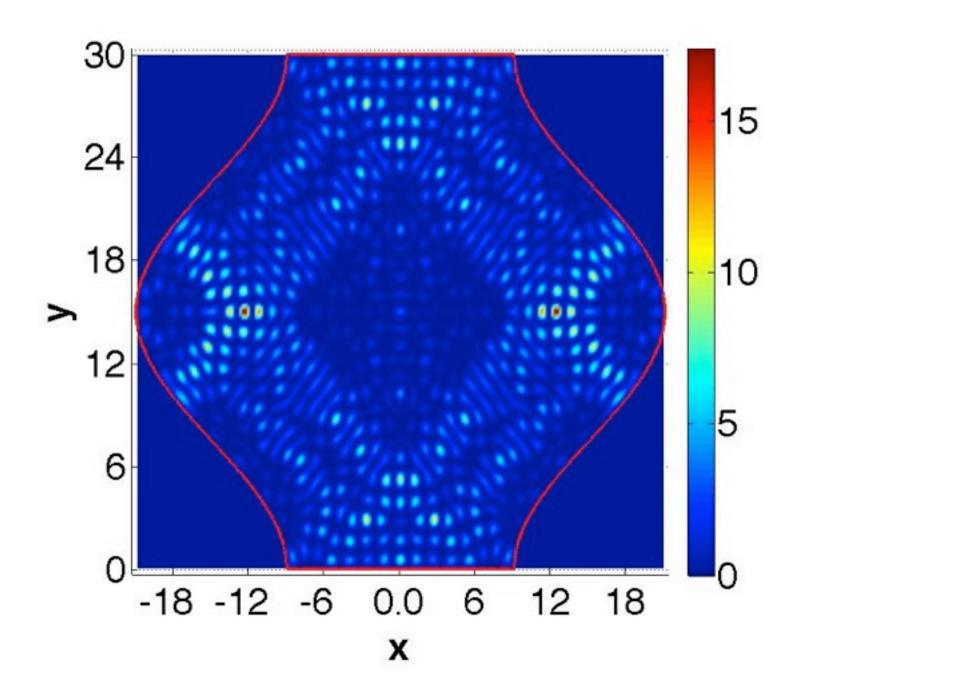
Statistical optics by Goodman and Introduction to Wave Scattering, Localization, and Mesoscopic Phenomena by Ping Sheng

• Intensity distribution of a "thermal" light

$$D(I) = \frac{1}{\langle I \rangle_{\rm c}} \exp\left(-\frac{I}{\langle I \rangle_{\rm c}}\right)$$

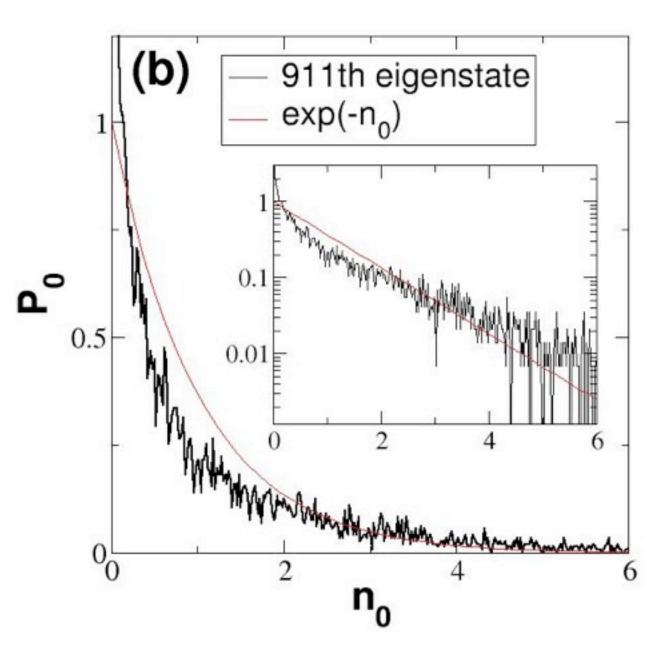
random superposition of plane waves with real coefficients

Eigenstates and ETH



For eigenstates, the exponential distribution does not hold.

Counter example to ETH (eigenstate thermalization hypothesis)?



- Deutsch(1991), Srednicki(1994), Rigol et al (2008)

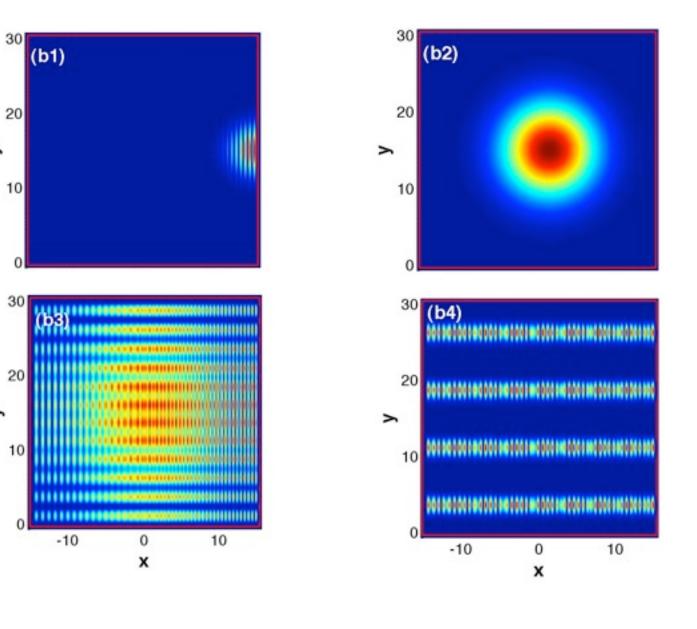
Dynamical phase transition

Pal and Huse, PRB(2010) $H = \sum_{i=1}^{L} [h_i \hat{S}_i^z + J \hat{\vec{S}}_i \cdot \hat{\vec{S}}_{i+1}],$ $h_i \text{ a random field between } [-h,h]$

ergodic state h_c

localized state

Dynamic phase transition?

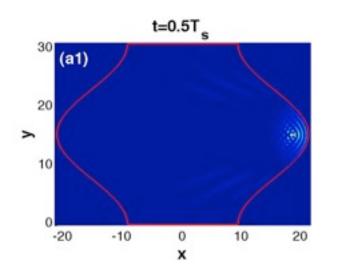


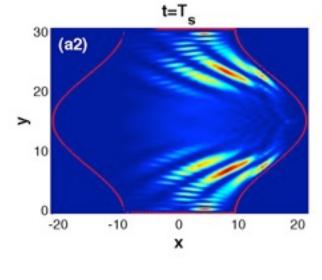
 $x = b - a\cos(2\pi y/L)$

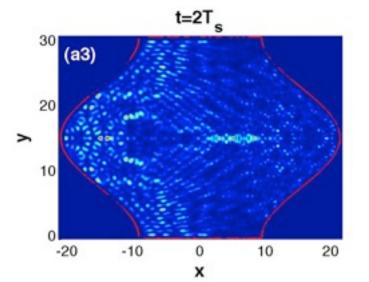
ac

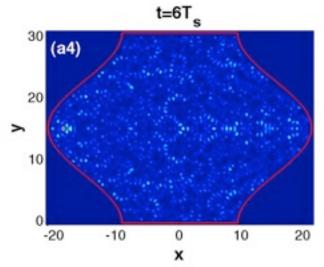
>

>





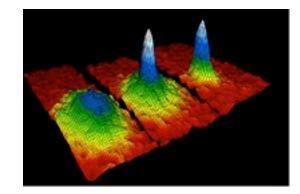




Application in cold atoms

CCD imaging is a primary experimental tool in cold atom physics.

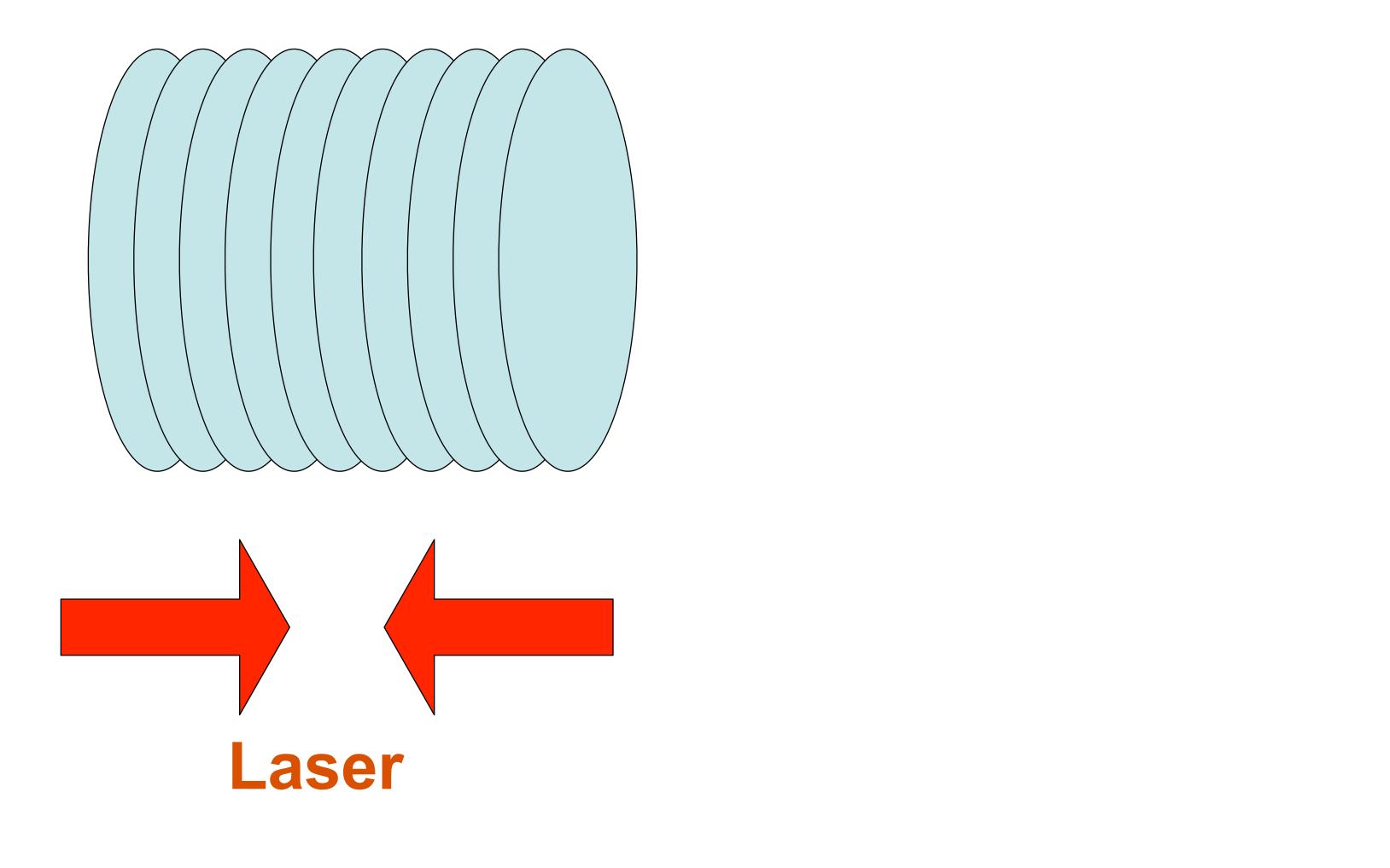
Time of flight



- Noise correlation (Altman et al (2004))
- Homogeneous properties from a trapped gas (Ho and Zhou, 2010)

The exponential distribution may be a useful tool

BEC in 1D Optical Lattice



Experiment: BEC in 1D lattice

(b1)

(b2)

(b3)

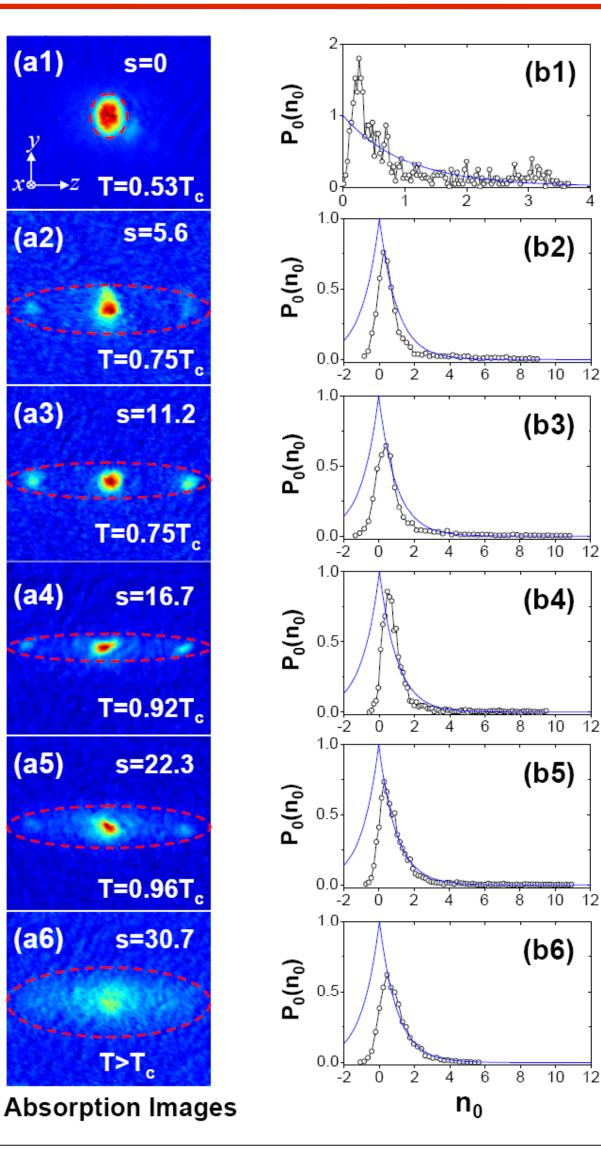
(b4)

(b5)

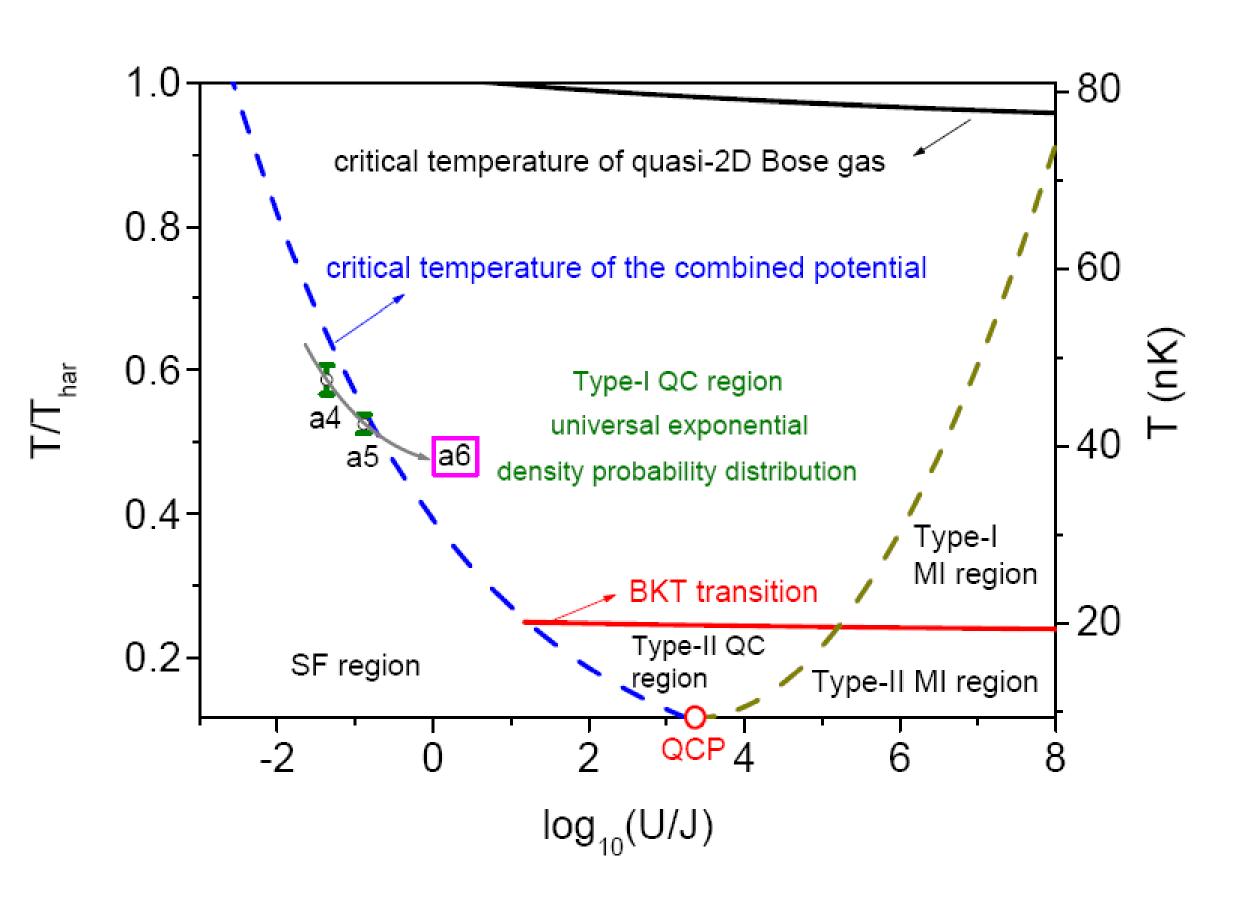
(b6)

8 10 12

6



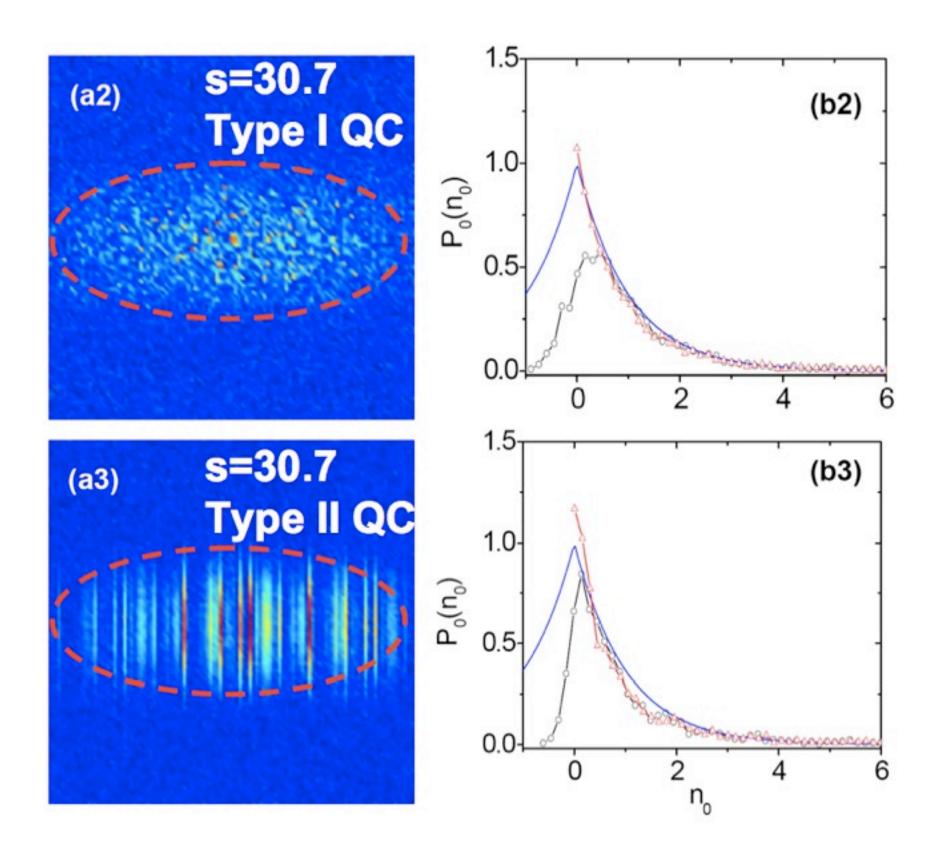
arXiv:1007.4877 (2010)



Hongwei Xiong, Xinzhou Tan, Bing Wang, Lijuan Cao, and Baolong Lü

Theoretical simulation of QC

$$n_{2D}(y,z,t) = \int dx \left| \sum_{k} \sqrt{N_k} e^{i(\phi_{k\perp}(x,y,t) + \phi_k^s(z,t))} \varphi_{k\perp}(x,y,t) \varphi_{kz}(z,t) \right|^2 + n_{2D}^{opt}(x,y)$$



Summary

 Quantum chaos can drive a quantum state to an "steady" or "equilibrium" state, whose density distribution is exponential.

quantum "random" gas	clas
exponential density distribution	Ga

application to quantum critical gas

- sical "random" gas
- (thermal gas)
- aussian density
- distribution

Summary

 Quantum chaos can drive a quantum state to an "steady" or "equilibrium" state, whose density distribution is exponential.

quantum "random" gas	clas
exponential density distribution	Ga

application to quantum critical gas

Thank you for your attention.

- sical "random" gas
- (thermal gas)
- aussian density
- distribution