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Complexity in the Human Brain

The human brain is complex over 

multiple scales of space and time …

Univariate Measures – Magnitude, Power, etc.

- Single regions

Bivariate Measures – Functional Connectivity

- Two regions

Multivariate Measures – Network Analysis

- Many Regions

and can be examined using both low 

and high order statistics.
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Complexity in the Human Brain

Univariate Bivariate Multivariate

Process Interaction Pattern



Why Higher Order Statistics?
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Interactions Patterns

The function of the brain is built 

on multi-scale interactions.

While the function of the brain is built 

on multi-scale interactions, cognition

is only possible through the combined 

interactions of neurons, ensembles of 

neurons, and larger-scale brain regions 

that make oscillatory activity and 

subsequent information transfer 

possible.

Necessitates an examination of not just 

bivariate interactions but also 

multivariate interactions over a range 

of spatial scales.



• A modeling endeavor that provides a set of representational rules that can 

be used to describe the brain in terms of its subcomponents (brain regions / 

nodes) and their relationships to one another (white matter tracts / edges)

nodes edges graph

Image Credit: http://web.med.unsw.edu.au/bcw08/, http://public.kitware.com/ImageVote/

Complex Network Theory in Neuroimaging
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Tools: 

Graph Theory and 

Statistical Mechanics

http://web.med.unsw.edu.au/bcw08/


Complex brain networks have been shown to be sensitive to:

· behavioral variability (Bassett et al., 2009) 

· cognitive ability (van den Heuvel et al., 2009; Li et al., 2009) 

· shared genetic factors (Smit et al., 2008) 

· genetic information (Schmitt et al., 2008) 

· experimental task (Bassett et al., 2006; De Vico Fallani et al., 2008b) 

· age (Meunier et al., 2009; Micheloyannis et al., 2009) 

· gender (Gong et al., 2009) 

· drug (Achard et al., 2007)

· disease such as Alzheimer’s (He et al. 2008, Buckner et al. 2009, Supekar et al. 2008, Stam et al. 

2007, Stam et al. 2009) and 

schizophrenia (Bassett et al. 2008, Lynall et al. 2010, Liu et al. 2008, Rubinov et al. 2009, 

Bassett et al. 2009, Micheloyannis et al., 2006)

other clinical states such as epilepsy (Raj et al., 2010; Horstmann et al., 2010; van Dellen 

et al., 2009), multiple sclerosis (He et al., 2009b), acute depression (Leistedt 

et al., 2009), seizures (Ponten et al., 2009, Ponten et al., 2007), attention 

deficit hyperactivity disorder (Wang et al., 2009), stroke (De Vico Fallani 

et al., 2009; Wang et al., 2010), spinal cord injury (De Vico Fallani et al., 

2008a), fronto-temporal lobar degeneration (de Haan et al., 2009), and 

early blindness (Shu et al., 2009). 

Biological Relevance of Network Architecture
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Brain Networks & Robustness
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Construction of brain networks 

Multiple Means of Uncertainty:

1. Building a Model Based on Choices:

Nodes

Edges

2. Experimental variability

3. Individual variability

4. Population variability

How can we measure the robustness of our network-based results?



Imaging 

Modality

DSI/DTI

Anatomical 

Parcellation

AAL/HO/LPBA40

Spatial 

Resolution

4 Granularities

Temporal 

Dependence

3 scanning sessions

Individual 

Variability

7 individuals

Tuning Knobs:

Look for organizational “principles” which are robust to these variations.
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Conserved Architecture
Bassett et al. 2011



Building Cortical Connectivity Maps
from White Matter Structure

How do we build a large-scale anatomical brain network?

Diffusion imaging allows us to measure the diffusion of water molecules within the cortex, 

and thus track the paths of white matter fibers, which connect different parts of the brain.
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Bassett et al. 2011



Density of edges in the graph is relatively sparse.

Sparsity: 

• Sparse networks, unlike fully connected networks, may vary 
topologically from perfectly random to highly organized

• Sparse connectivity is thought to be caused by an evolutionary 
pressure for energy efficiency

Complete 
Graph

Sparse 
Graph

Attwell and Laughlin, 2001; 

Niven and Laughlin, 2008
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Conserved Architecture - Sparsity
Bassett et al. 2011

AAL                 HO              LPBA40
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Structural Organization: Hierarchy

Anatomical connectivity is characterized 

by network hierarchy.
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Bassett et al. 2011, Neuroimage
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Structural Organization: Assortativity
Bassett et al. 2011, Neuroimage

Anatomical connectivity is characterized 

by degree-degree correlations (or degree 

assortativity).



Hierarchical Modularity

Function:
Segregation and Integration (Fodor, 1983, “Modularity of 
Mind”)

Structure:
Heterogeneous, non-random cortex
Cytoarchitectonic boundaries
Laminar organization
Segregation of white and gray matter
Separation of visual cortical areas
Organization of basal ganglia
Existence of topographic maps
Retinotopic maps
Ocular dominance patterns
Organization of cortical columns
Symmetric modular structure of genetic expression

Theoretically, modular structure of such “nearly decomposable systems” (Simon, 1962) 

maximizes efficiency, evolvability, and adaptability.

Experimentally, hierarchical modularity in connectivity profiles has also been identified in 

the C. elegans neuronal network and in very large scale integrated computer circuits.
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Bassett et al. 2011
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Structural Organization: Spatial Scaling

Vertical Spatial Scaling Horizontal Spatial Scaling

Bassett et al. 2011, Neuroimage
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The Structurally Modular Brain

Diffusion Imaging Data Whole-Brain Parcellation

Hagmann et al. 2008 PLoS Biology

Bassett et al. 2010 PLoS Comp Biol

Bassett et al. 2011 NeuroImage 



Danielle S. Bassett, Ph. D.

Hierarchical Modularity

Tree-based visualization

Bassett et al. 2010 PLoS Comp Biol 



Topological and Physical Architecture

In a network, the distance between 

two nodes is measured in units of 

connections:

In a physical system, the distance 

between two points is measured in 

units of length.

Path-length = 5

DSI

DTI

• Strong interdependence between topological distance and physical 
distance. Suggests there may be physical analogs to our other results. 
For example, network ‘modules’ may be anatomically localized.
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Bassett et al. 2011



Rentian Scaling
topo-physical property of efficient embedding

Bassett et al. 2010

Rent's rule indicates a scaling 
relationship between the number 
of nodes in a box and the number 
of connections crossing the 
boundary of the box.

Rentian scaling has been found 
in systems that have been cost-
efficiently embedded into 
physical space, for example 
brains, neuronal networks, and 
computer circuits.
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Anatomical Localization of Modules

While anatomical localization of modules has not yet been demonstrated in white matter 

networks, it has been demonstrated in resting state fMRI and morphometric networks.

Meunier et al. 2009 Chen et al. 2008

Executive

Olfactocentric

Auditory

Visual

Emotion

Sensorimotor
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Physical versus Topological Constraints
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Topological diagnostic of Cost-Efficiency (does not use ANY physical information)

Efficiency is defined by the inverse of the path-length (Latora & Marchiori PRL 2001)

Cost is defined as the number of connections present in the network (density).



Danielle S. Bassett, Ph. D.

Topological Cost-Efficiency and Behavior
Bassett et al. 2009, PNAS

People with Schizophrenia and controls performing an N-back working memory task.

Cost-Efficiency is positively correlated with accuracy.
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Topological Cost-Efficiency and Behavior
Weiss et al. 2011, Frontiers in Human Neuroscience

People with Schizophrenia and controls performing an auditory task for the purposes 

of cognitive remediation.

Cost-Efficiency is negatively correlated with accuracy.
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Are Cost-Efficient Networks Cost-Efficient?

Possible Conclusions: 1) A network with high efficiency is not necessarily efficient. 2) A 

network with high cost is not necessarily costly. 3) Topological Cost-Efficiency is not a 

fundamental principle. 

Low and High cost-efficiency can be equally useful to a brain depending on the task at hand.
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Task-Dependence of Topology

Single domain task More complex task

High local clustering

Low Efficiency (Long path-length)

Less  local clustering

Higher Efficiency (Shorter path-length)
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The Question of Interpretation

“A brain network with a higher small-world index will have more 

optimal information transfer.”

“A brain network with higher topological efficiency is more efficient 

at information processing.”

“A brain network with a higher clustering coefficient has more/better 

local information processing.”
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Comparisons

“A brain network with a higher small-world index will have more optimal 

information transfer.” Many of these interpretations are based on simulation results 

from networks of coupled oscillators.  Is this the right comparison?

Benchmark networks of regular and random graphs. In the majority of brain 

networks studies, we compare graph diagnostic values to their counterparts in 

regular or random graphs. How insightful are these comparisons? What do we learn 

from them? How can we use what we are learning about physical constraints to 

construct other benchmark networks for comparison? 
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Dynamic Brain Networks & Learning

Dynamic 

network slices

Construction of 

Functional Brain 

Network

Bassett et al. 2011 PNAS
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Investigating Dynamic Modularity

Mucha et al. 2010 Science

Bassett et al. 2011 PNAS

Time, t

Dynamic 

extension of 

previous static 

modularity 

optimization
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Robust Statistical Testing
Bassett et al. 2011, PNAS

Conclusion: The topological organization of cortical connectivity is highly structured.

Simplest statistical comparison: compare to random graph connectivity.
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Robust Statistical Testing II

Bassett et al. 2011, PNAS

Conclusion: Diverse brain regions perform distinct non-interchangeable tasks throughout the 

experiment.

Second statistical comparison: Scramble Node-Node (Inter-slice) Connectivity.
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Robust Statistical Testing III

Bassett et al. 2011, PNAS

Conclusion: The evolution of modular architecture in human brain function is cohesive 

in time.

Third statistical comparison: Scramble Time Window Order.
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Summary

Bassett et al. 2011, PNAS

Possible path for the meaningful examination of 

network organization in the brain:

1) Look for conserved properties that are 

independent of a range of 

methodological/data variations.

2) Use these properties to gain insight about 

constraints on brain structure and function.

3) Use what we learn about constraints to help 

construct meaningful benchmark 

comparisons.
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