What reviewers say

“If such oscillations are indeed optimal, why are they not
universally present?”

“The approach to establish universality for all biological and
physiological systems is simply wrong. It cannot be done...”

“While the notion of universality is well justified in physics, it is
perhaps not so useful in biological sciences and medicine. To
develop a set of universal principles for biological and
physiological systems is mostly likely a dream that will never be
realized, due to the vast diversity in such systems.”

“...does not seem to have an understanding or appreciation of
the vast diversity of biological and physiological systems...”

“...desire to develop rigorous framework is understandable, but
usually this can be done only by imposing a high degree of
abstraction, which would then make the model useless ...”

“... a mathematical scheme without any real connections to
biological or medical problems...”
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Both engineering and evolution are constrained by trade-offs between efficiency and robustness,
but theory that formalizes this fact is limited. For a simple two-state model of glycolysis, we
explicitly derive analytic equations for hard trade-offs between robustness and efficiency with
oscillations as an inevitable side effect. The model describes how the trade-offs arise from
individual parameters, including the interplay of feedback control with autocatalysis of network
products necessary to power and catalyze intermediate reactions. We then use control theory to
prove that the essential features of these hard trade-off "laws” are universal and fundamental, in
that they depend minimally on the details of this system and generalize to the robust efficiency cients of the reacticns come from these normaliza:
of any autocatalytic network. The theory also suggests worst-case conditions that are consistent L ) . ' o
o f e . tions). Our results hold for more general systems
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Caveats

Start with paper, give context, brief tutorial
Won’t repeat what can be read

Mostly a departure point

Move quickly to “architecture” (microbial cells)
Massive topic, lots known, little published

Fly thru most of the (way too many) slides...
...all will be posted

Sorry, if | was smarter this would be better
Help
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From last Monday.

Architecture, constraints, and behavior

John C. Doyle®' and Marie Csete™’
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San Diego, CA 92103

Edited by Donald W. Pfaff, The Rockefeller Uniw:?w NY, an

This paper aims to bridge progress in d g
sophisticated quantitative analysis of behavior, indudi e use
of robust control, with other relevant conceptual and t etical
frameworks from systems engineering, systems biology,
mathematics. Familiar and accessible case studies are used to illus-
trate concepts of robustness, organization, and architecture (mod-
ularity and protocols) that are central to understanding complex
networks. These essential organizational features are hidden dur-
ing normal function of a system but are fundamental for under-

standing the nature, design, and function of complex biologic and
technologic systems.

roved June 10, 2011 (received for review March 3, 2011)

evolved for sensorimotor control and retain much of that evolved
architecture, then the apparent distinctions between perceptual,
gnitive, and motor processes may be another form of illusion
reinforcing the claim that robust control and adaptive
ack (7, 11) rather than more conventional serial signal
1 more useful in interpreting neurophysiology
w also seems broadly consistent with the
gr@mded cognition that modal simulations,

ated actign underlie not only motor control
but cognition | . Inchuding language (13). Further-
minre the mvrtad cteaits invnlved in the suvnlintion of crenit

Doyle and Csete, Proc Nat Acad Sci USA, online JULY 25 2011
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Contrasting Views of Complexity and Their
Implications For Network-Centric Infrastructures

David L. Alderson, Member, I[EEE, o~

Abstract—There exists a widely recognized »-
derstand and manage complex **systems of
biology, ecology, and medicine to - 6

This is motivating the search for _oved
systems and driving demand for | ? -«u methods
that are consistent, integrative, anc «aowever, the the-
oretical frameworks available today  _ not merely fragmented
but sometimes contradictory and incompatible. We argue that
complexity arises in highly evolved biological and technological
systems primarily to provide mechanisms to create robustness.
However, this complexity itself can be a source of new fragility,
leading to “‘robust yet fragile” tradeoffs in system design. We
focus on the role of robustness and architecture in networked
infrastructures, and we highlight recent advances in the theory
of distributed control driven by network technologies. This view
of complexity in highly organized technological and biological sys-
tems is fundamentally different from the dominant perspective in
the mainstream sciences, which downplays function, constraints,
and tradeoffs, and tends to minimize the role of organization and
design.

Index Terms—Architecture, complexity theory, networks, opti-
mal control, optimization methods, protocols.
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_.oA engineering systems, but much of advanced
.wlogy has, if anything, made things worse. Computer-
based simulation and rapid prototyping tools are now broadly
available and powerful enough that it is relatively easy to
demonstrate almost anything, provided that conditions are
made sufficiently idealized. We are much better at designing,
mass-producing, and deploying network-enabled devices than
we are at being able to predict or control their collective be-
havior once deployed in the real world. The result is that, when
things fail, they often do so cryptically and catastrophically.
The growing need to understand and manage complex sys-
tems of systems, ranging from biology to technology, is creating
demand for new mathematics and methods that are consistent
and integrative. Yet, there exist fundamental incompatibilities
in available theories for addressing this challenge. Various
“new sciences” of “complexity” and “networks™ dominate the
mainstream sciences [3] but are at best disconnected from
medicine, mathematics, and engineering. Computing, commu-
nication, and control theories and technologies flourish but
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Theory?
Deep, but fragmented,
incoherent, incomplete
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« Each theory ~ one dimension

- * Important tradeoffs across
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Theory + biology case study
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What reviewers say

“If such oscillations are indeed optimal, why are they not
universally present?”

“The approach to establish universality for all biological and
physiological systems is simply wrong. It cannot be done...”

“While the notion of universality is well justified in physics, it is
perhaps not so useful in biological sciences and medicine. To
develop a set of universal principles for biological and
physiological systems is mostly likely a dream that will never be
realized, due to the vast diversity in such systems.”

“...does not seem to have an understanding or appreciation of
the vast diversity of biological and physiological systems...”

“...desire to develop rigorous framework is understandable, but
usually this can be done only by imposing a high degree of
abstraction, which would then make the model useless ...”

“... a mathematical scheme without any real connections to
biological or medical problems...”



Glycolytic oscillations

Hard tradeoffs between
1. Fragility (disturbance rejection)

2. Amount (of enzymes) } Metabolic

3. Complexity (of enzymes) overhead

* Most ubiquitous/studied “circuit” in
science/engineering

* New insights and experiments
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Figure S4. Simulation of two state model (S7.1) qualitatively recapitulates
experimental observation from CSTR studies [5] and [12]. As the flow of material
in/out of the system is increased, the system enters a limit cycle and then
stabilizes again. For this simulation, we take g=a=Vm=1, k=0.2, g=1, u=0.01, h=2.5.
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Peter Sterling and Allostasis
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Assume mass action g=a (=1)
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e Microfluidic experiments
e Yeast strain W303 grown in Ethanol

e Glucose and KCN added —anaerobic glycolysis
e NADH measured every 3 s
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What about arbitrary

* Nonequilibrium (thermo)dynamics
* Control dynamics
. Realistic models

autocatalytic

What if the control
implementation is
allowed arbitrarily
complex dynamics
(states plus
nonlinearities)?
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Gratuitous fragility
Versus
fragile robustness
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Hard tradeoffs between

1. Fragility (disturbance rejection)
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e General
* Rigorous
 First principle

simple

complex

>

Overhead, waste

* Domain specific
* Ad hoc
* Phenomenological

Plugging in
domain details



Control Wiener

Comms
Bode
robust control

Kalman
e General * Fundamental multiscale physics
* Rigorous * Foundations, origins of
* First principle — noise

— dissipation

— amplification

Carnot
Boltzmann

Heisenberg

Physics
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On Lossless Approximations, the Fluctuation-Dissipation Theorem,
and Limitations of Measurements

Henrik Sandberg, Jean-Charles Delvenne, and John C. Doyle

Abstracr—In this paper, we take a control-theoretic approach
to answering some standard questions in statistical mechanics,
and vse the results to derive limitations of classical measurements.
A central problem is the relation between systems which appear
macroscopically dissipative but are microscopically lossless. We
show that a linear system is dissipative if, and only if, it can
be approximated by a linear lossless system over arbitrarily
long time intervals. Hence lossless systems are in this sense
dense in dissipative systems. A linear active system can be
approximated by a nonlinear lossless system that is charged
with initial energy. As a by-product, we obtain mechanisms
explaining the Onsager relations from time-reversible lossless
approximations, and the fluctnation-dissipation theorem from
uncertainty in the initial state of the lossless system. The results
are applied to measurement devices and are used to quantify

| I R | R | (P, [ (RS L LU IR (RN | (. T SN, A

Derivation of limitations is also at the core of physics. Well-
known examples are the laws of thermodynamics in classical
physics and the uncertainty principle in quantum mechanics
[6]-[8]. The exact implications of these physical limitations
on the performance of control systems have received little at-
tention, even though all components of a control system, such
as actuators, sensors, and computers, are built from physical
components which are constrained by physical laws. Control
engineers discuss limitations in terms of location of unstable
plant poles and zeros, saturation limits of actuators, and more
recently channel capacity in feedback loops. But how does the
amount of available energy limit the possible bandwidth of a
control system? How does the ambient temperature affect the



Bode’s integral formula
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log(a)
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Robust

j[log\s\]_dw _log(a) > —j[log\s\ldw
benefits COSts
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benefits COSts
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benefits COSts
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Bode/Shannon is likely a better p-to-p comms
theory to serve as a foundation for networks
than either Bode or Shannon alone.



Bode Shannon

e=0-u d e=d-u 4—@<d IAd delay|<——| Disturbance
Plant AUU U
delay Capacity C
—» @4 Channel |<— dilray
jlog|S|da)2 log(a) h(E)— h(D)>-C

As Ad -, {h(D)<C=e~0}

1. Hard bounds
2. Achievable («<=assumptions)
3. Solution decomposable (<=assumptions)



Recall Shannon

h(E)— h(D)>-C e=d-u 4—@<d |Ad delay|<——| Disturbance

As Ad — oo, Capacity C

{h(D) <C=e~x O} * |Decoda<—| Channel |<_dilray

Ar = total delay of encoding,
£ the th _ decoding, and channel
Features ot the t eory. Ad =disturbance arrival delay

1. Hard bounds from where it is remotely sensed

2. Achievable («<=assumptions)
3. Solution decomposable (<=assumptions)

* The interpretation of ~ depends on the details of the model.



Recall Shannon

h(E)— h(D)>-C e=d-u 4—(:)<d |Ad delay|<——| Disturbance

Capacity C

AS Ad —> o0, Ar \ 4
|Decoda<—| Channel |<— delay

(h(D)<C =e~0!

This is a nonstandard way of describing
the results but will be convenient later.

Ar = total delay of encoding, decoding,
and channel

Ad =disturbance arrival delay from where
It Is remotely sensed



Bode Shannon

e=0-u d e=d-u 4—@<d IAd delay|<——| Disturbance
Plant AUU U
delay Capacity C
—» @4 Channel |<— dilray
jlog|8|da)2 log(a) h(E)— h(D)>-C

As Ad -, {h(D)<C=e~0}

1. Hard bounds
2. Achievable («<=assumptions)
3. Solution decomposable (<=assumptions)

Incompatible assumptions (for 50+ years).
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It’s easy to pose a combined problem.
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delay Capacity C

l

Remote
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It’s easy to pose a combined problem.
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pi—

Ar
delay

v
<—| Encodel

It’s easy to pose a combined problem.

What is the benefit to control of remote sensing?
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jlog\s\da)z log(a) —+

(0 Ad <AU+Ar

C Ad=Au+Ar

This looks too good to be true?

What is the benefit to control of remote sensing?
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|log|slde > log(a) —-

1. Hard bounds

(0 Ad <AU+Ar
C Ad=Au+Ar

2. Achievable (<=assumptions)
3. Solution decomposable (<=assumptions)

New unified comms, controls, and stat mech.?



* Autocatalytic and control feedback
* Complex vs simple enzymes
* Dynamics, dynamics, dynamics, ...

Feedbacks

Autocatalysis









Bacterial cell

Huge Huge
Variety Variety




Taxis and
transport
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Catabolism

Precursors ]

Inside every cell
/ ATP
AA
Ribosomes
/\’00/_ make
rilbosomes

Ribosome

Translation: Amino acids
polymerized into proteins



Catabolism

Precursors J

AT

 Translation
 Transcription
* DNA Replication



Catabolism

Crosslayer
autocatalysis

Precursors v

Inside every cell

Enzymes




Catabolism

Crosslayer
autocatalysis

Precursors v

Inside every cell

Enzymes




Lower layer autocatalysis
Macromolecules making ...

Enzymes
Three lower _
layers? Yes: AA Ltransl. Proteins
 Translation |
* Transcription . Ribosome
* Replication RNA Msc.m

RNAp

DNA Repl.ﬁene\ DNAp

.....



Autocatalytic within lower layers
* Collectively self-replicating
* Ribosomes make ribosomes, etc

Three lower

D .
layers” Yes. Enzymes
 Translation
 Transcription
* Replication AA [transl., > Proteins

. Ribosome

Naturally RNA [transc. > xRNA
recursive RNAD

DNA Repl.ﬁene\ DNAp

.....
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dx Stoichiometry plus

—= Sv(X) .
dt ) ~ regulation
Mass & _
d Reaction
—(Mass&Energy ) =| Energy
dt flux
Balance \
© Matrix of integers Vector of (complex?) functions
© “Simple,” can be Difficult to determine and
known exactly manipulate
© Amenable to high Effected by stochastics and
throughput assays spatial/mechanical structure
and manipulation © Hourglass architecture

© Bowtie architecture @ Can be modeled by optimal
controller (?!1?)
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Layered control
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Substrates

S, +ATP — S, + ADP
S,+ATP - S, + ADP
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H Pylori
amino acid
biosynthesis

As a color coded (for
reversibility)

stoichiometry matrix.

s, [=1] 0]
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Substrates s, | o[=1
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_ ATP|-1| -1

Carriers 5 appl1 | 1
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These are
equivalent to
each other but

S3 sS4 not to
unipartite
ADP graphs.

S1 S2

Substrates

Carriers




Unipartite projections Substrate graph
lose too much.

S2
S, +ATP — S, + ADP
S,+ATP — S, + ADP / 4

ADP
ATP Reaction graph



Suppose these reactions
are in different modules,
say,

ADP
ATP

Substrate graph
S1 S2
S3 S4
ADP
ATP

“Small world?”

Not really.
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“Typical” reactions

ADP NADP
ATP NADPH



\

" 5/ i 5
‘ ’ A*/ /-
v
AN 'J s
\ \ N/ 2 ~ ‘
L AX/ ) Y‘\ V.. = | <
/ _“&9@/ ,’A vv’(}///f’q ‘U/V
/\W’)@’"‘/’\%k 4&% - “Typical” reactions
¢ il < Z

/‘\' 9
| 4;4‘4 ///A X

NS, G Y

N A =/ />

\\‘

/1!




G6P

PRPP

RoP /rAN —%-NAN 4-CD5-9=IGP TRP
F6P DAH --DQT -4 DHS ¢ SME 4-S5P-#-PSM
E4P PPN-6——HPP 4 TYR
3P cYs
PEP ASE
DPG ¢ \3PG PHP-#<PPS -4 \ ser,
PYR \ oLy
ASP
OA ¢-BAP ASN®
ASS
@ HSE-#-PHS 4 THR
DHD
PIP=4=SAK :#-SDP-¢~DP]-4 MDP LYS
SUCOA
GLN
1GIT -+ AKG 3 o
precursors amino acids




G6P

PRPP

RoP AN—9-NAN 4-CD54-IGP TRP
/ /f
F6P DAH 4-DQT ¢ DHS ¢ SME 4-S5P 2#PSM
E4P HPP # TYR
3P cYS
PEP ASE
3PG PHP -#-PPS -4 A
P 4
PYR GLY
ASP
A ___—4BAP ASN®
ASS
@ HSE4-PHS THR
DHD
PIP=4=SAK #-SDP“4¢-DPI-4 MDP LYS
SUCOA
GLN
¢
precursors amino acids



G6P

RSP /\ TRP
7

F6P
E4P TYR
T3P CYS
PEP
3PG SER
P
PYR GLY
ASP
OA ASN¢
/4
/ ’T;-IR
LYS
SUCOA

GLN




AMD—ADP ~ NADP ~

PI

f,,

’I
f;(

)

| / y “small world” for
/\//4\‘/' V/ water, energy, redox —
// \‘}’/ g J / ) )

\\ & —

Highest degree carriers

a

The carriers are a

/ crucial element of

modularity

Metabolism is trivially

[ DI \—F

NADH ATP NADPH

CO2




G6P

R5P

F6P DAH= ‘,,z:::::::;—""'—————————————

= The precursors are a crucial

3P .
element of modularity.

PEP

e~

OA

SUCOA

ICIT ¢ AKG

precursors



Without carriers “long” not “small” worlds
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Each constrained quantity has a carrief
Delivery by rapid diffusion
“Price” by concentration of charged carrier?

Elegant implementation of optimization and
duality, integrated with delivery?
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 Fastest allosteric feedback control
« Complex proteins

* High metabolic overhead

« Hard to reprogram



S
S1 S2 Compare Substrates 82
these two 3
S3 S4 visualizations. S,
_ ATP
ADP Carriers

ATP ADP




12

Precursors
23

other
metabolites

_ 50
amino

acids

carriers

R L T
21
Glycolysis Amino Acid Biosyn



S, +ATP — S, + ADP

“Vertical” decomposition
S1
S1 S2  Substrates S
2
%yme
ATP
ADP .

ATP Carriers ADP

Reaction

I
=

ol -




12

23

metabolites

50

61

carriers

“Vertical”
decomposition

reactions



1

2
b ll

I..II )

metabolites23

61

||| |l"'|. ot
carriers - -ﬂ'l .I'I'.'

y4u §

“Vertical”
decomposition

reactions



12

Precursors
23

other
metabolites

_ 50
amino

acids 4,

carriers

“Horizontal”
decomposition

R L T
21
Glycolysis Amino Acid Biosyn



precursors 12
23

other metabolites

amino acids 20

_ 61
carriers

“Horizontal”
decomposition

» L e
- - - - _:— _'___--__-.:_
Glycolysis Amino Acid Biosyn
A\ %
; % N
i = AT = vi o
o eSS N e e




H Pylori core metabolism TN
M’"\, Trees/chains
1 "“h.\_ Sparse
U, T a
Amino acids N TN 4
Zoom back ~— T~
out to all Of Nucleotides ::
- t—h‘i
metabolis BN
acids s Sparse .l R
I.:WH
H“‘m
Cofactors i:h - '-.."
Precursors ..~ ie ot
Carriers & =1 LR «“Buses” e W
T— e — 240
Catabolism Amino Lipids &
acid Nucleotide fatty acid Cofactor
._..:-_
- -hfll =
B - ; -
Precursors " o m L

Amino acids

Carriers !

-"-.____-c:z-.-._
il ;
i :-l..:.-. : -l- _'_..' -




32

86

106

138

158

190

205

267

276._-_ O

289

133

190

240




32
86
Amino acids
106
138
Nucleotides
158
Lipids & 190

fatty acids

267

Cofactors
Precursors

289

Carriers

Catabolism

Nucleotide

fatty acid

o
“op—
" ; i}
o
-
- e
":_'..-
.D:-l-'"'-.
i :::E: - '._.L_ ,',_
-.:. ) i
Lipids &
'P1as Cofactor



Other
é\ A metabolites
66 Other S
% metabolites
g )% e
Precursors
Enzymes [Carriers]
Precursors
Carriers
“Vertical”

decomposition

"~l||l. '".

N N

L

58

133

190

240

Reactions




32

86

106

138

158

190

205

— T

Nucleotide

-

“‘:“-nx -
Lipid &
fatty acid

T

_‘h""\-._

~ Cofactor—-.._

267

276 [ _—_

- =n

i1 I

N =

Catabolism

58

133

190

“Horizontal”
decomposition




H‘-
” N ){\‘
“u, Trees/chains
'-k__.r Sparse
86 ™
no aci N = A
Amino a0|ds106 N . /1
\/
"'--n.-..n_H::I
. ] "'.'a

138 i R .
Nucleotides ' . - '

158 o,
Lipids &  ™f Sparse ca e
fatty acids ! -.:.'_; -

.H. -‘H-
L I -\..._\."..
.
ID:-I-""-.
Cofactors ., . .
Precursors , | = .. 3. - G o e : ——
Carriers <’P/;{—:r- .- “Buses” [ iee Tl i,
Catabolism Amino Lipids &
acid Nucleotide Cofactor

fatty acid



E. Goli: all metabolism

Ex | ™ . ; .
7\ Ny Stoichiometry matrix
Redud iersjgg "" w_ = o
7p) T
D | ey
Activat{ =2 ers jat- R — _“‘_. -
ol "
S H |
Aming .lq_'; " HML E." 4(3
E 295 = - - 'CSCH e % "'é
o o N | E e
Nucld S 350 i _f- ' ' : ——— é'g'" .g
Y1 |« Highly structured .
Lipid a| /\ ! - - : . el =
- © N
» Scale-rich (not scale-free) RN
.. .. ® N
c o Self-dissimilar (not self-similar) Z
H+ e L e L T S A e B i & L‘E =
Other o\ fits // '

537
V%\l

> 700 reactions

739



Catabolism
Intermediates

Activated

S Ty

carriers™ >

Precursor
metabolites

Amino acid
biosynthesis
iIntermediates

Amino
acids

Catabolism

Amino acid biosynthesis

el

e

reactions




E. Coli: all metabolism | reaCtionS

External ( S
metabolites n
Other inputs ~ ssp— e v —— me abOIIteS ) Sm
Reduced carriers | T Hﬁ_‘h o S
- N
\-._h‘-‘.\1 L p

= ] —
Act METABOLIC PATHWAYS E — - e e o
" o '.__# SR - [ - = X
Metabolism of Metabolismof t‘\-\‘-
ComplexCarbohyirates J C ofactors and Vitamins \_1\
=2 N C
Nucleotide £ \"—w o] (@)
Metabolism of . Metabolism ‘qh_ 2 et
Complex Lipids S48 [ — — - . —_— S o 0O
s - . . ~ _ . q._ =. m
- T . . : Y= = .
e e GCJ (o)
i ) o
. S ©
Y \-t;, " A o]
: T o c
. et I = ©
N e T =
Carbohydrate =
1 : Metabolism hé, E
£ 5 S
r  Metabolism of -rE’ o E .
Other Amino Acids © -%q}\\ ~
o B
© \
© oy
© \"\“;\
> \h"h
. i)
o +
ot i} el . ®. o
A TS = o e
Ot '
e i 282 440 553 608 739
: etahol ol
Other Substanc . . .
| — e | 5| Amino acids Nucleotides
01100 Si00

CTATrToOP VT ©



Metabolites Carriers IR T
103 , Catabolism T,
x : ¥ Precursors ® [T
5 Wall metabolites g \%\

Carriers

—¥ Lipids &

1 10

Number of reactions

—*— Amino acids '*

Nucleotides
fatty acids **

100 —¥ Cofactors =

H' Plerl Reactions

152 T
o
184 - —
204 =l
236
C.{
LY .\'H
RN
'ﬁ‘.
q}"'\
58 133 190 240
180
160
M 5 carriers 140
M 4 carriers 120
M 3 carriers 100
H2 carr!ers 80
M 1 carrier
M 0 carrier 60
40 -
20 -
0 .
3 4 5 7 8



103» All Metabolites

Rank

10 |

3 (ADP)
1 (ATP)

1 2
1 10 10

Number of reactions



Precursors

All Metabolites

1 2
10 10

Number of reactions

rank oc 15

Exponential

Exponential

Exponential

0 20 40 60

Number of reactions



Mixture

Most are In
only a few
reactions

All
Metabolites

1 Number of 10
reactions

2
10

High variabllity
of metabolite
degree

A few
metabolites
are in many

reactions



Mixture High variability

; Other due to
10 | metabolites structure of
_____ metabolic

.. All network

., Metabolites

L 4

Precursors

Gr— (G ATIEFS

1  Number of 10 ! 10 ’

reactions




Mixture L

Other \\
metabolites AN

e /\II 1ge ll:;ﬁ*bl;w;
“.,. Metabolites '

“ 180 =
Ny o
Yans. ob5 - 4 -
= b
]
n
u

Precursors T

I

J X2

B . U -l .
R ERRTRIPRP SRl WY PRI o
u i W "".-.' TURTRE Il. AP Vi, Mt e
T T " ' I N L
& Carriers| "7 -
N . R
e 58 133 190 240

Number of 10 ! 10 :

reactions

Reactions



Rank

10 |

All Metabolites

Carriers

Precursors

1 10 10

Number of reactions

Component
degrees are

roughly
exponential

\
1

Exponential

Exponential

Exponential

0 20 40 60

Number of reactions



Carriers

Metabolites

10" . Catabolism
—¥ Precursors © 7.

all metabolites

—¥ Lipids &

1 10

Number of reactions

Amino acids '*

Highly org
Nucleotides

fatty acids **

100 —¥ Cofactors =

|1

33 -ﬁﬁﬁﬁaa

78

204

236

M 5 carriers
M 4 carriers
@ 3 carriers
B 2 carriers
B 1 carrier
@ 0 carrier

H' PlerI Reactions

58

180
160
140
120
100

80

60
40 -

133 190




H. Pylori Amino Acid Biosynthesis

' : / =
Long assembly lines #/
en

| Highly structured —
W= Scale rich %
/X Efficient, evolvable \
\

L

i Robust yet frag i]e %

/// v ’/ 4 b 77 ' ' /@/ / -
W —~
A#AQ“‘!/I' §/ a7 = T A lMDP \
7 .
‘

O - t. I f \
rganizational S
principles? ’ L
W e NS )~
[ NP A
4 ‘..’/?/

/

/

\

AN

L
AD
D

| # L &

Pl



The SF/SOC/EOC

approach
Assume “modules™ as
given to start with, In
| this case all metabolites
Metabolites . ..
o (or find communities)

all metabolites

Try to reproduce statistics as
“emergent” phenomena of
nearly random ensembles,
with minimal tuning.

Carriers

1 10 100

Number of reactions



Random rewiring, even -11_"""--.. :

preserving all macroscopic " - . .

features, destroys functionality ""-..:t_:_.-‘
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«““Scale-free”
*““Small world”
« Won’t work

Rewired, but otherwise
identical:

* degrees

* role of carriers

* role of precursors

* role of outputs
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Without carriers
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Protein-Protein P(X >Xx)=cx™
Interaction (PPI)

networks . k ~cy %
K
Node degree distribution of A
all interactions in 0t a=l
filtered yeast interactome' 10 Ve

e
frequency\,\-

1 \

Han, J.-D et al (2004). 10| -t
Evidence for dynamically 1 +o= 2\'\'\ .
organized modularity in . RN
the yeast protein-protein 10— e
interaction network. 10 10

Nature, 430, 88-93. degree
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(PPI) networks
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( from Science)
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Fig. 1. The distribution function of connectivities for various large networks. (A) Actor collaboration
graph with N = 212,250 vertices and average connectivity (k) = 28.78. (B) WWW, N =
325,729, (k) = 5.46 (6). (C) Power grid data, N = 4941, (k) = 2.67. The dashed lines have
slopes (A) v = 2.3, (B) v, = 2.1and (C) vy = 4

actor power
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This is all well-known:

* Power laws are everywhere
* But most “results” are wrong
* Such errors are required in
all “high impact” physics
journals and magazines

 All well-known results on
SOC or scale-free are false

* All papers challenging these
errors rejected without review
* PRL Is (supposedly) trying to
reform, others not even trying




REVIEW ARTICLES | INSIGHT

PUBLISHED ONLINE: 1 OCTOBER 2010 | DOI:10.1038/NPHYS1803

Emergent complex neural dynamics

Dante R. Chialvo"?*

A large repertoire of spatiotemporal activity patterns in the brain is the basis for adaptive behaviour. Understanding the
mechanism by which the brain's hundred billion neurons and hundred trillion synapses manage to produce such a range of
cortical configurations in a flexible manner remains a fundamental problem in neuroscience. One plausible solution is the
involvement of universal mechanisms of emergent complex phenomena evident in dynamical systems poised near a critical
point of a second-order phase transition. We review recent theoretical and empirical results supporting the notion that the
brain is naturally poised near criticality, as well as its implications for better understanding of the brain.

poised near a critical
point of a second-order phase transition



Counts (k)

Claim:
1. These are power laws

2. Power laws imply scale free (or SOC)

3. The brain is scale free or (SOC)
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Are biological systems poised at criticality?

Thierry Mora'* and William Bialek!:?
! Joseph Henry Laboratories of Physics, Lewis—Sigler Institute for Integrative Genomies,
d 2 Princeton Center for Theoretical Seience, Princeton University, Princeton, New Jersey 08544 US
(Dated: December 13, 2010)

Many of life’s most fascinating phenomena emerge from interactions among many elements—many
amino acids determine the structure of a single protein, many genes determine the fate of a cell,
many neurons are involved in shaping our thoughts and memories. Physicists have long hoped that
these collective behaviors could be deseribed using the ideas and methods of statistical mechanies.
In the past few vears, new, larger scale experiments have made it possible to construct statistical
mechanies models of biological systems directly from real data. We review the surprising successes
of this “inverse” approach, using examples form families of proteins, networks of neurons, and flocks
of birds. Remarkably, in all these cases the models that emerge from the data are poised at a very
special point in their parameter space—a critical point. This suggests there may be some deeper
theoretical principle behind the behavior of these diverse systems.



Neurolmage 47 (2009) 1125-1134

Contents lists available at ScienceDirect
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journal homepage: www.elsevier.com/locate/ynimg

Review

Generic aspects of complexity in brain imaging data and other biological systems

Ed Bullmore *, Anna Barnes 2, Danielle S. Bassett ¢ Alex Fornito *9, Manfred Kitzbichler ¢,
David Meunier ¢, John Suckling #



Trends in Cognitive Sciences May 2011, Vol. 15, No. 5
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Understanding complexity in the
human brain

Danielle S. Bassett' and Michael S. Gazzaniga®

TComplex Systems Group, Department of Physics, University of California, Santa Barbara, CA 93106, USA
“Sage Center for the Study of the Mind, University of California, Santa Barbara, CA 93106, USA



Look at data from this paper, which is often quoted.

\ week ending
PRL 94, 018102 (2005) PHYSICAL REVIEW LETTERS 14 JANUARY 2005

Scale-Free Brain Functional Networks

Victor M. Eguiluz,! Dante R. Chialvo.” Guillermo A. Cecchi.® Marwan Baliki.? and A. Vania Apkarian?
'Instituto Mediterrdneo de Estudios Avanzados, IMEDEA (CSIC-UIB), EO7122 Palma de Mallorca, Spain
ZDeparrmem of Physiology, Northwestern University, Chicago, Illinois, 60611, USA
*IBM T.J. Watson Research Center, 1101 Kitchawan Rd., Yorktown Heights, New York 10595, USA
(Received 13 January 2004 published 6 January 2005)

Functional magnetic resonance imaging is used to extract functional networks connecting correlated
human brain sites. Analysis of the resulting networks in different tasks shows that (a) the distribution of
functional connections, and the probability of finding a link versus distance are both scale-free, (b) the
characteristic path length is small and comparable with those of equivalent random networks, and (c) the
clustering coefficient is orders of magnitude larger than those of equivalent random networks. All these

properties, typical of scale-free small-world networks, reflect important functional information about
brain states.

DOI: 10.1103/PhysRevLett.94.018102 PACS numbers: 87.18.Sn, 87.19.La, 89.75.Da, 89.75.Hc
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Experimental data




Experimental data
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Experimental data




Experimental data




n =15000 N(x) = neXp(—X—_l) :
U
exponential t
models
n =800
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N(x) = Nl(x) + Nz(x)

exponential
models +mixture
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The data appear to have two very distinct length
scales. What does this correspond to physiologically?
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Plotted with different scales to highlight the different lengths.
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Simulated (pseudorandom) data
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Simulated (pseudorandom) data
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Compare with
Experimental
data
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S—>P

Stoichiometry

Control/rate

S+ E2 (—)SE2 —> E2 +P Reaction rate
1 2
t
El (? Ez Enzyme form/activity
t
AA_4) = Enzyme level
S| [-1 0 0 O] _ _ _
1. substrate binds to active enzyme
d i o1 00 2. product released by enzyme
—SE2=1—1OO'p Y Eneym
dt 3. control enzyme form/activity
E, -1 1 1 0
4. control enzyme level
' E | |0 O -1 17 -




S —> P S lreactions> P

Stoichiometry Control/rate
S+ E2 (—)SE2 —> E2 +P Reaction g reactions
1 2
T rate
E1 <> E2 Enzyme
f: form/activity
AA—E Enzyme -
4 y AA @eactmn} Enzl
level
S| [-1 0 0 0] _ _ _
1. substrate binds to active enzyme
d i o 1 00 2. product released by enzyme
—|SE,|=|1 -1 0 O P Y ey
dt 3. control enzyme form/activity
E, -1 1 1 0
4. control enzyme level
' EE| |0 O -1 1) -




S % P main reaction (fast)

S+E2<?SE2—2>E2+P

includes the enzymes (very fast)

t
El (? E2 Control of enzyme form/activity (fast)
t
AA_4) E, Control of enzyme level (slow)
S| [-1 0 0 O] _ _ _
1. substrate binds to active enzyme
d i o1 00 2. product released by enzyme
—|SE,|=|1 -1 0 O P Y SNy
dt = 1 1 1 0 3. control enzyme form/activity
¢ 4. control enzyme level (very slow)
' E|] [0 O -1 17 -




The actual complexity of S reactions> P
this part dwarfs the

complexity of all other
parts in this layer.

S |reactions

E1 <> E2 Enzyme
3 form/activity

This is too simple, but at least

shows the sublayer where enzyme < . Enz1l
form and activity is controlled. AA <gaction

S -1 0 0 O} _ _ -
1. substrate binds to active enzyme
P 0O 1 0 O
d SE 1 1.0 0 2. product released by enzyme
dt| _° 3. control enzyme form/activity
E, -1 1 1 0
4. control enzyme level
E, 0O 0 -1 1]|- -




S E,SE,ATP )P

S+ATP—EE 5P+ ADP

In general, there is a
combinatorial explosion
of “intermediates”

ATP| -1
ADP| 1

Enzymes &
Intermediates

Intermediate

Reactions



S E,SE,ATP )P v Y
—— ___~

Control

Control gives even more
combinatorial explosion
of “intermediates”

Enzyme form/activity controlled by
 concentration of substrate and product

» concentrations of other metabolites

* interaction with other proteins

« covalent modification

* membership in complexes of many proteins

Control

Enzymes,
Intermediates

Intermediate

Reactions



E,SE,ATP
> P

Any
“modularity
"and
complexity
here

|s almost trivial
compared to
what exists
here.

v

S |-1 0

P 1 -1

Y 0O 1

ATP| -1 O

ADP| 1 0 |
Control
Enzymes,

Intermediates

Intermediate

Reactions
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Catabolism

Precursors v

S =

Enzymes

Macro-layers

Crosslayer
autocatalysis



Catabolism

Precursors

* Complex machines
— Polymerization
— Complex assembly

* General enzymes

* Regulated recruitment

* Slow, efficient control

* Quantized, digital

* Building blocks
— Scavenge
— Recycle
— Biosynthesis
* Special enzymes
* Allostery, Fast
* Expensive control
* Analog

et e e




* Ecosystems

* Biofilms

* Extremophiles
* Pathogens

* Symbiosis

recursors 4

Catabolism

%

AA
47 5; ‘
</

P — {

- - == == == \Nhatwe’ve neglected

* DNA replication
— Highly controlled
— Facilitated variation
— Accelerates evolution
* DNA modification (e.g.
methylation)
* Complex RNA control

* Homeostasis
- pH
— Osmolarity
— etc
* Cell envelope
* Movement,
attachment, etc




AA

Lower layer autocatalysis
Ribosomes making ribosomes

transl. i Ribosome



Lower layer autocatalysis
Macromolecules making ...

AA Proteins

ATP Ribosome

RNA - Transe. > XRNA

RNAp

DNA Repl. i Ger;e ~— DNAD




Autocatalytic within lower layers
* Collectively self-replicating
* Ribosomes make ribosomes, etc

Three lower

D .
layers” Yes. Enzymes
 Translation
 Transcription
* Replication AA [transl., > Proteins

. Ribosome

Naturally RNA [transc. > xRNA
recursive RNAD

DNA Repl.ﬁene\ DNAp

.....



Reactions

Flow/error
Protein level

Translation

RNA level

Naturally Transcription

recursive Flow/error

DNA level




Three lower
layers? Yes:
 Translation
 Transcription
 Replication/
rearrangement

DNA Replication/

Rearrangement is

complex and
highly controlled

Protein level

Translation

RNA level

Transcription

DNA level
Replication




Crosslayer autocatalysis

recursors

AA

al
e

— =Supply/demand control between layers? - =

Catabolism




Ligands &
Receptors

\ Outside

Responses

Reactions

control

Protein

Assembly

control

DNA/RNA




» ~50 such “two component” systems in E. Coli
 All use the same protocol

- Histidine autokinase transmitter

- Aspartyl phospho-acceptor receiver
» Huge variety of receptors and responses
 Also multistage (phosphorelay) versions

Signal

transduction

Variety of
Ligands &
Receptors

Transmitter

Recelver

\ -

Variety of
responses



Variety of
responses
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Variety of
Ligands &
= Receptors

eg,




Flow of “signal” Shared

5 _ protocols
_ = =~
Ligands & & % Responses
Receptors S I' ¥
— BN
Recognition,

specificity

* “Name resolution” within signal transduction
* Transmitter must locate “cognate” receiver
and avoid non-cognate receivers

 Global search by rapid, local diffusion

* Limited to very small volumes



Flow of “signal” Shared

5 . protocols
_ = >
Ligands & £ S Responses
Receptors = l' ¥
LS
= =
Recognition,
specificity
L
_8 -
_ = S
Ligands& & S Responses
Receptors S u ¥
LS
—
p o
B -
| £ S
Ligands & & 8 Responses
Receptors < l. ¥
=



Huge variety
« Combinatorial
* Aimost digital
* Easily reprogrammed

Recognition, et
* Located by diffusion

specificity

Variety of
Ligands &
Receptors

FeSPOoNSes




Flow of “signal”

2 . Limited variety
£ 3 - Fast, analog (via #)
3 g  Hard to change
|_

& u

b= o

= 'S

2 o

S 4

|_

Reusable in

different pathways

Transmitter
Recelver



Flow of “signal”

- Shared
D -
_ = Z protocols
Ligands & & 3 Responses
Receptors S I' ks
— BN
Recognition,
specificity
Flow of packets
Note: Any P
wireless system o _
and the Internet eor 2 £ Internet
to which it is °erS S I' % sites
connected work

Recognition,

the same way. Specificity (MAC)



Ligands &

Responses
Receptors

Transmitter
Rece

“Name” recognition

= molecular recognition
= localized functionally
= global spatially

Transcription factors
do “name” to “address”
translation



Ligands &

Responses
Receptors

Transmitter
Rece

“Name” recognition
= molecular recognition
= localized functionally

Transcription factors
do “name” to “address”
translation

DNA



Ligands &
Receptors

Transmitter

“Name” recognition
= molecular recognition
= localized functionally

Transcription factors
do “name” to “address”
Rece translation

0
D “Addressing”
S = molecular recognition
Both are @ = localized spatially
» Almost digital
+ Highly B

programmable

DNA



There are simpler

transcription

Responses factors for sensing
Internal states

o .
o
T

Ligands &
Receptors

| -

(ab)

z 2
- D
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eedback contro

2CST systems provide
speed, flexibility,
external sensing,
computation, impedance
match, more feedback,
but

greater complexity and
overhead
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There are simpler
transcription
factors for sensing
Internal states

- .
o
T

D



Domains can
be evolved
iIndependently

or coordinated.

Highly
evolvable
architecture.

Sensor domains

DNA and RNAp
binding domains

RNAp
~DNA

There are simpler
transcription
factors for sensing
Internal states

Application
layer cannot
access DNA

directly.



Sensing the

Sensor domains demand of the

This is like a application
“name to layer
address”
translation.
DNA and RNAp
binding domains o
Initiating
the change
In supply

o
DNA



Any Any Sensing the

input other demand of the
-\ / Sensor _\lnput/_ application

domains
layer

DNA and RNAp

DNA and RNAp binding domains
binding domains

« Sensor sides attach to metabolites or other proteins
* This causes an allosteric (shape) change

* (Sensing is largely analog (# of bound proteins))

* Effecting the DNA/RNAp binding domains

* Protein and DNA/RNAp recognition is more digital

* Extensively discussed in both Ptashne and Alon



“Cross talk” can be
finely controlled

Any

Any
inpu other
Sensor Input
‘ domains

* Application layer signals can be integrated or not
 Huge combinatorial space of (mis)matching shapes
* A functionally meaningful “name space”

 Highly adaptable architecture

* Interactions are fast (but expensive)

* Return to this issue in “signal transduction”




“Name” recognition
= molecular recognition %
= localized functionally *

= global spatially
E Transcription factors
~ do “name” to “address”

translation

leth arcid . “Addressing”
most digita = molecular recognition
 Highly

orogrammable = |localized spatially

0

DNA



Can activate Anc
Of repress comp
com

RNAp

work In
ex logical
pinations

romoter Genel

Gene2

* Both protein and DNA sides have sequence/shape

* Huge combinatorial space of
* Modest amount of “logic” can

“addresses”
be done at promoter

 Transcription is very noise (but efficient)
» Extremely adaptable architecture




- 4 i

(almost analog)
rate determined
by relative copy

number Binding
" recognition
nearly digital

Promoter | Geneb | Geneb




Recall: can work by
pulse code
modulation so for
small copy number
does digital to
analog conversion

rate (almost analog)
determined by copy number

|Promoter Geneb | Geneb




No crossing layers
 Highly structured interactions

\ 4

* Transcription factor proteins
control all cross-layer interactions
* DNA layer details hidden from

1 application layer

I * Robust and evolvable
 Functional (and global) demand

mapped logically to local supply

chain processes ~

Promoter

Genel Gene?2




Layered architectures

In programming:
No global variables

appligations

cessto In operating systems:
7 hysical Don’t cross layers

meXory?  (rings)

I.Dhyéioa.l




Problems with leaky layering

Modularity benefits are lost

 Global variables? @%$%*&!""%@&

* Poor portability of applications

* Insecurity of physical address space

* Fragile to application crashes

* No scalability of virtual/real addressing

 Limits optimization/control by duality?



IP addresses
Interfaces
(not nodes)




Global

and direct

|P_ addresses access to

Interfaces hvsical
(not nodes) o

address!

A8
\
Znaq
Zhaa
'
Znaq

CPU/ CPU/
Mem em -




Naming and addressing need to be
* resolved within layer

e translated between layers

* not exposed outside of layer

Related “issues” W
* DNS

* NATS

* Firewalls o—r—TCcp——°
* Multihoming

* Mobility

* Routing table size
» Overlays




Persistent
errors and
confusion.

Architecture
IS not graph
topology.

Architecture
facilitates
arbitrary graphs.




The “robust yet fragile™ nature of the Internet

John C. Doyle*", David L. Alderson*, Lun Li*, Steven Low*, Matthew Roughan?, Stanislav Shalunov’, Reiko Tanaka',
and Walter Willinger

*Engineering and Applied Sciences Division, California Institute of Technology, Pasadena, CA 91125; *Applied Mathematics, University of Adelaide,
South Australia 5005, Australia; Sinternet2, 3025 Boardwalk Drive, Suite 200, Ann Arbor, Mi 48108; "Bio-Mimetic Control Research Center,
Institute of Physical and Chemical Research, Nagoya 463-0003, Japan; and 'AT&T Labs-Research, Florham Park, NJ 07932

Edited by Robert M. May, University of Oxford, Oxford, United Kingdom, and approved August 29, 2005 (received for review February 18, 2005)

The search for unifying properties of complex networks is popular,  no self-loops or parallel edges) having the same graph degree
challenging, and important. For modeling approaches thatfocuson - We will say that graphs g € G(D) have scaling-degree sequer

ONAS | October 11,2005 | vol. 102 | no.41 | 14497-14502



Notices of the AMS, 2009

Mathematics and the
Internet: A Source of

Enormous Confusion
and Great Potential

Walter Willinger, David Alderson, and John C. Doyle
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 Highly organized
* Prices? Duality?
* Minimal case study?




Building
blocks

Reactions

Flow/error
control

Protein LI

Assembly

level

Flow/error
control

DNA/RNA
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Instructions




max Y U;(x) subjectto  Rx<c

x>0

Dual:
min [Zmax (ui(xi)— S b (R _c,)j ]
No duality gaps? e
Multipath routing? - Zmag [Ui(xi)—xi ZR.i P.j +Z|:p|clj
Coherent pricing?
:”QJ{,‘ Zmax (Ui(xi)_xiqi) +ZIO|C|j
= i %20 I

:Ui’(xi) =0, =X :(Ui')_l(qi)
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» Slowest transcription control ————
« Complex transcription factors
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Note: all feedback in this picture has been
removed in two ways:

1) There are self-loops
where an operon is
controlled by one it’s
own genes

2) All the real complex
control is in the
protein interactions
not shown (e.g. see
heat shock details)

These are not really
control systems,
they just initiate
manufacturing
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This architecture has limited scalability:

1) Fast diffusion can

only work in small

volumes
2) The number of

proteins required
for control grows
superlinearly with
the number of

enzymes (Mattick)
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