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Goal of the Science Paper

* Extend quality-optimization methods of
“community detection” to networks with the
following features:

— Multiscale: Consider multiple resolution parameters
at once (without sweeping)

— Time-Dependent/Longitudinal: Nodes and edges can
change in time

— Multiplex: Multiple types of edges

— Goal of this talk: Discuss some of the mathematics
behind what was used in Bassett et al. (2011).

— (And | have been asked to wildly speculate a bit, which
is a very strange thing for an aggressively cautious
person like me to do.)



Outline

Community structure
and community
detection

Multislice networks
Examples

Application: fMRI
Networks

Conclusions

YOURE TRYING T PREDICT THE BEHAVIOR
OF ? JUST MODEL
TAS A - AND THEN ADD
SOME. SECONDARY TERMS To ACCOUNT RR

\
EASY, RIGHT?
)

50, WHY DOES NEED
A WHOLE JOURNAL, ANYWAY?

LIBERAL-ARTE MAJORS MAY BE ANNOYING SOMETIMES,
BUT THERES NOTHIVG MORE QBNOXIOUS THAN
B PHYSICIST FIRST ENCOUNTERING A NEW SUBJECT.
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Community Structure by hand?:
Baseball Steroids Networks
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ldentifying Communities Algorithmically
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Images from A. Clauset, C. Moore, & M. E. J. Newman (Nature, 2008)



Simple (and Infamous) Benchmark:
Zachary Karate Club




Facebook Friendship Networks

A. L. Traud, E. D. Kelsic, P. J. Mucha, & MAP, SIAM Review, Vol. 53, No. 3, 526-543 (2011; arXiv:0809.0960)
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Preliminaries

“Hard/rigid” versus “soft/fuzzy/overlapping”
clustering

A community should describe a “cohesive group”
of nodes

— Tons of algorithms available

Usual notion: more intra-community edges than
one would expect at random

— But what does “at random” mean?

Review articles

— “Communities in Networks,” M. A. Porter, J.-P. Onnela
& P.J. Mucha, Notices of the American Mathematical
Society 56, 1082-1097 & 1164-1166 (2009).

— “Community Detection in Graphs,” S. Fortunato,
Physics Reports 486, 75-174 (2010).



Network Communities

® Communities = Cohesive
groups/modules/mesoscopic
structures

> In stat phys, you try to derive
macroscopic and mesoscopic
insights from microscopic
information
® Community structure consists
of complicated interactions
between modular (horizontal)
and hierarchical (vertical)
structures

® communities have denser set
of Internal links relative to
some null model for what links
are present at random

> “Modularity” 5.0
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Image from A. Clauset, C. Moore, & M. E. J. Newman (Nature, 2008)



Detecting Communities

MAP, J.-P. Onnela, & P. J. Mucha [2009], Notices of the
American Mathematical Society 56(9): 1082-1097, 1164-1166

Several types of methods
Agglomerative
Divisive
Local methods

Link-based



Quality / Modularity

* Popular approach: Use a “modularity” quality function

1
Q — W ZBEJCS(O%“ OJ) : B?;j — A?;j — P
2,]

where 0(C;, C;) indicates that the B;; components are only summed over cases in
which nodes ¢ and j are classified 1n the same community. The tactor W = % ZH Aij
is the total edge strength in the network (equal to the total number of edges for
unweighted networks), where k; again denotes the strength of node 7. In (3.2), P
denotes the components of a null model matrix, which specifies the relative value of
intra-community edges in assessing when communities are closely connected [8,77).

 GOAL: Assign nodes to communities to maximize Q.



I”

Platonic ideal of block structure for “traditiona
choice of Q (nested version of this)

* This can be generalized, though vast majority of
methods have this in mind...



Example Null Models

(aka: what does “at random” mean?)
A

~

e Erdos-Rényi (Bernoulli) Newman-Girvan*

kil
Pij =D Pij = Yo

 Leicht-Newman™* (directed) ¢ Barber* (bipartite)

: e k:d.
1 L.out A~ vty

P?J — ) V[/r A < O

* With additional resolution parameter y



Real Networks: Onion Peeling

Example: Protein-Protein Interaction Networks

A.C. F. Lewis, N. S. Jones, MAP, & C. M. Deane [2010] BMC Systems Biology 4: 100

10k

2000 3000 4000
Proteins

1000




Community Detection:
Computational Heuristics

1
W &

(W)

O Bi;jo(Ci, Cj), Bij = Aij — Py

e Cannot guarantee optimal quality without full
enumeration of possible partitions

— NP-hard problem
— Many algorithms available (simulated annealing, etc.)
— Need to pick null model appropriate to problem

— Extreme near-degeneracies in “good” local optima of Q
* (B. H. Good, Y.-A. de Montjoye, & A. Clauset, PRE, 2010)



Multislice Networks

Typical formulation for studying networks: Static networks,
with a single kind of tie, partitioned at a single spatial
resolution

— Also potentially sweep over multiple resolutions (or over
multiple static snapshots) but in an ad hoc fashion

Multislice framework: dynamic, multiplex, and with
communities at multiple scales

Simple idea: Glue common individuals across “slices”



What is an appropriate null model?

1
Q) = W ZB@'CS(O@-; Cj) , Bz’j — A%’J’ - P@'j

2,7

e Each slice is a network (static, single type) with a
specified spatial resolution of interest

* Different slices can mean: different value of
resolution parameter, different time snapshot,

C
>

ifferent type of connection
ave both intra-slice edges & inter-slice edges

. |

ow to choose a null model?



Quality of Partition via “Stability”

* |dea: use a dynamical process on a network to learn about
network structure

— We build on work of R. Lambiotte, J.-C. Delvenne, & M.
Barahona [arXiv:0812.1770]

e Quality of a network partition expressed in terms of its
“stability” (autocovariance function of an ergodic Markov
process on the network):

Rum(t) =Y P(C.t)— P(C, )
CeP
— P(C,t) = probability, for a given community C, for a random
walker to be in that community both initially and at time t

» Stability measures the quality of a partition in terms of the
persistence of the dynamics by giving a positive
contribution to communities from which a random walker
is unlikely to escape with a given time t



Laplacian Dynamics (i.e., random walks)

e Lambiotte, Delvenne, & Barahona
larXiv:0812.1770] derived modularity from
normalized Laplacian dynamics

. A
D = Z ﬁ..';pj — ;. pl = ki/2m.
j

-I' ;t" f,\'
Ry (1 E E - |, B.. = A../k.
'15’ om  2m 2m *J R
C igeC

Expansion of matrix exponential to first-order in t recovers
Newman-Girvan modularity with resolutiony = 1/t.

Question: How do we apply this idea to multislice networks?



Generalized Laplacian Dynamics

a) Calculate (to first order in t) the probability of
observing an edge between nodes i and j,
conditional on the type of connection
necessary to movej =2 i

b) Generalize dynamics to include motion along
different types of edges

c) Different spreading weights on different
types of edges



Multislice Networks
=D i Aijs ¢js = )2, Chars Kjs = kjs + ¢4s.
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Examples

e Zachary Karate Club

* Tastes, Ties, & Time

e 200 years of roll call votes in U.S. Senate
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Tastes, Ties, & Time

. #Communities per Individual
Data from Lewis et

w #Communities 1 2 3 4
al. 2008
* “not-Harvard” data set 0 1036 0 0 0 1640
First wave Of private 0.1 122 230 | 664 | 611 135
northeastern school o2 66 326 | 805 | 415 | 94
Edge types: 0.3 49 430 | 792 | 354 | 64
 Facebook friends
0.4 36 522 | 770 | 302 46
 Picture friends
.  Roommates 0.5 31 645 | 695 | 276 | 24
* Housing Groups 1 16 1640 | 0 0 0




Roll Call Voting Networks

into an n X n adjacency matric A, with elements A;; € [0,1] representing the extent of voting

agreement between legislators ¢ and j, with elements defined here by

1
A«;j - ?Z&}jk? [1)
LV

where ;i equals 1 if legislators ¢ and j voted the same on bill £ and 0 otherwise and b;; is the
total number of bills on which both legislators voted. The matrix A encodes a network of weighted

affiliations between legislators, with weights determined by the similarity of their roll-call records

KA. S. Waugh, L. Pei, J. H. Fowler, P. J. Mucha, & M. A. Porter [2011], \
arXiv:0907.3509 (without multislice formulation)

 Modularity Q as a measure of polarization

e Can calculate how closely each legislator is tied to their community (e.g., by
looking at magnitude of corresponding component of leading eigenvector of
modularity matrix if using a spectral optimization method)

 Medium levels of optimized modularity as a predictor of majority turnover

— By contrast, leading political science measure doesn’t give statistically significant indication

K One network slice for each two-year Congress /




Senator

Multislice formulation:
110 Senates (220 years)

Year
1800 1820 1840 1860 1880 1900 1920 1940 1960 1380 2000
— — T

1784R, 276D, 149DR, 162J, 53W, 84other

T
176W, 97AJ. 61DR, 49A,
24D 19F, 13J, 37other

151DR, 30AA, 14PA,5F =i
141F, 43DR gl
WM 40PA, 24F, BAA

Nominal party affiliations:
* Pro-Administration (PA)

e |+ Anti-Administration (AA)

| _ *» Federalist (F)
* Democratic-Republican (DR)

« Whig (W)

* Anti-Jackson (A])
» Adams (A)

* Jackson (])

ol s I 4908, 247D 150ther |1 Democratic (D)

;ﬂh—_“_-g:-;; ) ﬁ Zleeo iﬁﬁ Ligiber * Republican (R)
y " ..-f.f: kel

eS0T 299D, 6W, T1other 4D, 2R




Senator

110 Senates

Year
1800 1820 1840 1860 1880 1900 1920 1940 1960 1980 2000
1 1 1 T T T T T T ==

1784R, 2760, 143DA, 1624, 53W, 84other — ot

Gray areas:

1?Wm, 494, * 4th and 5th: First with political parties
24D, 19F, 13J, 37other

151DR, 30AA, 14PA_SF

141F, 43DR

[ A0PA, 24F, BAA

+ | Oth and | Ith:Vice President Aaron Burr's indictment for treason

* |4th and | 5th: Changing structures in Democratic-Republican party

e sty

*3Ist: Compromise of 1850

*+37th: Beginning of the American Civil War
*73rd and V4th: Landslide 1932 election amidst the Great Depression

+85th to 88th: Brought the major American civil rights acts

14900, 247D, 19other
|

Gray areas: 3 communities exist at the same time (9 communities in total; w = 0.5)



Arranged by state...




Coupling = 0.2: 13 communities
1615R, 220W, 163F, 97AJ, 273other

BN 105R, 44D
941R. 159D. 71. 3C
B
1917D. 122R. 13other
I 3 73D, 162J, 750ther e
AK#L: 66D, 2W, 1FS Il e #
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WY Ot
NMenok B TR L eie i Ry
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Coupling = 0.5: 8 communities
3270R, 328D, 43W. 63other

1194D, 99R, 41
HI I 334D, 162J, 72o0ther |
CA

WY 7| 153, 103DR, 1PA
NM v/ m39PA, 15F, 8AA

TN o + B 11 - S DAEES L 1T
l,(.\,.Iﬁ.‘ID! sect. -»um:;;; T 3

o o0 ﬁﬂ'ﬂ:g:?g
Bsusnatii=.

10 20 30 40 20 60 70 80 90 100 110
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Congress #



Coupling = 0.8: 6 communities

ZZBGDI 1260R. 223WI QTAJI EEDRI 49AI 151other

1092D, 87R, 4l
N | © 4D, 226DR. 162J, 1230ther I

AK HI (AP 111111111314 11k:4i]
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ORGcA saellees .,
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Congress #




3 communities

3302R. 340D. 223W. 185F. 99AJ. 72DR. 48A. 41PA_121other

=4

Coupling

3205D. 226R. 70other

110
2007-2009

100
1387-1289

90

1967-1362

80
1547-1243

7

0
1927-1929
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TEDT—?EC-‘E
Congress #
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From Congressmen to

e Back to the
Bassett et al.
(2011) paper
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Twenty-Five Infra-Session Windows, Each ~3 45mm Long



Dynamic Reconfiguration of Human
Brain Networks During Learning

fMRI data: network from
correlated time series

Examine role of
modularity in human
learning by identifying
dynamic changes in
modular organization
over multiple time scales

Main result: flexibility, as
measured by allegiance
of nodes to communities,
in one session predicts
amount of learning in
future sessions

I

Change in F lesxdbility

0os
0ol
0,005

—0u005
-001
-0015

+ a Prediction 1->2
T + ® Prediction 2—>3
I -T- o ':'] L]
=
I f=
I g
=
+ | 0.05
A1
I = O By
Sossion 1-2 Session 2-3 Dn ooz 0.04 0.0&
Flaxibility
Prediction 1->2 D Prediction 2->3




Time Evolution of Static Communities

A Large Scale: Complete Experiment C Small S=le: Individual Time Windows
04 - i 1 T T .
o |¥| 3° %' —o—Cortical Network
203 % L ! —o— Randomized Metwork
% | T4
"Fo 1 &
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Dynamic Community Structure

* |Investigating
community structure in
multislice framework
requires considering
new null models

* Many more details!

— E.g., Robustness of results
to choice of size of time
window, size of inter-slice
coupling, particular
definition of flexibility,
complicated modularity
landscape (see Good et al,
2010), etc.

A

Nodal Structure Connectivity Structure (™)

Temporal Structure

Single-Layer Framework

Metwork From One
Time Window

Multilayer Framework

REECL

Time Window

D Modularity MNumber Size  Stationarity
= - + £
Dol o] B (=i = AN
& 0 0 W= 0==
el k I °F
i = 7
E w 0.2 - =3 1 |-0.1
E Ty (1) *
5 02 ; 4—x7 10 0.2 é
Bafiedh NrE = INENE:
ﬂ E 0 == Of= O
¥ 5 -2 =
En.m - 1 —T— o 0.05 "
3 ﬁ i:i 5 |
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- -D- 5 1 1 L
& g * 5l |
E o _
E 001 5 -1l —1 005+
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Stationarity and Flexibility

 Community stationarity { (autocorrelation
over time of community membership):

£ 1gr
U{t, i+ m] = |G{f} M G{t + ﬂl}l ¢ Et:tn L sz,. t+ 1}

= 1G) UGt + m) F—tp — 1

* Node flexibility:

— f. = number of times node i changed communities
divided by total number of possible changes

— Flexibility f = <f>
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Fig.4. Flexibility and learning. (A) Boxplots showing that the increase in flexibility from experimental session 1 to session 2 was significantly greaterthan zero
(a one-sample t-test gives the result t ~ 6.00with p ~ 2 x 10°%), and that the magnitude of the decrease in flexibility from session 2 to session 3 wassignificantly
greater than zero (t ~ 7.46, p ~ 2 x 10~ "). (B) Significant predictive correlations between flexibility in session 1 and learning in session 2 (black curve, p ~ 0.001)
and between flexibility in session 2 and learning in session 3 (red curve, p =~ 0.009). Note that relationships between learning and network flexibility in the same

experimental sessions (1 and 2) were not significant; we obtained p > 0.13 using permutation tests. (C) Brain regions whose flexibility in session 1 predicted
learning in session 2 (p < 0.05, uncorrected for multiple comparisons). Regions that also passed false-positive correction were the left anterior fusiform cortex
and the right inferior frontal gyrus, thalamus, and nucleus accumbens. (D) Brain regions whose flexibility in session 2 predicted learning in session 3 (p < 0.05,
uncorrected for multiple comparisons). Regions that also passed false-positive correction for multiple comparisons were the left intraalcarine cortex, para-
cingulate gyrus, precuneus, and lingual gyrus and the right superior frontal gyrus and precuneus cortex. In (C) and (D), colors indicate the Spearman correlation
coefficient r between flexibility and learning.




Details, Details, Details...

* Checked robustness of findings with respect to...
— Length of time window
— Strength of inter-layer edges
— Ensemble of partitions

— Definition of flexibility

 Number of community changes (e.g., 1-2-1-2 is three
changes) versus number of distinct communities (e.g., 1-2-1-
2 is two distinct groups)

 =»Over 10,000 CPU-days of computation

— Multislice community detection code is now about 50
times faster (with same algorithm).

* (Should be ready to be send to UCSB soon!)



Stepping Back

(and some speculation)

* “Community Structure” is only one type of
mesoscopic structure.

* |t’s just by far the best-developed one.



Other “Block Models”

E.g., bipartiteness

E.g., core-periphery structure

— Some ideas (especially in social
science literature) but currently no
method to find this systematically

— M. P. Rombach, MAP, J. H. Fowler, &
P.J. Mucha, in preparation

'..r'-.'-."

(a) (b) (e) {d}
I 2. Different network models. (2) community structure, (b) core-periphery
stru::tlre. (<) global core-periphery |/ local community structure and (d) global com-
munity ' local core-periphery structure.




Structural/Regular Equivalence




Overlapping Community Structure

* Might want cohesive o o0 o
groups to overlap (“soft o %0 Aos
partitioning”) . ® o0
— There are some f S
W D=® 4 0
methods that allow this. IR ) ® o
— Additionally, some o;______ﬁ@ S D O °
hard-partitioning o /I N o © ©°
methods have o ‘f\ VAN
_ - ¢lae g
accompanying .';;_;:;_;;-'j.- . tﬁﬂ ot @g
computations of g © e GG o \Fxgle
@ © '®)

strength of attachment
to communities. Image from Ball et al. (PRE, 2011)



More Big-Picture Ideas

)

“Community detection” versus “community extraction’
— Goal: Extract cohesive functional groups

Defining cohesive groups via appropriate dynamics on
networks

— E.g., instead of using a random walk, use a different
dynamical system (appropriate to the problem under
study) and see if that can be mapped to a different quality
function to optimize

Spatial Networks: Networks are affected by the fact
that they’re embedded in space
— Review article: Barthelemy, 2011

— E.g., two network diagnhostics might not be strongly
correlated in general, but they might be if one considers
only networks embedded in R3



Going Beyond Networks

Well, we should... But one needs to develop good
concepts, develop good algorithms, etc.
Hypergraphs

— E.g. What in Hell is an “interaction” in protein-protein
interaction networks?

Tensors instead of Matrices

— E.g., Multislice networks (Mucha et al, Science, 2010), SVDs on
‘cubes’ of data

More intricate structures entail more choices

— E.g. clustering coefficient already has many choices for weighted
graphs, so there are multiple ways to generalize and the “right”
ways should be domain-specific

— E.g., parameter choices in multislice community detection

— E.g., what properties of SVDs to preserve in higher-dim
generalization?
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