

Specific synthetic perceptive, emotive and cognitive systems

Distributed Adaptive Control: A proposal on the architecture of mind, brain and behavior

Paul F.M.J. Verschure Catalan Institute for Advanced Studies (ICREA) & Technology Department, Universitat Pompeu Fabra Barcelona, Spain paul.verschure@upf.edu specs.upf.edu

Rehabilitation

Gaming System

GoalLeader

eSMC

Brains big and small

I set of underlying principles?

Brain = Action = Embodiment

Mathews et al (2010) Inf. Sci.

Events

SF.M3P Grid & Place cells

Hofstodter et al (2003;2005) Eur J. Neurosci;NIPS

Acting means solving the H4W problem

- Why: goal
- What: objects
- Where: space
- When: time

Act (How)

Courtesy Mintz lab, Univ. Tel Aviv

Distributed Adaptive Control

Duff et al (2011) Br.Res.Bull. Duff et al (2010) Neurocomputing Sanches et al (2010) Adv Compl Sys Mathews et al (2009;2010) IROS09;ICRA10 Eng et al (2003;2005) ICRA; IEEE Tr Sys, Man, Cyb Verschure et al (2003) Nature (425) 620 Verschure et al (2003) Cogn. Sci. (27) 561 Verschure & Voegtlin (1998) Neural Netw Verschure et al (1992) Rob. Aut. Sys. Verschure & Coolen (1991) Network

Contextual layer

Planning Operant conditioning

Adaptive layer

Stimulus/Action shaping Classical conditioning

Reactive layer Reflex Action selection Autonomic control

World: Exteroception Self: Interoception Action Duff et al (2011) Br.Res.Bull. Duff et al (2010) Neurocomputing Sanches et al (2010) Adv Compl Sys Mathews et al (2009;2010) IROS09;I Eng et al (2003;2005) ICRA; IEEE Tr Verschure et al (2003) Nature (425) Verschure & Althaus (2003) Cogn. S Verschure & Voegtlin (1998) Neural Verschure et al (1992) Rob. Aut. Sys Verschure & Coolen (1991) Network

Principles of DAC have been translated to an effective stroke rehabilitation system

Cameirao et al (2011) Rest.Neurol.Neurosci.

With Ruediger Seitz

specs.upf.edu

Contextual

Adaptive Layer

Reactive Layer

Contextual

Adaptive Layer

Reactive Layer

Layer

DAC: Reactive Layer

With Robosoft

DAC: Reactive Layer

With Robosoft

Regulating the 5Fs in the real world

Blanchard & Blanchard (1989) J Comp Psychol

RC Requires:

- behavioral repertoire (UR)
- stimulus repertoire (US)
- assessment of state of the world
- assessment of state of the organism
- integration of information
- action selection
- behavioral sustain

Monday, July 25, 2011

Gray's 2D model of defense as shown in McNaughton & Corr (2004)

Reactive Layer: Behavioral Control as Homeostasis

Sanchez et al (2010) Advances Compl Sys / IROS

Reactive Layer: Allostatic control system

Behavioral Results

P(x,y) of robot in arena

Reactive Layer: Behavioral Control as Allostasis

Allostatic Control for Behaviour Regulation

Sanchez et al (2010) Advances Compl Sys / IROS

Comparative Behavioral Results: Model predicts arousal/security of the animal

Sanchez et al (2010) Advances Compl Sys / IROS

Testing the prediction using HRV

Arousal (HRV) varies with the position in space consistent with the model prediction

Courtesy Sanchez lab IDIBAPS

DAC: Reactive Layer

- 5F system acts in space of gradients defined by the motivational affordance of the environment: –affordance gradient
- Behavioral regulation as allostatic control of homeostatic subsystems
 - –reactive behaviors are structured around gradients–gradients provide a common currency
- Robot and rat behavior seem consistent
- Robot model generates explicit and testable predictions

Optomotor system

Courtesy Bill Hansson, MPI Jena

Carlsson, M. A., et al (2005). European Journal of Neuroscience, Knüsel, P., et al (2007). Network: Computation in Neural Systems,

Bermúdez I Badia, S., et al (2010). PLoS Computational Biology, Mathews, Z., et al (2009). IEEE/RSJ International Conference on Intelligent RObots and Systems IROS. Bermudez I Badia, S., et al (2007). The International Journal of Robotics Research, Bermúdez i Badia, S., et al (2007). International Journal of Advanced Robotic Systems, Bernardet, U, et al (2008). Theory in biosciences 127(2), Pyk, P, et al (2006). Autonomous Robots, 20(3),

DAC: Adaptive Layer

DAC: Adaptive Layer

DAC: Adaptive Layer

The problem of Priors

How to acquire states and policies in parallel?

Verschure (1996;1998) wcci

DAC Adaptive Layer: Learning Dynamics

Verschure & Voegtlin (1998) Neural Netw Verschure & Pfeifer (1992) SAB

DAC Adaptive Layer: Learning Dynamics

Remember: Rescorla & Wagner (1972)

 $v = W^{\mathsf{T}} x$

V defines the reactive Layer

W is plastic and changes according to the slow dynamics Learning is modulated by the internal/motivational state (IS)

Verschure & Voegtlin (1998) Neural Netw Verschure & Pfeifer (1992) SAB

The behavioral law of associative competition

$$V_{ab} = V_a + V_b$$

$$\Delta V_i = \alpha_{cs} \gamma_{us} (\lambda - \Sigma_j V_j)$$

Rescorla & Wagner (1972)

Ivan Pavlov (1849-1936)

The behavioral law of associative competition

$$V_{ab} = V_a + V_b$$

$$\Delta V_i = \alpha_{cs} \gamma_{us} (\lambda - \Sigma_j V_j)$$

Rescorla & Wagner (1972)

Ivan Pavlov (1849-1936)

animals only learn when events violate their expectations

Optimization Objective: Correlation, Perceptual and Behavioral prediction

 $e = V^{\mathsf{T}}u$ $y = W^{\mathsf{T}}x$

Duff et al (2010) Neurocomputing

Optimization Objective: Correlation, Perceptual and Behavioral prediction

correlation
$$e = V^{\mathsf{T}} u$$

 $J_C(W) = E[trace(ye^{\mathsf{T}})|W]$ $WW^{\mathsf{T}} = I$ $y = W^{\mathsf{T}} x$

Duff et al (2010) Neurocomputing
Optimization Objective: Correlation, Perceptual and Behavioral prediction

correlation
$$e = V^{\mathsf{T}} u$$

 $J_C(W) = E[trace(ye^{\mathsf{T}})|W]$ $WW^{\mathsf{T}} = I$ $y = W^{\mathsf{T}} x$

perceptual prediction

 $J_P(W) = E[||x - WW^{\mathsf{T}}x||^2|W]$

Duff et al (2010) Neurocomputing

Optimization Objective: Correlation, Perceptual and Behavioral prediction

correlation

$$E = V^{\mathsf{T}} u$$

 $J_C(W) = E[trace(ye^{\mathsf{T}})|W]$ $WW^{\mathsf{T}} = I$ $y = W^{\mathsf{T}} x$

perceptual prediction

 $J_P(W) = E[||x - WW^{\mathsf{T}}x||^2|W]$

behavioral prediction $J_B(W) = E[||e - W^{\mathsf{T}}x||^2|W]$

Duff et al (2010) Neurocomputing

- - T

Optimization Objective: Correlation, Perceptual and Behavioral prediction

correlation

$$I_C(W) = E[trace(ye^{\mathsf{T}})|W]$$
 $WW^{\mathsf{T}} = I$ $y = W^{\mathsf{T}}x$

perceptual prediction

 $J_P(W) = E[||x - WW^{\mathsf{T}}x||^2|W]$

behavioral prediction $J_B(W) = E[||e - W^{\mathsf{T}}x||^2|W]$

Duff et al (2010) Neurocomputing

т

Performance as the trade-off between perceptual and behavioral learning

Fig. 5. Example trajectories of the robot for different values of ζ after learning: (a) perceptual learning only $\zeta = -1$, (b) behavioral and perceptual learning $\zeta = 0.9$, and (c) behavioral learning only $\zeta = 1$.

Fig. 6. Floating behavioral performance over 1000 trials with a time bin of 50 trials: (a) performance for different values of ζ and (b) performance for an actively modulated ζ .

specs.upf.edu

Duff et al (2010) Neurocomputing

а

The neuronal substrate of the AL : prediction and correlation in the amygdala and the cerebellum

Medina et al, Nat Rev Neurosci, 2001

specs.upf.edu

Models of AL

Monday, July 25, 2011

Sanchez-Montanes et al (2000/2002)

Models of AL

Monday, July 25, 2011

Models of AL

Hofstotter et al (2005) NIPS

Konorski's 2 phase theory of conditioning

Monday, July 25, 2011

Α

Event and time acquisition

Auditory cortex Before Conditioning After Conditioning 600 600 500 500 400 400 Spikes per Trial per Tiral Spikes | 200 200 100 100 0 3 4 5 2 3 4 5 1 2 1 Simuli ID Simuli ID

Cerebellum Trial I

Sanches Montanes et al 01 Neur Comp; Hofstotter et al 2003; Inderbizin et al 2010 WCCI

Event and time acquisition

Sanches Montanes et al 01 Neur Comp; Hofstotter et al 2003; Inderbizin et al 2010 WCCI

After training

Sanches Montanes et al 01 Neur Comp; Hofstotter et al 2003; Inderbizin et al 2010 WCCI

Robot Validation

Pre-Conditioning Trial 1-113

Post-Conditioning Trial113-600

DAC AL: Intermediate conclusion

- From sensing to symbols, percepts and actions
- Interaction of perceptual and behavioral learning
 - PL & BL are both prediction based
 - Interaction of PL & BL are dynamically regulated
- Konorski's 2 phase theory emphasizes the fundamental distinction between event and interval representations
- The objectives of the adaptive layer are perceptual and behavioral prediction
- AL maps onto the neuronal substrate of classical conditioning: amygdala and cerebellum

Spatial Memory & Decision Making

10 11

Inter-layer control signals and protocols of DAC

Verschure & Voegtlin (1998) Neur.Netw. Verschure & Althaus (2003) Cog.Sci., 27: 561-590 Verschure et al (2003) [Duff et al., Brain Res Bull 2011]

Monday, July 25, 2011

Cortical networks are characterized by dense local and sparse long-range inter-area connectivity

Douglas & Martin (2004) Ann Rev Neurosci.

Reconstruction: Kevan Martin & John Anderson INI-Zurich

The brain might not have the wires to implement hierarchical systems

Monday, July 25, 2011

Cortical networks are characterized by dense local and sparse long-range inter-area connectivity

Douglas & Martin (2004) Ann Rev Neurosci.

Reconstruction: Kevan Martin & John Anderson INI-Zurich

The brain might not have the wires to implement hierarchical systems

Temporal Population Code

How to wire up the visual hierarchy?

A model of the ventral visual system:

- Sparseness: Learning sparse codes explains simple cell receptive fields in V1 (Olshausen 1996) and the formation of adequate auditory filters (Lewicki 2002).
- Stability: Optimizing for temporal stability in visual system leads to invariant representations similar to V1 complex cells (Kayser 2001, Einhäuser 2003, Körding 2003, Berkes 2003, Wyss).

Mixing what and how into sensorimotor couplets

Lisman (2007) Prog in Br Res

Defining "what"

Cortical networks are characterized by dense local and sparse long-range inter-area connectivity

Douglas & Martin (2004) Ann Rev Neurosci.

Reconstruction: Kevan Martin & John Anderson INI-Zurich

The brain might not have the wires to implement hierarchical systems

Monday, July 25, 2011

Cortical networks are characterized by dense local and sparse long-range inter-area connectivity

Douglas & Martin (2004) Ann Rev Neurosci.

Reconstruction: Kevan Martin & John Anderson INI-Zurich

The brain might not have the wires to implement hierarchical systems

Temporal Population Code

TPC Generalization to face recognition

V1 TPC Model

Each orientation defines a population of pyramidal cells.
R: radius (11) of connected cells in the same population.
A neural representation in which information is conveyed by relative amounts of activity across multiple elements of an array.

Network Responses

55

Attention based processing

Yale Face Database

(a)

(b) Subregions of the first face class.

IO subjects

- •4 subsets of increasingly difficult light conditions.
- •Standard face recognition data set.

Performance

Performance

Lee, K. C., Ho, J. & Kriegman, D. Acquiring Linear Subspaces for Face Recognition under Variable Lighting. IEEE Trans.

Pattern Anal. Mach. Intelligence 27, 684–698 (2005).

Defining "what" using TPC

- TPC incorporates basic wiring templates of the cortex
- TPC aims at solving the basic inter-area wiring bottle neck
- TPC provides multiplexing
- Generalizes to face recognition
- Performance depends on active input sampling: attention

How to wire up the visual hierarchy?

A model of the ventral visual system:

- Sparseness: Learning sparse codes explains simple cell receptive fields in V1 (Olshausen 1996) and the formation of adequate auditory filters (Lewicki 2002).
- Stability: Optimizing for temporal stability in visual system leads to invariant representations similar to V1 complex cells (Kayser 2001, Einhäuser 2003, Körding 2003, Berkes 2003, Wyss).

Objectives: stability and decorrelation

$$\Psi = (1 - \gamma)\Psi_{stab} + \gamma\Psi_{decor}$$

Stability:

$$\Psi_{stab} = -\sum_{i}^{1} \frac{\left\langle A_{i}^{g} \right\rangle_{t}}{\operatorname{Ver}_{t}\left(A_{i}\right)}$$

Decorrelation:

$$\Psi_{decor} = -\sum_{i}^{l} \sum_{i\neq j}^{l} \left(\rho_{ij} \left(A_{i}, A_{j} \right) \right)^{2}$$

Wyss et al, 2006, Public Library of Science

Hierarchy of representations

Wyss et al, 2006, Public Library of Science

Position reconstruction environment stretching

Wyss et al, 2006, Public Library of Science

Monday, July 25, 2011

specs.upf.edu

Defining "what" using cortical networks

Complex real-world physiologically realistic representations can be acquired on the basis of few cortical-like rules:

decorrelation & smoothness

Mixing what and how into sensorimotor couplets

Lisman (2007) Prog in Br Res

Rate remapping in the DG

Leutgebetal., 2007, Science.

EC-DG Model

Reno Costa et al (2010) Neuron

Rate remapping in the DG: LEC & MEC

Reno Costa et al (2010) Neuron

DG forms sense-act couplets by instantaneous mapping of LEC and MEC inputs

DG forms sense-act couplets by instantaneous mapping of LEC and MEC inputs

Place cells emerging from model interaction.

Rate map of simulated granule cells with:

(A)only MEC Input(B)only LEC input(C)both MEC and LEC inputs.

Reno Costa et al (2010) Neuron

Biological evidence for gradient based planning

Johnson & Redish (2007) J Neurosci

At a decision point place cell activity correlates with possible forward paths at the bifurcation

Biological evidence for gradient based planning

Johnson & Redish (2007) J Neurosci

At a decision point place cell activity correlates with possible forward paths at the bifurcation

Can we dynamically build and modify gradients?

Sum of 2D Gaussians $f(x,y) = Ae^{-\left(rac{(x-x_0)^2}{2\sigma_x^2} + rac{(y-y_0)^2}{2\sigma_y^2}
ight)}$

Sanchez et al (2010) IROS

We can use Gaussians as being the basis for building gradients

Can we dynamically build and modify gradients?

Sum of 2D Gaussians $f(x,y) = Ae^{-\left(rac{(x-x_0)^2}{2\sigma_x^2} + rac{(y-y_0)^2}{2\sigma_y^2}
ight)}$

Place/Grid Cells are often approximated by Gaussians

Sanchez et al (2010) IROS

We can use Gaussians as being the basis for building gradients

Can we dynamically build and modify gradients?

Sum of 2D Gaussians $f(x,y) = Ae^{-\left(rac{(x-x_0)^2}{2\sigma_x^2} + rac{(y-y_0)^2}{2\sigma_y^2}
ight)}$

Place/Grid Cells are often approximated by Gaussians

Place/Grid Cells as basis function for generating Affordance Gradients

We can use Gaussians as being the basis for building gradients

Sanchez et al (2010) IROS

Sanchez et al (2010) IROS

Allocentric Goal oriented Navigation using affordance gradients

• Can we then translate graph search into a problem of gradient ascent/descent?

I build the gradient connecting the initial position to the goal.

2 sequentially generate random paths among place cells (Gaussians) covering overlapping space

3 accumulate in a gradient the generated path if it was successful (if it reached the memorized goal).

Forward Path Gradient

Sanchez et al (2010) IROS

Goal-Directed Behavior

• We detect bifurcations by abrupt changes in the direction of a generated path of Gaussians

M_{path} : gradient of

each generated path

M_{bif} : gradient of

the accumulated bifurcations and corners

Sanchez et al (2010) IROS

Goal-Directed Behavior

• We detect bifurcations by abrupt changes in the direction of a generated path of Gaussians

Sanchez et al (2010) IROS

Goal-Directed Behavior: Finding a random target

• The majority of searches show a monotonic relation between "time to target" versus "shortest path"

Sanchez et al (2010) IROS

Dac AL: Mixing **what** and **how** into sensori-motor couplets

- DG provides instantaneous what and how mapping into an integrated representation
- MEC (how) provides a basic metric modulated by LEC (what)
- This can be read out into dedicated representations of space
- Hippocampal representations can be used to construct affordance gradients linking to the reactive layer allostatic control systems

DAC: Contextual Layer

DAC: Contextual Layer

Contextual layer generalized to model of PFC

Contextual Layer:

Rule learning and switching

- PFC-grounded contextual layer
 - Sustained activity
 - Lateral connectivity
 - Reward modulation
- Single/Multiple T-Maze, Tower of London
- SMC can be manipulated and adapted to express sequential rules and plans

[Duff et al., Brain Res Bull 2003]

Integration perception and memory in decision making

$$m_l^{"} = c_l^{"} t_l^{"}$$

(1) perceptual matching through **membrane potential** modulation (t);
(2) memory biasing and chaining through **threshold** modulation (c)

[Verschure et al., Nature 2003]

Certainty/novelty assessed at level of RL modulates the memory units of CL

Verschure & Voegtlin (1998) Neur.Netw. Verschure & Althaus (2003) Cog.Sci., 27: 561-590 Verschure et al (2003) Nature

[Duff et al., Brain Res Bull 2011]

Contextual layer: integrating perception and memory

- Our previous prediction: sensory information and memory bias are integrated using separate decision variables: rate and threshold.
- We analyzed responses from neurons in the PMd
- Observed:
 - Rate does not vary with certainty
 - •Neural variability and RT increases with uncertainty.
 - Mean and SE of the RT can be predicted from the neural variability.

$$m_l^k = c_l^k t_l^k$$

Control signals and protocols in DAC

3 layers of DAC

Contextual layer: Mapping states into plans for goal oriented action

[Duff et al., Brain Res Bull 2011]

Monday, July 25, 2011

[Duff et al., Brain Res Bull 2011]

Certainty/novelty assessed at level of RL modulates the memory units of CL

[Duff et al., Brain Res Bull 2011]

[Duff et al., Brain Res Bull 2011]

[Duff et al., Brain Res Bull 2011]

Certainty/novelty assessed at level of RL modulates the memory units of CL

Verschure & Voegtlin (1998) Neur.Netw. Verschure & Althaus (2003) Cog.Sci., 27: 561-590 Verschure et al (2003) Nature

[Duff et al., Brain Res Bull 2011]

Monday, July 25, 2011

Spatial Memory & Decision Making

(0 P

Conclusions 1

- DAC is an architecture that integrates mind and brain
- It is validated in the context of foraging behavior
- The functional decomposition of foraging has been mapped onto the brain through detailed models of:
 - Brainstem, amygdala, cerebellum, hippocampus and visual, entorhinal and prefrontal cortex
- Reactive layer: provides the regulation of species specific behaviors through affordance gradients
- Adaptive layer 1:
 - acquires the sense-act state space
 - model of ventral visual system, TPC coupled to active input sampling for face recognition
- Adaptive layer 2:
 - Compresses sense and act states into sense-act couplets
 - representational primitive of the hippocampus

Conclusions 2

- Adaptive layer 2:
 - Compresses sense and act states into sense-act couplets
 - These representational primitives are formed in the dentate gyrus of the hippocampus
- Contextual layer:
 - sensory information and memory based prediction are integrated using separate decision variables: rate and threshold in PFC
- DAC has been validated using
 - mobile and humanoid robots
 - -Neuroprosthetics (cerebellum)
 - Neurorehabilitation (Rehabilitation Gaming Station)