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Cognitive Systems and Interactive Media (CSIM): neuroscience 2008

Structure of the nervous system

Brain

Human

Carnivore

Amphibian

Brains big and small

Moth

1 set of underlying principles?
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Krubitzer: A Unifying Theory of Brain Evolution 47

Figure 1. A phylogenetic tree illustrating the relationships between major mammalian lineages. All
mammals contain a constellation of cortical fields that includes primary sensory areas as well as second
sensory areas. These areas are likely due to inheritance from a common ancestor, and the ubiquity of their
organization indicates that there is an underlying developmental blueprint that all mammals share. Some
areas, such as MT are found only in primates. A comparative analysis allows us to infer how the brain of the
common ancestor of all mammals was organized. Modified from Krubitzer & Hunt 2007.

Kubitzer,	  2007
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Brain	  =	  Ac.on	  =	  Embodiment

TimeEvents

4Reno	  Costa	  et	  al	  (2010)	  Neuron Hofstodter	  et	  al	  (2003;2005)	  Eur	  J.	  Neurosci;NIPS

Mathews	  et	  al	  (2010)	  Inf.	  Sci.
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Ac.ng	  means	  solving	  the	  H4W	  
problem

• Why:	  goal	  
• What:	  objects
• Where:	  space
• When:	  .me

Courtesy	  Mintz	  lab,	  Univ.	  Tel	  Aviv

Act	  (How)

5
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Verschure & Voegtlin (1998) Neural Netw
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Adaptive layer 

Reactive layer
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Principles of DAC have been translated 
to an effective stroke rehabilitation 

system

1/10

RGS:  Imagery of Target Catching

L

SMA
dPMCdPMC

Central

Sulcus

Central

Sulcus

RFX, p<0.005 n=18

10
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Ruediger Seitz
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Cameirao et al (2011) Rest.Neurol.Neurosci.
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the amygdala. Higher level processing, here, does not imply
less involvement in fundamental features of defense.
Anterior cingulate is involved in the perception of pain
[25,26,33,34,85], the production of anger [48], Pavlovian
fear conditioning [84] and avoidance learning [86]. Like-
wise, anterior cingulate lesions impair avoidance of the CS-
in discriminated autoshaping, as well as “lick suppression
during the presentation of a CS þ that had previously been
paired with shock…; and active avoidance learning” [18].

Anterior cingulate cortex thus deals with fundamental
outputs of the FFFS—but involves stimulus inputs that may
be as complex as guilt [141] with a focus on the affective
rather than sensory aspects of pain [132]. In particular, we
see the anterior cingulate as controlling active avoidance
behaviours that include those that cannot be terminated by
safety signals. There is a wide range of both innate and
acquired rituals of this sort. Hand washing to avoid
infection is an example. We thus assign their pathological
form, obsessive compulsive disorder, to the anterior
cingulate [50,133]. However, using the idea of defensive
distance as the basis for speculation, we suggest that the
anterior cingulate deals with relatively simple ‘surface’

expectations of nebulous threat (with prefrontal cortex
dealing with deeper aspects). Likewise, using the idea of
defensive direction, we suggest that it deals only with
obsessional active avoidance with posterior cingulate
dealing with obsessional passive avoidance. Also, as with
all of the other areas we include in Fig. 3, the cingulate is
held to deal with goal representations. More detailed motor
control is elsewhere, in the case of the cingulate this control
involves compulsions controlled largely by the basal
ganglia [133].

Our present allocation of anterior cingulate cortex to
defensive avoidance is tentative. A possible role in
defensive approach is suggested by involvement in the
resolution of conflicts between approach and avoidance
[91,135] and in more general response conflicts ‘in which a
prepotent response tendency has to be overcome’ [7,19].
Indeed, there is evidence that it is more involved in conflict
monitoring than in selection for action [17,23,24]. These
data would, nonetheless, be consistent with our assignment
of anterior cingulate to the active defense system if the tasks
used (e.g. Stroop test) are in fact eliciting multiple responses
[47] that conflict in the attempt to achieve a single goal.

Fig. 3. The two dimensional defense system. On either side are defensive avoidance and defensive approach respectively (a categorical dimension). Each is

divided, down the page, into a number of hierarchical levels. These are ordered from high to low (top to bottom) both with respect to neural level (and
cytoarchitectonic complexity) and to functional level. Each level is associated with specific classes of behaviour and so symptom and syndrome. Syndromes are

associated with hyper-reactivity of a structure and symptoms with high activity. Given the interconnections within the system (and effects of e.g. conditioning)

symptoms will not be a good guide to syndromes.

N. McNaughton, P.J. Corr / Neuroscience and Biobehavioral Reviews 28 (2004) 285–305 293

Regula.ng	  the	  5Fs	  in	  the	  real	  world

Gray’s	  2D	  model	  of	  defense	  as	  shown	  in	  McNaughton	  &	  Corr	  (2004)	  

	  

Blanchard	  &	  Blanchard	  (1989)	  J	  Comp	  Psychol

RC	  Requires:
-‐	  behavioral	  repertoire	  (UR)
-‐	  s4mulus	  repertoire	  (US)
-‐	  assessment	  of	  state	  of	  the	  world
-‐	  assessment	  of	  state	  of	  the	  organism
-‐	  integra4on	  of	  informa4on
-‐	  ac4on	  selec4on
-‐	  behavioral	  sustain 16
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Reac.ve	  Layer:	  Allosta.c	  control	  system
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Reac.ve	  Layer:	  Behavioral	  Control	  as	  Allostasis

 

courtesy	  Pennaertz	  lab,	  UvA
Sanchez	  et	  al	  (2010)	  Advances	  Compl	  Sys	  /	  IROS
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security	  &	  	  arousal
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Visited	  field

Compara.ve	  Behavioral	  Results:
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Tes.ng	  the	  predic.on	  using	  HRV	  

23

!

Courtesy	  Sanchez	  lab	  IDIBAPS

Arousal	  (HRV)	  varies	  with	  the	  posi.on	  in	  space	  
consistent	  with	  the	  model	  predic.on
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DAC:	  Reac.ve	  Layer
• 5F	  system	  acts	  in	  space	  of	  gradients	  defined	  by	  
the	  mo.va.onal	  affordance	  of	  the	  environment:
–affordance	  gradient

• Behavioral	  regula.on	  as	  allosta.c	  control	  of	  
homeosta.c	  subsystems
–reac.ve	  behaviors	  are	  structured	  around	  gradients
–gradients	  provide	  a	  common	  currency

• Robot	  and	  rat	  behavior	  seem	  consistent
• Robot	  model	  generates	  explicit	  and	  testable	  
predic.ons

24
Monday, July 25, 2011
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Courtesy	  Bill	  Hansson,	  MPI	  Jena

Bermúdez I Badia, S., et al (2010). PLoS Computational Biology,
Mathews, Z., et al (2009). IEEE/RSJ International Conference on Intelligent RObots and Systems IROS. 
Bermudez I Badia, S., et al (2007). The International Journal of Robotics Research, 
Bermúdez i Badia, S., et al (2007). International Journal of Advanced Robotic Systems, 
Bernardet, U, et al (2008). Theory in biosciences 127(2),
Pyk, P, et al (2006). Autonomous Robots, 20(3),

PHOTO
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sensiGvity

Optomotor	  system
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Carlsson, M. A.,et al (2005). European Journal of Neuroscience, 
Knüsel, P., et al (2007). Network: Computation in Neural Systems,
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The problem of Priors

Act

States

Verschure (1996;1998) wcci

How to acquire states and policies in parallel?
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DAC	  Adap(ve	  Layer:	  Learning	  
Dynamics

Target	  US

Patch	  CS

Verschure & Voegtlin (1998) Neural Netw
Verschure & Pfeifer (1992) SAB

dW	  =	  f(x-‐y)

Remember:	  Rescorla	  &	  Wagner	  (1972)
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DAC	  Adap(ve	  Layer:	  Learning	  
Dynamics

V	  defines	  the	  reac.ve	  Layer
W	  is	  plas.c	  and	  changes	  according	  to	  the	  slow	  dynamics
Learning	  is	  modulated	  by	  the	  internal/mo.va.onal	  state	  (IS)

Target	  US

Patch	  CS

Verschure & Voegtlin (1998) Neural Netw
Verschure & Pfeifer (1992) SAB

dW	  =	  f(x-‐y)

Remember:	  Rescorla	  &	  Wagner	  (1972)
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The behavioral law of associative 
competition

Ivan Pavlov (1849-1936)

Vab = Va + Vb

ΔVi = αcs γus (λ – Σj Vj)
Rescorla & Wagner (1972)
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The behavioral law of associative 
competition

animals only learn when events violate 
their expectations

Ivan Pavlov (1849-1936)

Vab = Va + Vb

ΔVi = αcs γus (λ – Σj Vj)
Rescorla & Wagner (1972)
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Op.miza.on	  Objec.ve:
Correla.on,	  Perceptual	  and	  Behavioral	  predic.on

Duff et al (2010) Neurocomputing
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Op.miza.on	  Objec.ve:
Correla.on,	  Perceptual	  and	  Behavioral	  predic.on

correla.on

Duff et al (2010) Neurocomputing
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Op.miza.on	  Objec.ve:
Correla.on,	  Perceptual	  and	  Behavioral	  predic.on

correla.on

perceptual	  predic.on

Duff et al (2010) Neurocomputing
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Op.miza.on	  Objec.ve:
Correla.on,	  Perceptual	  and	  Behavioral	  predic.on

correla.on

perceptual	  predic.on behavioral	  predic.on

Duff et al (2010) Neurocomputing
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Op.miza.on	  Objec.ve:
Correla.on,	  Perceptual	  and	  Behavioral	  predic.on

The	  informa.on	  stored	  in	  the	  contextual	  layer	  or	  prototypes	  p are	  defined	  as:
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  p=WWTx
This	  is	  the	  linear	  projec.on	  to	  the	  subspace	  defined	  by	  W.

correla.on

perceptual	  predic.on behavioral	  predic.on

Duff et al (2010) Neurocomputing
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Performance	  as	  the	  trade-‐off	  between	  
perceptual	  and	  behavioral	  learning

UNCORRECTED P
ROOF

ARTICLE IN PRESSNEUCOM 11770 XML-IS

maintained for the whole simulation. This suggests that an active
control of the balance between perceptual and behavioral
learning is necessary to perform optimally. The precise values of
the parametrization are not critical for performance.

After analyzing the behavioral performance of the correlative
subspace learning rule we now analyze the perceptual perfor-
mance. Fig. 7(a)–(c) is a visual representation of the classification
of the prototypes. Each circle stands for a classified prototype. A
black circle stands for a correct classification where a gray circle
stands for a false classification. We can see that for a z of 0.9 all
the patches are represented by the prototypes. For a z of 1,
however, only the cue patches are represented. This again suggest

a trade-off, this time between the stability of the behavioral
performance and the completeness of the prototypes, i.e.
perceptual performance. If we consider an actively modulated z
value we can, however, again overcome this limitation as all the
patches are represented by the prototypes. A quantitative
measure of perceptual performance is given by the correct
classification ratio in Fig. 8. The correct classification ratio is
high for both, z¼ 0:9 and an actively modulated z and low for
behavioral learning only ðz¼ 1Þ. A Kruskal–Wallis rank sum test
ðpo0:001Þ indicates a significant difference between the groups
where a post-hoc analysis shows that both the z¼ 0:9 and the
actively modulated z condition is significantly different to the
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Fig. 6. Floating behavioral performance over 1000 trials with a time bin of 50 trials: (a) performance for different values of z and (b) performance for an actively modulated
z.

Fig. 7. Representation of the patches by the prototypes. (a)–(c) Example plot of classified prototypes within the arena. A black circle stands for a correct classification
where a gray circle stands for a false classification: (a) z¼ 0:9, (b) z¼ 1, and (c) actively modulated z.

Fig. 5. Example trajectories of the robot for different values of z after learning: (a) perceptual learning only z¼$1, (b) behavioral and perceptual learning z¼ 0:9, and
(c) behavioral learning only z¼ 1.

A. Duff, P.F.M.J. Verschure / Neurocomputing ] (]]]]) ]]]–]]]8

Please cite this article as: A. Duff, P.F.M.J. Verschure, Unifying perceptual and behavioral learning with a correlative subspace learning
rule, Neurocomputing (2010), doi:10.1016/j.neucom.2009.11.048

Duff et al (2010) Neurocomputing
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The	  neuronal	  substrate	  of	  the	  AL	  :	  
predicAon	  and	  correlaAon	  in	  the	  
amygdala	  and	  the	  cerebellum

Medina et al, Nat Rev Neurosci, 2001
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Models	  of	  AL

Naive

Trained

0.74 kHz 2.96 kHz

22 CS-US 
trials

Sanchez-Montanes et al (2000/2002)

Sanchez-Montanes et al (2000/2002)

Kilgard & Merzenich, 1998
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Models	  of	  AL

Naive

Trained

0.74 kHz 2.96 kHz

22 CS-US 
trials
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Fig. 1. The architecture of the integrated model: The Non-specific learning
system (NLS) on the left and the specific learning systems (SLS) on the
right. In the NLS the activation of the amygdala and the nucleus basalis
induces plasticity in the auditory cortex. The pontine nucleus gates the
stimulation from these cortical representation to the cerebellum. In the SLS
the CS and the US converge at the level of the purkinje cell resulting in the
induction of LTD at the purkinje synapse. This induces a dis-inhibition of the
deep nucleus (DN) leading to the exact timed motor CR. The reflexive UR is
elicited without adaptive processing. CF climbing fibre; COCH cochlea; CS
conditioning stimulus; DN deep nucleus; GA granule cells; Inh inhibitory
interneurons; IO inferior olive; NB nucleus basalis; mCR motor conditioned
reaction; MF mossy fibre; MGm medial geniculate body; MGv ventral
medial geniculate body; PF parallel fibre; PN pontine nucleus; PU purkinje
cell; RT reticular formation; THAL thalamus; TN trigeminal nucleus; UR
unconditioned reaction; US unconditioned stimulus

were able to demonstrate that, consistent with the two-phase
model of conditioning, rats exhibit two successive stages of
nonspecific emotional (fear) and specific musculature (eye-
lid) learning during delay eye-blink conditioning [65]. As a
cell cluster that is highly connected to subcortical modulatory
systems [14], [40], the amygdala can be seen as a relay
station that channels the valence quality of a stimulus to other
parts of the brain. One of the target destination of the amyg-
dala’s output is the cholinergic neurons of the basal forebrain.
Cholinergic neurons of the nucleus basalis regulate globally
synaptic plasticity in the cortex [66]. Experimental examples
of specific learning–induced cortical plasticity are studies of
the auditory cortex A1 [32], [35], [67], [68]. The ventral
medial geniculate body of the thalamus (MGv) transmits
the tone detection from the cochlea to the primary auditory
cortex. The released ACh is a result from the amygdala -
nucleus basalis stimulation and acts at muscarinic receptors
in A1. Converging events with cortical excitation from the
effects of the tone thus produces long-term plasticity.

1) Spike Time Dependent Synaptic Plasticity STDP: The
timing of pre- and post synaptic activity are the crucial
factor for the adaption of signal transmission at a synapse
[69], [70], [71]. Back-propagating action potentials BAPs,
that travel backwards from the soma to the axon [72], [73]
and the inhibition of BAP’s through inhibitory interneurons
are regulating the activity pattern on a synaptic level and
thereby the strength of the induction of STDP [74]. I(t) is
the amount of inhibition received during the interval [t, tpost].
If the inhibition I(t) is high the back-propagating AP gets

blocked and synaptic depression is induced. The pre-synaptic
activity pattern causes the type of depression: LTD if there is
no pre-synaptic activity, HLTD if there is some pre-synaptic
activity. If the inhibition I(t) is low and not strong enough
to block the back-propagating AP, LTP is induced.

The synaptic efficacy of the weights in the current model
evolve according to a modification of a recently proposed
learning rule, which utilizes back-propagating action po-
tentials [4], [5]. The efficacy of a synapse is increased,
if a back-propagating action potential arrives at a synapse
simultaneously, within a small symmetrical temporal window
with an action potential in the presynaptic afferent fiber:

∆w = αLTP
τ0

τ0 + |tpost − tpre| (1)

with αLTP being the LTP learning rate, τ0 = 10 defining
the temporal window and tpost, tpre the timing of the pre–
and postsynaptic action potential respectively. The activation
of the inhibitory interneurons through the negative feedback
loop attenuate this retrograde propagation in the dendritic
trees of the cortical excitatory neurons, decreasing the effi-
cacy of the activated synapses according to:

∆w = −βLTD
τ0

τ0 + |tpost − tpre| (2)

with βLTD being the LTD learning rate, τ0 = 10 defining
the temporal window and tpost, tpre the timing of the pre–
and postsynaptic action potential respectively. To further
alter the weights, an additional heterosynaptic LTD (HLTD)
was implemented, which decreases the synaptic efficacy if
postsynaptic activity occurs without coincident presynaptic
activity:

∆w = αheteroLTD (3)

with αheteroLTD being the heterosynaptic LTD learning
rate. The modification of the weights is therefor crucially de-
pendent on the temporal dynamics of the neuronal network,
taking the relative timing of the excitatory and inhibitory
inputs to the cortical neurons into account.

C. The specific Learning System
The model described here is an extension of the model

published by Hofstätter and colleagues [5]. The circuit is
built up by the granule cells, purkinje cells, inferior olive,
deep nucleus, mossy fibers, climbing fibers and parallel fibers
(Figure 1). The system receives input from the NLS by
the pontine nucleus. The co-activation of the purkinje cell
by US induced active climbing fibres results in a reduction
of synaptic plasticity at the PF–PU synapse, or long-term
depression LTD. [53]. Pf stimulation alone leads to a weak
net increase of the connection strength of the PF–PU–
synapse or LTP.

a) Purkinje Cell: The Purkinje cell is composed of
three different compartments (Figure 2 ). The compartment
representing the soma of the cell, called PU–SO, receives
excitatory inputs from PU–SP, PU–SYN and IO. PU–SP is
responsible for the spontaneous activity of the Purkinje cell.
PU–SYN represents the dendritic region of the PU which
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Vi(t + 1) = βVi(t + 1) + Ei(t) + Ii(t) (7)

where β�[0, 1] is the persistence of the membrane potential
which defines the speed of the decay towards the resting
state, Ei(t) and Ii(t) the excitatory and inhibitory input at the
time t.

The functionality of the integrated model is dependent
from the quality of the cortical representation, which is a
function of the strength of the STDP induced plasticity in the
auditory cortex and from the gating threshold of the pontine
nucleus. The model transmits only stimuli with a behavioral
importance from the NLS to the SLS.

We tested the performance of our network with an eye-
blink conditioning simulation. The auditory cortex was con-
structed by an cell array of 50 units. All the other components
of the model were built by single cell units. The CS was
a conceptualized auditory stimulus coded as a pattern of 5
active cells in an array of 50. 30 trace conditioning trials with
a CS exposure time of 400 ms and an US exposure time of
100 ms were applied to the model. To check the performance
of the model the CS and the 4 different control stimuli were
exposed after the conditioning phase.

III. RESULTS

We recorded the activity of the auditory cortex (AC), the
purkinje cells (PU) and the deep nucleus (DN) before, during
and after the conditioning phase. An analysis of the learning
curve of the NSL and the integrated model was made to
proof the timing of the adaptive processes. A quantification
of the response was made by analyzing the spiking behavior
of the different cell groups.

A. Performance of the Non-specific Learning System
Before the conditioning phase the auditory cortex re-

sponded with distinguishable activity patterns to the 5 dif-
ferent auditory stimuli. The intensity of the responses were
homogenic (Figure 3, left). The reactivity of the CS represen-
tation in AC before and after the conditioning phase changes
dramatically. The STDP induces in the auditory cortex a
change of the representational maps of the conditioned
stimulus. After the conditioning, a bigger representation can
be observed by an increased number of responsive cells
(Figure 3, right). The learning curve shows the change in
spiking behavior during the conditioning trials 1 -7 (Figure
4).

To test the impact of the amygdala–nucleus basalis stimu-
lation on the representation of the CS in the auditory cortex
we run different simulations changing the acetylcholinergic
input. The strength of the nucleus basalis supports the plas-
ticity in the cortex leading to an increased CS representation
after the conditioning phase (Figure 5).

B. Performance of the Integrated Model
Before conditioning the CS does not elicit an increased

activity in the auditory cortex and no information is trans-
mitted to the SLS (Figure 6). The plasticity in the integrated

Fig. 3. Reactivity of the auditory cortex before and after the conditioning.
CS is the stimulus with ID 1. Before the conditioning the cortical reaction
to all 5 stimuli is homogenic. After the conditioning the cortex response to
the CS is increased.

Fig. 4. The learning curve of the NLS during conditioning. The spikes
per trials increase during the conditioning phase. Plasticity is observed
during trials 1-7. At trial 26 a spontaneous reduction in the response can be
observed.

model starts after an increased representation of the CS in
the cortex is established and a co-activation of the purkinje
cell from the parallel fibres and the climbing fibres coincide.
The parallel fibres transmit a signal to the purkinje cell for
the first time during conditioning trial 7. This co-activation
of the purkinje cell induces LTD that results in an decrease
of the purkinje cell activity. During conditioning trial 12 this
activity under-run the first time the threshold causing the dis-
inhibition of the deep nucleus, that leads to the elicitation of
a first imprecise motor reaction (Figure 7 & 8). As long as
the CR is not optimal timed the sustained LTD induction
results in an ongoing decrease of the purkinje cell activity
until the exactly timed CR is established (Figure 7 & 9).

Fig. 5. The increase of the cortical representation of the CS in the auditory

cortex in dependence of the Nucleus Basalis Stimulation.

Fig. 6. The performance of the model before the conditioning. The US does

not affect the auditory cortex (AC). The purkinje cell (PU) does not change

its activity and no CR is elicited. CS conditioned stimulus, US unconditioned

stimulus, AC auditory cortex, PU purkinje cell, CR conditioned reaction.

C. Performance in the Control

After the conditioning phase the model was exposed two

times to the 5 auditory stimuli without the exposure of an

aversive US. The gating function of the pontine nucleus is

responsible that after the conditioning only increased cortical

representations are capable to stimulate the parallel fibres

(Figure 10). The CF showed no activity during these control

trials. The pause of the purkinje cell that induced the exact

dis-inhibition of the deep nucleus was only observed during

the control trial 1 and 6, when the CS was exposed to the

model.

IV. CONCLUSIONS

We have presented an integrated model of the two phase

theory of conditioning including neuorbiological constrains

of the non-specific and specific learning circuit. In a sim-

ulated eye-blink conditioning experiment we have demon-

Fig. 7. Learning of the exactly timed CR: The PU cell activity decreases

during conditioning trials 1-13. During trial 12 the activity under-runs for

the first time the threshold resulting in the dis-inhibition of the deep nucleus.

This triggers the first in-exactly timed reaction (Figure 8). During trial 13 the

PU cell activity under-runs the thershold before the US and an exactly timed

CR is triggered. The CS and the US are only schematically represented in

this plot.

Fig. 8. Timing of CS (top row), US (middle row) and purkinje cell reactivity

(bottom row) during conditioning trial 12. The decrease of the CS trace in

the purkinje synapse induces a reduction of Purkinje cell activity (blue line,

bottom row). The imprecise motor reaction is elicited during this trial for

the first time (green line, bottom row).

strated in a first step that the model increases cortical

representations of stimuli with behavioral importance. The

models capability to gate those representations to the specific

learning system induces the adaption of the exact timed CR.

The performance of the NSL is controlled by the biologically

inspired STDP taking into account the effects of back-

propagating action potentials. The inhibition of these back-

propagating APs by inhibitory interneurons is a fundamental

controlling mechanism of the strength of the STDP. The

performance of the specific learning system is controlled by

the rate of the LTP and LTD and the CS-trace at the level of

the purkinje cell synapse. Integrating the circuits of the non-

specific and specific learning system we demonstrate how

cortical plasticity supports the effective cerebellar associative

Event and time acquisition
Auditory cortex Trial 1
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Fig. 5. The increase of the cortical representation of the CS in the auditory

cortex in dependence of the Nucleus Basalis Stimulation.

Fig. 6. The performance of the model before the conditioning. The US does

not affect the auditory cortex (AC). The purkinje cell (PU) does not change

its activity and no CR is elicited. CS conditioned stimulus, US unconditioned

stimulus, AC auditory cortex, PU purkinje cell, CR conditioned reaction.
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After the conditioning phase the model was exposed two

times to the 5 auditory stimuli without the exposure of an

aversive US. The gating function of the pontine nucleus is

responsible that after the conditioning only increased cortical

representations are capable to stimulate the parallel fibres

(Figure 10). The CF showed no activity during these control

trials. The pause of the purkinje cell that induced the exact

dis-inhibition of the deep nucleus was only observed during

the control trial 1 and 6, when the CS was exposed to the

model.

IV. CONCLUSIONS

We have presented an integrated model of the two phase

theory of conditioning including neuorbiological constrains

of the non-specific and specific learning circuit. In a sim-

ulated eye-blink conditioning experiment we have demon-

Fig. 7. Learning of the exactly timed CR: The PU cell activity decreases

during conditioning trials 1-13. During trial 12 the activity under-runs for

the first time the threshold resulting in the dis-inhibition of the deep nucleus.

This triggers the first in-exactly timed reaction (Figure 8). During trial 13 the

PU cell activity under-runs the thershold before the US and an exactly timed

CR is triggered. The CS and the US are only schematically represented in

this plot.

Fig. 8. Timing of CS (top row), US (middle row) and purkinje cell reactivity

(bottom row) during conditioning trial 12. The decrease of the CS trace in

the purkinje synapse induces a reduction of Purkinje cell activity (blue line,

bottom row). The imprecise motor reaction is elicited during this trial for

the first time (green line, bottom row).

strated in a first step that the model increases cortical

representations of stimuli with behavioral importance. The

models capability to gate those representations to the specific

learning system induces the adaption of the exact timed CR.

The performance of the NSL is controlled by the biologically

inspired STDP taking into account the effects of back-

propagating action potentials. The inhibition of these back-

propagating APs by inhibitory interneurons is a fundamental

controlling mechanism of the strength of the STDP. The

performance of the specific learning system is controlled by

the rate of the LTP and LTD and the CS-trace at the level of

the purkinje cell synapse. Integrating the circuits of the non-

specific and specific learning system we demonstrate how

cortical plasticity supports the effective cerebellar associative
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Fig. 6. The performance of the model before the conditioning. The US does

not affect the auditory cortex (AC). The purkinje cell (PU) does not change

its activity and no CR is elicited. CS conditioned stimulus, US unconditioned

stimulus, AC auditory cortex, PU purkinje cell, CR conditioned reaction.

C. Performance in the Control

After the conditioning phase the model was exposed two

times to the 5 auditory stimuli without the exposure of an

aversive US. The gating function of the pontine nucleus is

responsible that after the conditioning only increased cortical

representations are capable to stimulate the parallel fibres

(Figure 10). The CF showed no activity during these control

trials. The pause of the purkinje cell that induced the exact

dis-inhibition of the deep nucleus was only observed during

the control trial 1 and 6, when the CS was exposed to the

model.

IV. CONCLUSIONS

We have presented an integrated model of the two phase

theory of conditioning including neuorbiological constrains

of the non-specific and specific learning circuit. In a sim-

ulated eye-blink conditioning experiment we have demon-

Fig. 7. Learning of the exactly timed CR: The PU cell activity decreases

during conditioning trials 1-13. During trial 12 the activity under-runs for

the first time the threshold resulting in the dis-inhibition of the deep nucleus.

This triggers the first in-exactly timed reaction (Figure 8). During trial 13 the

PU cell activity under-runs the thershold before the US and an exactly timed

CR is triggered. The CS and the US are only schematically represented in

this plot.

Fig. 8. Timing of CS (top row), US (middle row) and purkinje cell reactivity

(bottom row) during conditioning trial 12. The decrease of the CS trace in

the purkinje synapse induces a reduction of Purkinje cell activity (blue line,

bottom row). The imprecise motor reaction is elicited during this trial for

the first time (green line, bottom row).

strated in a first step that the model increases cortical

representations of stimuli with behavioral importance. The

models capability to gate those representations to the specific

learning system induces the adaption of the exact timed CR.

The performance of the NSL is controlled by the biologically

inspired STDP taking into account the effects of back-

propagating action potentials. The inhibition of these back-

propagating APs by inhibitory interneurons is a fundamental

controlling mechanism of the strength of the STDP. The

performance of the specific learning system is controlled by

the rate of the LTP and LTD and the CS-trace at the level of

the purkinje cell synapse. Integrating the circuits of the non-

specific and specific learning system we demonstrate how

cortical plasticity supports the effective cerebellar associative
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Fig. 9. The performance of the model after the conditioning. The CS
representation in the auditory cortex (AC) is increased. A delayed pause in
the purkinje cell (PU) can be observed. The CR is elicited just before the
US presentation. CS conditioned stimulus, US unconditioned stimulus, AC
auditory cortex, PU purkinje cell, CR conditioned reaction.

Fig. 10. Activity of the parallel fibre, climbing fibre and deep nucleus
in the control. Stimuli 1 and 6 represent the CS, 2-5 and 7-10 the control
stimuli. The CF does not show any activity during this phase.

learning.

V. FUTURE WORK

We want to connect our model to a robot in a open field
arena to test its stability. The performance in an object avoid-
ance task will be used as a benchmark for the performance.
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Figure 5.9: The behavior of the ePuck robot after conditioning. The robot
does not enter the red area of the arena. The camera detects the red color
(CS) and the model elicits a conditioned response (CR) in form of an
exactly timed turning. The blue line indicates the track of the robot.
.

114

5.3.2 Performance of the Robot

In the beginning of the robot experiment the ePuck drives over the red
area (CS) until he detects the wall of the arena with his proximity sensors
(US). The late turning can be classified as a unconditioned response or
reflex (Figure 5.8). A co-activation of the Purkinje synapse (PU-SYN)
by the CS and the US induces LTD decreasing the synaptic weight of
the PF-PU synapse (Figure 5.10). After 113 conditioning trials the robot
performs for the first time a conditioned response in form of an early
timing. From this point the robot avoids the wall as soon as the camera
detects the red color (Figure 5.9). The blue line indicates the track of the
robot.

Figure 5.8: The behavior of the ePuck robot before conditioning. The
robot enters the red area of the arena. The proximity sensors detect the
wall (US) and elicit the unconditioned response (UR) in form of a late
turning. The blue line indicates the track of the robot in the arena.
.

113

Robot Validation

Figure 6.5: The iCub uses led lights to express different emotions in the
face. The picture shows his angry expression that was used in the present
study.

125

Monday, July 25, 2011



specs.upf.edu

DAC	  AL:	  Intermediate	  conclusion	  

• From	  sensing	  to	  symbols,	  percepts	  and	  acAons
• InteracAon	  of	  perceptual	  and	  behavioral	  learning

– PL	  &	  BL	  are	  both	  predicAon	  based
– InteracAon	  of	  PL	  &	  BL	  are	  dynamically	  regulated

• Konorski’s	  2	  phase	  theory	  emphasizes	  the	  fundamental	  
disAncAon	  between	  event	  and	  interval	  representaAons

• The	  objecAves	  of	  the	  adapAve	  layer	  are	  perceptual	  and	  
behavioral	  predicAon

• AL	  maps	  onto	  the	  neuronal	  substrate	  of	  classical	  
condiAoning:	  amygdala	  and	  cerebellum
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Inter-‐layer	  control	  signals	  and	  protocols	  
of	  DAC

43[Duff	  et	  al.,	  Brain	  Res	  Bull	  2011]
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Figure 1 Graph of the dominant interactions between significant excitatory cell types in
neocortex and their subcortical relations. The nodes of the graph are organized spatially;
vertical corresponds to the layers of cortex and horizontal to its lateral extent. Directed
edges (arrows) indicate the direction of excitatory action. Thick edges indicate the relations
between excitatory neurons in a local patch of neocortex, which are essentially those described
originally by Gilbert & Wiesel (Gilbert & Wiesel 1983, Gilbert 1983) for visual cortex.
Thin edges indicate excitatory connections to and from subcortical structures and inter-areal
connections. Each node is labeled for its cell type. For cortical cells, Lx refers to the layer in
which its soma is located. P indicates that it is an excitatory neuron (generally of pyramidal
morphology). Thal denotes the thalamus and Sub denotes other subcortical structures, such
as the basal ganglia.
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connections. Each node is labeled for its cell type. For cortical cells, Lx refers to the layer in
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morphology). Thal denotes the thalamus and Sub denotes other subcortical structures, such
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Figure 1 Graph of the dominant interactions between significant excitatory cell types in
neocortex and their subcortical relations. The nodes of the graph are organized spatially;
vertical corresponds to the layers of cortex and horizontal to its lateral extent. Directed
edges (arrows) indicate the direction of excitatory action. Thick edges indicate the relations
between excitatory neurons in a local patch of neocortex, which are essentially those described
originally by Gilbert & Wiesel (Gilbert & Wiesel 1983, Gilbert 1983) for visual cortex.
Thin edges indicate excitatory connections to and from subcortical structures and inter-areal
connections. Each node is labeled for its cell type. For cortical cells, Lx refers to the layer in
which its soma is located. P indicates that it is an excitatory neuron (generally of pyramidal
morphology). Thal denotes the thalamus and Sub denotes other subcortical structures, such
as the basal ganglia.
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Wyss et al, 2006, Public Library of Science

• Sparseness: Learning sparse codes 
explains simple cell receptive fields in V1 
(Olshausen 1996) and the formation of 
adequate auditory filters (Lewicki 2002).

• Stability: Optimizing for temporal stability 
in visual system leads to invariant 
representations similar to V1 complex 
cells ( Kayser 2001, Einhäuser 2003, 
Körding 2003, Berkes 2003, Wyss).
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two lines of cortical information. The purpose of
this review is to discuss the possible functional
basis of this mysterious duality.

A priori, what are the grand dualities that might
be considered? Here is a list of some possibilities:
what/where; specific/context; sensory/motor; past/
present; conscious/unconscious; rewarded/punished;
stimulus/response.

My interest in the last of these, stimulus/re-
sponse, was stimulated by a paper on robotic con-
trol (Verschure et al., 2003). In that paper, the
authors describe a ‘‘brain-like’’ computer program
that enables a robot to efficiently find sites at
which reward is located. The authors postulated
several levels of control. At the lowest levels, cir-
cuits support classical conditioning. In this way,
the robot learns to associate a previously neutral
stimulus with a reward that is close to the robot.

But the robot becomes much more efficient at
finding reward sites if there are additional circuits.
These make it possible for a cue that is far away
from a reward site to specify a complex path that,
according to previous experience, led to the reward
site. The circuitry that allows the robot to do this
(Fig. 2) involves a ‘‘cortical’’ multi-item ‘‘circular’’
short-term memory (STM) buffer that stores the
last five salient events, and a long-term ‘‘hippo-
campal’’ memory that stores sequences of events in
long-term memory (LTM). When the robot for-
ages and accidentally finds a reward, it incorpo-
rates the entire content of the buffer into its LTM
store. Importantly, each event is defined as a stim-
ulus/response couplet (Verschure and Voegtlin,
1998; Verschure et al., 2003). The ‘‘stimulus’’ part
of the couplet corresponds to a prototype of the
sensations from the external world at a particular

Fig. 1. Wiring diagram of the hippocampus (interneurons excluded) showing dual inputs from the lateral and medial entorhinal cortex.
The layer 2 cortical inputs to the dentate and CA3 diverge fan out (f) widely over these networks and then provide convergent input to
individual dentate granule cells. In contrast, the layer 3 cortical inputs are specialized for individual subregions of CA1. This is an
example of a point-to-point (p-p) connection. Within the hippocampus, granule cells provide input, via mossy fibers to the mossy cells
of the dentate and to CA3 cells. CA3 cells make feedback connections to themselves and to the mossy cells of the dentate. These, in
turn, provide excitatory input to granule cells in the inner third of the granule cell dendritic tree. (See Color Plate 33.1 in color plate
section.)
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Figure 1 Graph of the dominant interactions between significant excitatory cell types in
neocortex and their subcortical relations. The nodes of the graph are organized spatially;
vertical corresponds to the layers of cortex and horizontal to its lateral extent. Directed
edges (arrows) indicate the direction of excitatory action. Thick edges indicate the relations
between excitatory neurons in a local patch of neocortex, which are essentially those described
originally by Gilbert & Wiesel (Gilbert & Wiesel 1983, Gilbert 1983) for visual cortex.
Thin edges indicate excitatory connections to and from subcortical structures and inter-areal
connections. Each node is labeled for its cell type. For cortical cells, Lx refers to the layer in
which its soma is located. P indicates that it is an excitatory neuron (generally of pyramidal
morphology). Thal denotes the thalamus and Sub denotes other subcortical structures, such
as the basal ganglia.
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Figure 1 Graph of the dominant interactions between significant excitatory cell types in
neocortex and their subcortical relations. The nodes of the graph are organized spatially;
vertical corresponds to the layers of cortex and horizontal to its lateral extent. Directed
edges (arrows) indicate the direction of excitatory action. Thick edges indicate the relations
between excitatory neurons in a local patch of neocortex, which are essentially those described
originally by Gilbert & Wiesel (Gilbert & Wiesel 1983, Gilbert 1983) for visual cortex.
Thin edges indicate excitatory connections to and from subcortical structures and inter-areal
connections. Each node is labeled for its cell type. For cortical cells, Lx refers to the layer in
which its soma is located. P indicates that it is an excitatory neuron (generally of pyramidal
morphology). Thal denotes the thalamus and Sub denotes other subcortical structures, such
as the basal ganglia.
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V1 TPC Model

‣Each orientation defines a population of pyramidal cells. 
‣R: radius (11) of connected cells in the same population.
‣A neural representation in which information is conveyed by relative 
amounts of activity across multiple elements of an array.
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(a)

Right Eye Left Eye Nose
Mouth

(b) Subregions of the first face class.

Figure 2: a) The different face classes used in the experiment from the yale database [23]. b) The
LGN image of the right and left eyes, nose and mouth of the first subject as used in the experiments.

classified, fig.3(b). In comparison, using only one neuron population for the entire image only 25%
of the faces are classified fig. 3(a). The scores are summarized and compared to the chance level
(10%) in fig.3(c). To analyze the speed of encoding, we determined the amount of information
encoded in the networks activity trace at different times after stimulus onset. By varying the length
of the interval used to compute the correlation between different responses between 2 and 128 ms.
As observed in previous TPC studies, 66% of the information is available after 20 ms. This property
of stimulus encoding is compatible with the speed of processing in the mammalian visual system
[27].

In the next steps we investigate the properties of TPC for the identification and classification of the
facial parts. First we evaluate the capabilities of identification of eyes, noise and mouth. The TPC
set of subregions was clustered in 4 classes, L,R,NandM . The resulted hit matrix shows that 66
% of the subregions are correctly identified within its class, fig. 3. The mouths (M ) had the best
score reaching 100%. The misclassifications, the non-diagonal entries, show some regularity. The
eyes are mostly confused with mouths (36 times) and within each other. Looking at the subregions
in fig. 2(a) we see some degree of similarity specially between the eye-browns and the lips that
has the same spatial orientation (0 degree). This results suggest that the TPC can encode the basic
properties of different subregions of a face.

In the next step we analyze the capacity that representation holds in classifying the sub-
regions to a specific face. The network responses to stimuli from each class S1, . . . , S10
of the training set were partitioned in 4 clusters using the unsupervised clustering algorithm
Kmeans. A representation of each subregion per class was constructed using the respec-
tive cluster centroid locations, giving rise to a set of 40 prototypes we call feature filters
FR1 , . . . , FR10 , FL1 , . . . FL10 , FN1 , . . . , FN10 and FM1 , . . . , FM10 .

We compute the correlation between each subregion response in the classification set with the feature
filters of the training set. A subregions is assigned to the class of maximum correlation. The results

4
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Yale Face Database

•10 subjects

•4 subsets of increasingly difficult light conditions.

•Standard face recognition data set.
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Defining	  “what”	  using	  TPC

• TPC	  incorporates	  basic	  wiring	  templates	  of	  the	  
cortex

• TPC	  aims	  at	  solving	  the	  basic	  inter-‐area	  wiring	  
bomle	  neck

• TPC	  provides	  mul.plexing
• Generalizes	  to	  face	  recogni.on
• Performance	  depends	  on	  ac.ve	  input	  sampling:	  
amen.on
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A	  model	  of	  the	  ventral	  visual	  system:	  

Wyss et al, 2006, Public Library of Science

• Sparseness: Learning sparse codes 
explains simple cell receptive fields in V1 
(Olshausen 1996) and the formation of 
adequate auditory filters (Lewicki 2002).

• Stability: Optimizing for temporal stability 
in visual system leads to invariant 
representations similar to V1 complex 
cells ( Kayser 2001, Einhäuser 2003, 
Körding 2003, Berkes 2003, Wyss).
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Objec(ves:	  stability	  and	  decorrela(on

Wyss et al, 2006, Public Library of Science

Decorrela.on:

Stability:
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Wyss et al, 2006, Public Library of Science
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two lines of cortical information. The purpose of
this review is to discuss the possible functional
basis of this mysterious duality.

A priori, what are the grand dualities that might
be considered? Here is a list of some possibilities:
what/where; specific/context; sensory/motor; past/
present; conscious/unconscious; rewarded/punished;
stimulus/response.

My interest in the last of these, stimulus/re-
sponse, was stimulated by a paper on robotic con-
trol (Verschure et al., 2003). In that paper, the
authors describe a ‘‘brain-like’’ computer program
that enables a robot to efficiently find sites at
which reward is located. The authors postulated
several levels of control. At the lowest levels, cir-
cuits support classical conditioning. In this way,
the robot learns to associate a previously neutral
stimulus with a reward that is close to the robot.

But the robot becomes much more efficient at
finding reward sites if there are additional circuits.
These make it possible for a cue that is far away
from a reward site to specify a complex path that,
according to previous experience, led to the reward
site. The circuitry that allows the robot to do this
(Fig. 2) involves a ‘‘cortical’’ multi-item ‘‘circular’’
short-term memory (STM) buffer that stores the
last five salient events, and a long-term ‘‘hippo-
campal’’ memory that stores sequences of events in
long-term memory (LTM). When the robot for-
ages and accidentally finds a reward, it incorpo-
rates the entire content of the buffer into its LTM
store. Importantly, each event is defined as a stim-
ulus/response couplet (Verschure and Voegtlin,
1998; Verschure et al., 2003). The ‘‘stimulus’’ part
of the couplet corresponds to a prototype of the
sensations from the external world at a particular

Fig. 1. Wiring diagram of the hippocampus (interneurons excluded) showing dual inputs from the lateral and medial entorhinal cortex.
The layer 2 cortical inputs to the dentate and CA3 diverge fan out (f) widely over these networks and then provide convergent input to
individual dentate granule cells. In contrast, the layer 3 cortical inputs are specialized for individual subregions of CA1. This is an
example of a point-to-point (p-p) connection. Within the hippocampus, granule cells provide input, via mossy fibers to the mossy cells
of the dentate and to CA3 cells. CA3 cells make feedback connections to themselves and to the mossy cells of the dentate. These, in
turn, provide excitatory input to granule cells in the inner third of the granule cell dendritic tree. (See Color Plate 33.1 in color plate
section.)
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(a)
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(b)

9.9 Hz
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9.8 Hz

(c)

Figure 2: Changes in rate distribution in dentate gyrus during progressive trans-
formation of the recording environment. (a) Cells were recorded [Leutgeb et al.,
2007] and simulated on seven shapes of an enclosure with flexible walls, starting
with a square (1) and ending with a circle (7), or vice versa. (b) Color coded
rate map of a representative recorded dentate gyrus cell [Leutgeb et al., 2007].
(c) Color coded rate map of three representative simulated dentate gyrus cells.

4

Rate	  remapping	  in	  the	  DG

 Leutgebetal., 2007, Science. 
69

Composite population vectors were constructed
for each box by stacking the rate maps of all
cells into a three-dimensional matrix with the
two spatial dimensions discretized along the x
and y axes and cell identity represented on the z
axis (Fig. 3A). For each pair of environments,
the firing rates of the active cells were correlated
for each spatial bin shared by the two box
shapes. Population activity in the dentate gyrus
was highly sensitive to small changes in the
shape of the environment (Fig. 3A). The
smallest difference gave a highly significant
decrease in the correlation of the population
vectors for the dentate gyrus (0.75 ± 0.01 for
shape 1 versus 2 and 0.87 ± 0.004 for shape
1 versus 1′; mean correlation ± SEM, t = 15.1,
P < 0.001). A similar decrease was not observed
in CA3, where the population vector correlations
for neighboring shapes and identical shapes
were about the same (0.92 ± 0.004 and 0.92 ±
0.003, respectively, t = 1.96, n.s.). As the shapes

became more different, the correlations
decreased in both hippocampal subfields, but
the decrease was initially more pronounced in
the dentate gyrus (Fig. 3A). The advance of the
dentate gyrus disappeared toward the end of the
morph sequence. Because the impact of decor-
relation processes in the dentate gyrus is likely to
be constrained by the limited convergence of
granule cells on CA3 neurons (15, 27), we asked
whether a similar distinction between adjacent
shapes would be possible with sparser inputs.
The change in spatial population vectors in the
dentate gyrus was thus calculated after subsam-
pling from the recorded cell population. Small
changes in box shape (1 versus 2) led to a similar
drop in correlation even when the cell sample
was reduced to less than 10 (Fig. 3B and fig. S7).

The differentiation of the spatial rate maps
could be improved by decorrelation in the
temporal domain (28). For each pair of simulta-
neously recorded cells, we thus determined the

rate of coincident firing within time windows of
30 ms, 150 ms, and 300 ms (25). The coin-
cidence rates, averaged across cell pairs, were
compared for successive shapes of the morph
sequence by dividing the rates by each other,
giving a coactivity ratio. The coactivity ratio
decreased across morph trials and, in the dentate
gyrus, dropped significantly even between ad-
jacent shapes (Fig. 3C and fig. S8). The decrease
between shapes 1 and 2 was significant for all
three time windows (t > 2.14, P < 0.05). For
larger shape differences, the dissimilarity
reached the level of a shuffled distribution (0 in
Fig. 3C). Cell pairs in CA3were more correlated
than cell pairs with one cell from the dentate
gyrus and one from CA3 (fig. S8).

We next asked whether the change in the
representation of the environment in the dentate
gyrus bears any qualitative similarity to remap-
ping processes in the CA fields. In place cells in
CA3, and to some extent in CA1, remapping

Fig. 3. Quantitative assess-
ment of spatial and temporal
coincidence reduction in the
dentate gyrus. (A) (Top) Pro-
cedure for calculating popu-
lation vector correlations.
The rates of all CA3 or den-
tate cells were stacked into
256 population vectors (PVs),
one for each of the 5 cm by
5 cm bins that were shared
between the morph square
and the morph circle. The
correlation between the pop-
ulation vectors was computed
for each pair of pixels. (Bot-
tom) Mean population vector
correlations for pairs of in-
creasingly divergent morph
shapes. Unlike the popula-
tion output from CA3, popu-
lation vectors in the dentate
gyrus showed dissimilarities
already at the smallest change
of the box configuration (shape
1 versus 2). (Gray stippled
lines highlight the difference
between this comparison and
repeated recordings in shape
1.) (B) Population vector cor-
relations after random sub-
sampling from the recorded
cell sample. Subsets of cells
were chosen from either den-
tate gyrus or CA3, and cor-
relation coefficients were
calculated as in (A). Corre-
sponding data points in (A)
and (B) are circled in red. (C)
Change in temporal correlation of cell pairs as a function of difference
between morph shapes. The degree of change across morph shapes was
expressed as the ratio, for each cell pair, of coactive spikes in one
environment divided by coactive spikes in the other, within three time
windows as noted. The ratio is averaged and linearly transformed such that
randomly shuffled cell pairs have a ratio of 0. Symbols as in (A). (D) Color-

coded spatial cross-correlation matrices for composite rate maps, one for
each pair of morph shapes. The scale is from red (+1) to blue (≤0); yellow
corresponds to 0.5 to 0.7. (E and F) Line diagrams showing cross-correlations
as a function of distance from the center of the cross-correlogram for pairs of
trials with increasing dissimilarity in box shape [one line for each pair; (E),
dentate gyrus; (F), CA3].
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The	  E%	  MAX	  winner-‐
take-‐all	  dynamics	  takes	  

place	  in	  the	  DG	  

EC-‐DG	  Model

Path	  
integra.on

Vision

Reno	  Costa	  et	  al	  (2010)	  Neuron
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the layer 2 of the entorhinal cortex [Nafstad, 1967]; Since the fraction of silent

synapses is small in this cell type [Min et al., 1998] there are ∼1500 LEC inputs.
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Figure 1: Spatial firing properties in LEC and MEC. (H) Rate maps of 10

recorded cells in each area [Hargreaves et al., 2005]. (O and �) Synthetic rate

maps of 10 cells in each of the shapes in each area. Cells presented with equally

distributed spatial score (ranked right to left). Red represents maximal firing,

whereas blue represents no firing. Numbers represent the maximum firing rate

for each cell on both shapes, not present when not informed. Histograms of

spatial information scores for each area for the recorded and synthetic (square

shape) rate maps.

The obtained rate maps of granule cells presented multiple place fields in-

dicating that the inclusion of the LEC input did not impair the formation of

place cells (Figure not ready, mean of 2.2 place fields and mean place field size

of 300cm2
). Moreover, histogram of the number of place fields in each cell

was similar when comparing experimental and model values (Figure not ready,

t = 0.89, not significant (n.s.)).

Rate remapping was expressed with the progressive morphing of the shape

as observed experimentally (Figure 2). Multiple place fields exhibited indepen-

dent rate remapping (Figure 3). When fitted to three curve patterns (linear,

quadratic and sigmoid) the histogram of best matches was similar for both

experimental and simulated conditions (Figure 3(c), t = 0.93, not significant

(n.s.)).

3

Rate	  remapping	  in	  the	  DG:	  LEC	  &	  
MEC

[Hargreavesetal., 2005].

[Hargreavesetal., 2005].

Simulated

Simulated

two lines of cortical information. The purpose of
this review is to discuss the possible functional
basis of this mysterious duality.

A priori, what are the grand dualities that might
be considered? Here is a list of some possibilities:
what/where; specific/context; sensory/motor; past/
present; conscious/unconscious; rewarded/punished;
stimulus/response.

My interest in the last of these, stimulus/re-
sponse, was stimulated by a paper on robotic con-
trol (Verschure et al., 2003). In that paper, the
authors describe a ‘‘brain-like’’ computer program
that enables a robot to efficiently find sites at
which reward is located. The authors postulated
several levels of control. At the lowest levels, cir-
cuits support classical conditioning. In this way,
the robot learns to associate a previously neutral
stimulus with a reward that is close to the robot.

But the robot becomes much more efficient at
finding reward sites if there are additional circuits.
These make it possible for a cue that is far away
from a reward site to specify a complex path that,
according to previous experience, led to the reward
site. The circuitry that allows the robot to do this
(Fig. 2) involves a ‘‘cortical’’ multi-item ‘‘circular’’
short-term memory (STM) buffer that stores the
last five salient events, and a long-term ‘‘hippo-
campal’’ memory that stores sequences of events in
long-term memory (LTM). When the robot for-
ages and accidentally finds a reward, it incorpo-
rates the entire content of the buffer into its LTM
store. Importantly, each event is defined as a stim-
ulus/response couplet (Verschure and Voegtlin,
1998; Verschure et al., 2003). The ‘‘stimulus’’ part
of the couplet corresponds to a prototype of the
sensations from the external world at a particular

Fig. 1. Wiring diagram of the hippocampus (interneurons excluded) showing dual inputs from the lateral and medial entorhinal cortex.
The layer 2 cortical inputs to the dentate and CA3 diverge fan out (f) widely over these networks and then provide convergent input to
individual dentate granule cells. In contrast, the layer 3 cortical inputs are specialized for individual subregions of CA1. This is an
example of a point-to-point (p-p) connection. Within the hippocampus, granule cells provide input, via mossy fibers to the mossy cells
of the dentate and to CA3 cells. CA3 cells make feedback connections to themselves and to the mossy cells of the dentate. These, in
turn, provide excitatory input to granule cells in the inner third of the granule cell dendritic tree. (See Color Plate 33.1 in color plate
section.)
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DG	  forms	  sense-‐act	  couplets	  by	  
instantaneous	  mapping	  of	  LEC	  and	  MEC	  

inputs
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Composite population vectors were constructed
for each box by stacking the rate maps of all
cells into a three-dimensional matrix with the
two spatial dimensions discretized along the x
and y axes and cell identity represented on the z
axis (Fig. 3A). For each pair of environments,
the firing rates of the active cells were correlated
for each spatial bin shared by the two box
shapes. Population activity in the dentate gyrus
was highly sensitive to small changes in the
shape of the environment (Fig. 3A). The
smallest difference gave a highly significant
decrease in the correlation of the population
vectors for the dentate gyrus (0.75 ± 0.01 for
shape 1 versus 2 and 0.87 ± 0.004 for shape
1 versus 1′; mean correlation ± SEM, t = 15.1,
P < 0.001). A similar decrease was not observed
in CA3, where the population vector correlations
for neighboring shapes and identical shapes
were about the same (0.92 ± 0.004 and 0.92 ±
0.003, respectively, t = 1.96, n.s.). As the shapes

became more different, the correlations
decreased in both hippocampal subfields, but
the decrease was initially more pronounced in
the dentate gyrus (Fig. 3A). The advance of the
dentate gyrus disappeared toward the end of the
morph sequence. Because the impact of decor-
relation processes in the dentate gyrus is likely to
be constrained by the limited convergence of
granule cells on CA3 neurons (15, 27), we asked
whether a similar distinction between adjacent
shapes would be possible with sparser inputs.
The change in spatial population vectors in the
dentate gyrus was thus calculated after subsam-
pling from the recorded cell population. Small
changes in box shape (1 versus 2) led to a similar
drop in correlation even when the cell sample
was reduced to less than 10 (Fig. 3B and fig. S7).

The differentiation of the spatial rate maps
could be improved by decorrelation in the
temporal domain (28). For each pair of simulta-
neously recorded cells, we thus determined the

rate of coincident firing within time windows of
30 ms, 150 ms, and 300 ms (25). The coin-
cidence rates, averaged across cell pairs, were
compared for successive shapes of the morph
sequence by dividing the rates by each other,
giving a coactivity ratio. The coactivity ratio
decreased across morph trials and, in the dentate
gyrus, dropped significantly even between ad-
jacent shapes (Fig. 3C and fig. S8). The decrease
between shapes 1 and 2 was significant for all
three time windows (t > 2.14, P < 0.05). For
larger shape differences, the dissimilarity
reached the level of a shuffled distribution (0 in
Fig. 3C). Cell pairs in CA3were more correlated
than cell pairs with one cell from the dentate
gyrus and one from CA3 (fig. S8).

We next asked whether the change in the
representation of the environment in the dentate
gyrus bears any qualitative similarity to remap-
ping processes in the CA fields. In place cells in
CA3, and to some extent in CA1, remapping

Fig. 3. Quantitative assess-
ment of spatial and temporal
coincidence reduction in the
dentate gyrus. (A) (Top) Pro-
cedure for calculating popu-
lation vector correlations.
The rates of all CA3 or den-
tate cells were stacked into
256 population vectors (PVs),
one for each of the 5 cm by
5 cm bins that were shared
between the morph square
and the morph circle. The
correlation between the pop-
ulation vectors was computed
for each pair of pixels. (Bot-
tom) Mean population vector
correlations for pairs of in-
creasingly divergent morph
shapes. Unlike the popula-
tion output from CA3, popu-
lation vectors in the dentate
gyrus showed dissimilarities
already at the smallest change
of the box configuration (shape
1 versus 2). (Gray stippled
lines highlight the difference
between this comparison and
repeated recordings in shape
1.) (B) Population vector cor-
relations after random sub-
sampling from the recorded
cell sample. Subsets of cells
were chosen from either den-
tate gyrus or CA3, and cor-
relation coefficients were
calculated as in (A). Corre-
sponding data points in (A)
and (B) are circled in red. (C)
Change in temporal correlation of cell pairs as a function of difference
between morph shapes. The degree of change across morph shapes was
expressed as the ratio, for each cell pair, of coactive spikes in one
environment divided by coactive spikes in the other, within three time
windows as noted. The ratio is averaged and linearly transformed such that
randomly shuffled cell pairs have a ratio of 0. Symbols as in (A). (D) Color-

coded spatial cross-correlation matrices for composite rate maps, one for
each pair of morph shapes. The scale is from red (+1) to blue (≤0); yellow
corresponds to 0.5 to 0.7. (E and F) Line diagrams showing cross-correlations
as a function of distance from the center of the cross-correlogram for pairs of
trials with increasing dissimilarity in box shape [one line for each pair; (E),
dentate gyrus; (F), CA3].
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Place	  cells	  emerging	  
from	  model	  
interacGon.

	  Rate	  map	  of	  
simulated	  granule	  
cells	  with:
	  
(A)only	  MEC	  Input
(B)only	  LEC	  input
(C)both	  MEC	  and	  LEC	  
inputs.	  

DG	  forms	  sense-‐act	  couplets	  by	  instantaneous	  
mapping	  of	  LEC	  and	  MEC	  inputs
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Johnson & Redish (2007) J Neurosci

Biological evidence for gradient based planning

At a decision point place cell activity correlates with possible forward paths at the bifurcation
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• Can we dynamically build and modify gradients?

Constructing gradients from a hippocampal cognitive map

Sum of 2D Gaussians

    We can use Gaussians as being the basis for building gradients

Sanchez et al (2010) IROS
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• Can we dynamically build and modify gradients?

Constructing gradients from a hippocampal cognitive map

Sum of 2D Gaussians

• Place/Grid Cells are often approximated by Gaussians

=

• Place/Grid Cells as basis function for generating Affordance Gradients

    We can use Gaussians as being the basis for building gradients

Sanchez et al (2010) IROS
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Sum of 2D Gaussians

Sanchez et al (2010) IROS

Constructing gradients from a hippocampal cognitive map
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Sum of 2D Gaussians

Sanchez et al (2010) IROS

Constructing gradients from a hippocampal cognitive map
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Allocentric Goal oriented Navigation using 
affordance gradients

• Can we then translate graph search into a problem of gradient ascent/descent? 

1 build the gradient connecting the initial position to the goal. 

2 sequentially generate random paths among place cells (Gaussians) 
covering overlapping space 

3 accumulate in a gradient the generated path if it was successful (if it 
reached the memorized goal). 

   
Epuck robot

Open Space Gradient

Forward Path 
  Gradient

Forward Path Gradient

Sanchez et al (2010) IROS
Monday, July 25, 2011



Goal-Directed Behavior

Mpath  : gradient of    

              each generated 
              path

Mbif      : gradient of    

              the accumulated 
              bifurcations and 

              corners

• We detect bifurcations by abrupt changes in the direction of a generated 
path of Gaussians 

: Goal

Sanchez et al (2010) IROS

Sanchez et al (2010) IROS
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• We detect bifurcations by abrupt changes in the direction of a generated 
path of Gaussians 
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Goal-Directed Behavior: Finding a random target

• The majority of searches show a monotonic relation between “time to target” versus 
“shortest path” Sanchez et al (2010) IROS

Sanchez et al (2010) IROS
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• DG	  provides	  instantaneous	  what	  and	  how	  
mapping	  into	  an	  integrated	  representa.on

• MEC	  (how)	  provides	  a	  basic	  metric	  modulated	  by	  
LEC	  (what)

• This	  can	  be	  read	  out	  into	  dedicated	  
representa.ons	  of	  space

• Hippocampal	  representa.ons	  can	  be	  used	  to	  
construct	  affordance	  gradients	  linking	  to	  the	  
reac.ve	  layer	  allosta.c	  control	  systems

81

Dac	  AL:	  Mixing	  what	  and	  how	  into	  
sensori-‐motor	  couplets
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DAC:	  Contextual	  Layer
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DAC:	  Contextual	  Layer
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Contextual	  layer	  generalized	  to	  model	  
of	  PFC

83

104 Chapter 5. Rule Learning and Switching

Perception e

Action m

W 

ai

ti

ri

V

U 

A B

Figure 5.3. Implementation of a memory-unit. A The activity ai is
computed as the weighted sum of the perceptual input and modulated by
the trigger value ti and the reward value ri such that where W are the
weights of the connections from the perception layer to the memory-unit,
V the weights of the connections form the memory-unit to the action layer
and U the weights of the lateral connections between the memory-units.
B Symbolic representation of the same memory-unit.

The selection mechanism in the memory network is driven by the modu-

lated activity ci. We model the selection mechanism as a stochastic process.

The probability pi that memory-unit i is selected is given by:

pi =
e(!Mci)

max j(e(!Mc j))
(5.2)

The parameter !M allows to control the randomness of the selection. For

a high value of !M the selection corresponds to a WTA mechanism. For a

low value of !M the selection approximates a random selection and multiple

memory-units can be selected. For a high value of !M only the memory-

units with the highest modulated activity ci are selected.

Trigger

RewardChain

[Duff	  et	  al.,	  Brain	  Res	  Bull	  2011]
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Contextual	  Layer:
Rule	  learning	  and	  switching

• PFC-‐grounded	  contextual	  
layer
• Sustained	  ac4vity
• Lateral	  connec4vity
• Reward	  modula4on

• Single/Mul7ple	  T-‐Maze,
Tower	  of	  London	  

• SMC	  can	  be	  manipulated	  
and	  adapted	  to	  express	  
sequen7al	  rules	  and	  plans

84[Duff	  et	  al.,	  Brain	  Res	  Bull	  2003]
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Integra.on	  percep.on	  and	  memory	  in	  
decision	  making

[Verschure	  et	  al.,	  Nature	  2003]

(1)	  perceptual	  matching	  through	  membrane	  poten9al	  modulaGon	  (t);	  
(2)	  memory	  biasing	  and	  chaining	  through	  threshold	  modulaGon	  (c)

76 Chapter 3. Current Limits of the DAC Architecture

creasing their weights as (1− tkl ), see Figure 3.7 for illustration.

!"#"$%"&'!"()"*%'
+,-.'

"(/$"*%01$'2$3/*'456'

71!82#'$8"'496'

!":8"*$"';12!''

Figure 3.7. Illustration of an LTM sequence and its biasing by the value
of the trigger unit.

Thresholding stage

The value of collector unit ck
l represents a contribution of a state stored

within segment l of sequence k. This value is compared to a fixed memory
threshold value, typically set to 0.9995. At this thresholding stage, all col-
lector unit values that exceed the memory threshold are normalized so that
their sum equals one, and enter the stage of action selection.

Action selection stage

The DAC contextual layer has analogs of the central components of a
Bayesian analysis of the foraging task: goals, actions, hypotheses, obser-
vations, experience, prior probabilities and score function. By phrasing the
foraging tasks performed with the DAC architecture in Bayesian terms it
has been shown that the DAC architecture executes exactly those actions
that are optimal in a Bayesian sense [5].

In the Bayesian case, knowledge is defined by a set of prior hypotheses
s and the Bayes theorem defines a statistical way to quantify the probability
that hypothesis s is true given observation r:
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Certainty/novelty	  assessed	  at	  level	  of	  RL	  
modulates	  the	  memory	  units	  of	  CL

86
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Figure 5.3. Implementation of a memory-unit. A The activity ai is
computed as the weighted sum of the perceptual input and modulated by
the trigger value ti and the reward value ri such that where W are the
weights of the connections from the perception layer to the memory-unit,
V the weights of the connections form the memory-unit to the action layer
and U the weights of the lateral connections between the memory-units.
B Symbolic representation of the same memory-unit.

The selection mechanism in the memory network is driven by the modu-

lated activity ci. We model the selection mechanism as a stochastic process.

The probability pi that memory-unit i is selected is given by:

pi =
e(!Mci)

max j(e(!Mc j))
(5.2)

The parameter !M allows to control the randomness of the selection. For

a high value of !M the selection corresponds to a WTA mechanism. For a

low value of !M the selection approximates a random selection and multiple

memory-units can be selected. For a high value of !M only the memory-

units with the highest modulated activity ci are selected.

Trigger

RewardChain

[Duff	  et	  al.,	  Brain	  Res	  Bull	  2011]

Sensors Effectors
Stimulus

Adaptive
control Response

S
R

S
R

S
R

S
R

S
R

Short term memory

S
R

S
R

S
R

S
R

S
R

S
R

S
R

S
R

S
R

S
R

S
R

S
R

S
R

S
R

S
R

S
R

S
R

S
R

S
R

S
R

S
R

S
R

S
R

S
R

S
R

S
R

S
R

S
R

S
R

S
R

Long term memory

Contextual control
LTM biased 
competition:

Verschure & Voegtlin (1998) Neur.Netw.  Verschure & Althaus (2003) Cog.Sci., 27: 561-590 Verschure et al (2003) Nature

c = 1 - m * t

c > Θc = activates segment

c: collector unit
m: sensor matching
t: memory trace

Matching optimizes:

Recall	  modulated	  by	  “surprise”
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Contextual	  layer:	  integra.ng	  percep.on	  and	  
memory

•	  Our	  previous	  predic.on:	  sensory	  informa.on	  and	  memory	  
bias	  are	  integrated	  using	  separate	  decision	  variables:	  rate	  and	  
threshold.
•	  We	  analyzed	  responses	  from	  neurons	  in	  the	  PMd
•	  Observed:

•	  Rate	  does	  not	  vary	  with	  certainty
•Neural	  variability	  and	  RT	  increases	  with	  uncertainty.
•	  Mean	  and	  SE	  of	  the	  RT	  can	  be	  predicted	  from	  the	  neural	  
variability.
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Control signals and 
protocols in DAC
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Figure 3.5. DAC contextual layer: graphical representation of sequence
learning process.

an abstraction of the robot’s state. The result of the matching stage is used
as a measurement update in the process of estimating the current state of
a robot. For this purpose, every segment maintains a value which is di-
rectly proportional to the conditional probability (likelihood) of observing
the current prototype with respect to the information carried by the seg-
ment. This value is stored in, so called, collector unit. The collector value
ck

l of segment l of sequence k is updated according to:

ck
l = α(1−mk

l tkl ) (3.1)

where mk
l represents the distance between the prototype stored in the seg-

ment and the one generated by the adaptive layer [4]. α is a normalization
constant that enforces the total sum of all LTM segment collector values to

3.1. DAC Hierarchy 73

constructed by the perceptual learning system of the adaptive layer [4].
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Figure 3.4. The adaptive layer.

3.1.3 Contextual layer

The contextual layer provides mechanisms for learning and recall of be-

havioral sequences. Behavioral sequence conserves the order of a series of

subsequent events. Each event represents a tuple containing a co-occurring

prototype and robot’s response (P,R). Events are temporarily hold within

the short-term memory (STM). Only upon reaching a goal state, being tar-

get or obstacle, the STM sequence is transfered to the long-term memory

(LTM), see Figure 3.5. The behavioral sequences and the LTM are of a

fixed size.

The recall of behavioral actions from LTM is a three-stage process,

where the selection of an action is preceded by the stage of matching and

the stage of thresholding, see Figure 3.6.

Matching stage

In the matching stage, the sensory content of LTM segments is continu-

ously compared with the prototypes generated by the adaptive layer. The

sensory content of an LTM segment, in a form of a prototype, represents
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3.1 DAC Hierarchy

DAC evolved from a robot-based neuronal model of classical conditioning
to a system that generates goal-oriented behavior. The model consists of
three tightly coupled layers of control: reactive, adaptive and contextual
[4], as illustrated in Figure 3.1. Currently, DAC develops a control policy
based on actions bound to an egocentric frame of reference and two types
of sensory input: proximal and distal (visual) cues that are retrieved by the
reactive and adaptive layer respectively. In this section, we introduce main
concepts on which the DAC layers are built.
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Figure 3.1. The DAC architecture.

3.1.1 Reactive layer

The reactive layer comprises prewired reflexive relationships between sim-
ple sensory events and actions. These simple sensory events are defined as
proximal cues, i.e., proximity of an obstacle is sensed by proximity sen-
sors, and the proximity of a local target is sensed by ambient light sensors
as the intensity of the light the target emits. At this layer, actions taken by
the robot, e.g., make a turn in the interval of [-90, +90] degrees or continue
straight forward, are hardwired: if the robot detects an obstacle it turns

3 layers of DAC

Adaptive layer: Learning the state 
space

Sense Act

CS: Conditioned stimulus
US: Unconditioned stimulus
CR: Conditioned response
UR: Unconditioned response

Contextual layer: Mapping states into plans for goal 
oriented action
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creasing their weights as (1− tkl ), see Figure 3.7 for illustration.
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Figure 3.7. Illustration of an LTM sequence and its biasing by the value
of the trigger unit.

Thresholding stage

The value of collector unit ck
l represents a contribution of a state stored

within segment l of sequence k. This value is compared to a fixed memory
threshold value, typically set to 0.9995. At this thresholding stage, all col-
lector unit values that exceed the memory threshold are normalized so that
their sum equals one, and enter the stage of action selection.

Action selection stage

The DAC contextual layer has analogs of the central components of a
Bayesian analysis of the foraging task: goals, actions, hypotheses, obser-
vations, experience, prior probabilities and score function. By phrasing the
foraging tasks performed with the DAC architecture in Bayesian terms it
has been shown that the DAC architecture executes exactly those actions
that are optimal in a Bayesian sense [5].

In the Bayesian case, knowledge is defined by a set of prior hypotheses
s and the Bayes theorem defines a statistical way to quantify the probability
that hypothesis s is true given observation r:

4.1. Integration methods 101
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Figure 4.1. The robot, its environment and the DAC architecture.

formation to narrow down the number of matched segments from the LTM
behavioral sequences to improve local awareness. The spatial attention ap-
proach improves local awareness by selecting only those ”salient“ cues that
are coherent to spatial information. In contrast, the spatial integration ap-
proach uses a Bayesian technique to bias cues.

4.1.1 Spatial attention

In the spatial attention approach, the process of selecting LTM segments
consists of two steps. In the first step, the similarity of the current visual
cues to all LTM segments is measured. If the similarity is greater than a
given threshold, we say that the segment is matched. In the second step,
the distance between the current 2D Gaussian place field and the place field
of the matched segment is used to evaluate the quality of the segment. If the
matched segment passes the second step, its similarity with the visual cue
defines the likelihood of its action. By this, the ambiguity of the position

Contextual layer: Mapping states into plans for goal 
oriented action
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[Duff et al., Brain Res Bull 2011]
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A B

Figure 5.3. Implementation of a memory-unit. A The activity ai is
computed as the weighted sum of the perceptual input and modulated by
the trigger value ti and the reward value ri such that where W are the
weights of the connections from the perception layer to the memory-unit,
V the weights of the connections form the memory-unit to the action layer
and U the weights of the lateral connections between the memory-units.
B Symbolic representation of the same memory-unit.

The selection mechanism in the memory network is driven by the modu-

lated activity ci. We model the selection mechanism as a stochastic process.

The probability pi that memory-unit i is selected is given by:

pi =
e(!Mci)

max j(e(!Mc j))
(5.2)

The parameter !M allows to control the randomness of the selection. For

a high value of !M the selection corresponds to a WTA mechanism. For a

low value of !M the selection approximates a random selection and multiple

memory-units can be selected. For a high value of !M only the memory-

units with the highest modulated activity ci are selected.
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Figure 5.3. Implementation of a memory-unit. A The activity ai is
computed as the weighted sum of the perceptual input and modulated by
the trigger value ti and the reward value ri such that where W are the
weights of the connections from the perception layer to the memory-unit,
V the weights of the connections form the memory-unit to the action layer
and U the weights of the lateral connections between the memory-units.
B Symbolic representation of the same memory-unit.

The selection mechanism in the memory network is driven by the modu-

lated activity ci. We model the selection mechanism as a stochastic process.

The probability pi that memory-unit i is selected is given by:

pi =
e(!Mci)

max j(e(!Mc j))
(5.2)

The parameter !M allows to control the randomness of the selection. For

a high value of !M the selection corresponds to a WTA mechanism. For a

low value of !M the selection approximates a random selection and multiple

memory-units can be selected. For a high value of !M only the memory-

units with the highest modulated activity ci are selected.
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Conclusions	  1
• DAC	  is	  an	  architecture	  that	  integrates	  mind	  and	  brain
• It	  is	  validated	  in	  the	  context	  of	  foraging	  behavior
• The	  funcAonal	  decomposiAon	  of	  foraging	  has	  been	  mapped	  onto	  
the	  brain	  through	  detailed	  models	  of:
– 	  Brainstem,	  amygdala,	  cerebellum,	  hippocampus	  and	  visual,	  
entorhinal	  and	  prefrontal	  cortex

• ReacAve	  layer:	  provides	  the	  regulaAon	  of	  species	  specific	  behaviors	  
through	  affordance	  gradients

• AdapAve	  layer	  1:	  
– acquires	  the	  sense-‐act	  state	  space
–model	  of	  ventral	  visual	  system,	  TPC	  coupled	  to	  acAve	  input	  
sampling	  for	  face	  recogniAon

• AdapAve	  layer	  2:	  
–Compresses	  sense	  and	  act	  states	  into	  sense-‐act	  couplets
– 	  representaAonal	  primiAve	  of	  the	  hippocampus 100
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Conclusions	  2
• AdapAve	  layer	  2:	  

–Compresses	  sense	  and	  act	  states	  into	  sense-‐act	  couplets
– 	  These	  representaAonal	  primiAves	  are	  formed	  in	  the	  dentate	  
gyrus	  of	  the	  hippocampus

• Contextual	  layer:	  
– sensory	  informaAon	  and	  memory	  based	  predicAon	  are	  integrated	  
using	  separate	  decision	  variables:	  rate	  and	  threshold	  in	  PFC

• DAC	  has	  been	  validated	  using
– 	  mobile	  and	  humanoid	  robots
–NeuroprostheAcs	  (cerebellum)
–NeurorehabilitaAon	  (RehabilitaAon	  Gaming	  StaAon)
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